353
Views
13
CrossRef citations to date
0
Altmetric
Review

Making Way for Suppressing the FGF19/FGFR4 Axis in Cancer

, &
Pages 2457-2469 | Received 28 Mar 2018, Accepted 20 Aug 2018, Published online: 16 Oct 2018

References

  • Presta M Chiodelli P Giacomini A Rusnati M Ronca R . Fibroblast growth factors (FGFs) in cancer: FGF traps as a new therapeutic approach. Pharmacol. Ther.179, 171 – 187 (2017).
  • Katoh M . Therapeutics targeting FGF signaling network in human diseases. Trends Pharmacol. Sci.37 (12), 1081 – 1096 (2016).
  • Belov AA Mohammadi M . Molecular mechanisms of fibroblast growth factor signaling in physiology and pathology. Cold Spring Harb. Perspect. Biol.5 (6), a015958 (2013).
  • Itoh N Ornitz DM . Evolution of the FGF and FGFR gene families. Trends Genet.20 (11), 563 – 569 (2004).
  • Jahn D Rau M Hermanns HM Geier A . Mechanisms of enterohepatic fibroblast growth factor 15/19 signaling in health and disease. Cytokine Growth Factor Rev.26 (6), 625 – 635 (2015).
  • Katoh M Katoh M . Evolutionary conservation of CCND1-ORAOV1-FGF19-FGF4 locus from zebrafish to human. Int. J. Mol. Med.12 (1), 45 – 50 (2003).
  • Inagaki T Choi M Moschetta A et al. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab.2 (4), 217 – 225 (2005).
  • Alvarez-Sola G Uriarte I Ujue-Latasa M et al. Fibroblast growth factor 15/19 in hepatocarcinogenesis. Dig. Dis.35 (3), 158 – 165 (2017).
  • Li Z Lin B Lin G et al. Circulating FGF19 closely correlates with bile acid synthesis and cholestasis in patients with primary biliary cirrhosis. PLoS ONE12 (6), e0178580 (2017).
  • Kir S Beddow SA Samuel VT et al. FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. Science (80-)331 (6024), 1621 – 1624 (2011).
  • Kliewer SA Mangelsdorf DJ . Bile acids as hormones: the FXR-FGF15/19 pathway. Dig. Dis.33 (3), 327 – 331 (2015).
  • Bhatnagar S Damron HA Hillgartner FB . Fibroblast growth factor-19, a novel factor that inhibits hepatic fatty acid synthesis. J. Biol. Chem.284 (15), 10023 – 10033 (2009).
  • Kir S Kliewer SA Mangelsdorf DJ . Roles of FGF19 in liver metabolism roles of FGF19 in liver metabolism. Cold Spring Harb. Symp. Quant. Biol.76, 139 – 144 (2011).
  • Potthoff MJ Boney-Montoya J Choi M et al. FGF15/19 regulates hepatic glucose metabolism by inhibiting the CREB-PGC-1α pathway. Cell Metab.13 (6), 729 – 738 (2011).
  • Schaap FG . Role of fibroblast growth factor 19 in the control of glucose homeostasis. Curr. Opin. Clin. Nutr. Metab. Care15 (4), 386 – 391 (2012).
  • Kurosu H Choi M Ogawa Y et al. Tissue-specific expression of βklotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J. Biol. Chem.282 (37), 26687 – 26695 (2007).
  • Owen BM Mangelsdorf DJ Kliewer SA . Tissue-specific actions of the metabolic hormones FGF15/19 and FGF21. Trends Endocrinol. Metab.26 (1), 22 – 29 (2015).
  • Morton GJ Matsen ME Bracy DP et al. FGF19 action in the brain induces insulin-independent glucose lowering. J. Clin. Invest.123 (11), 4799 – 4808 (2013).
  • Sohn J-W . Network of hypothalamic neurons that control appetite. BMB Rep.48 (4), 229 – 233 (2015).
  • Marcelin G Jo Y-H Li X et al. Central action of FGF19 reduces hypothalamic AGRP/NPY neuron activity and improves glucose metabolism. Mol. Metab.3 (1), 19 – 28 (2013).
  • Benoit B Meugnier E Castelli M et al. Fibroblast growth factor 19 regulates skeletal muscle mass and ameliorates muscle wasting in mice. Nat. Med.23 (8), 990 – 996 (2017).
  • Glass DJ . What's so special about FGF19-unique effects reported on skeletal muscle mass and function. Cell Metab.26 (2), 287 – 288 (2017).
  • Repana D Ross P . Targeting FGF19/FGFR4 pathway: a novel therapeutic strategy for hepatocellular carcinoma. Diseases3 (4), 294 – 305 (2015).
  • Fon Tacer K Bookout AL Ding X et al. Research resource: comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol. Endocrinol.24 (10), 2050 – 2064 (2010).
  • Torre LA Bray F Siegel RL Ferlay J Lortet-Tieulent J Jemal A . Global cancer statistics, 2012. CA Cancer J. Clin.65 (2), 87 – 108 (2015).
  • Prieto-Domínguez N Méndez-Blanco C Carbajo-Pescador S et al. Melatonin enhances sorafenib actions in human hepatocarcinoma cells by inhibiting mTORC1/p70S6K/HIF-1α and hypoxia-mediated mitophagy. Oncotarget8 (53), 91402 – 91414 (2017).
  • Prieto-Domínguez N Ordóñez R Fernández A et al. Melatonin-induced increase in sensitivity of human hepatocellular carcinoma cells to sorafenib is associated with reactive oxygen species production and mitophagy. J. Pineal Res.61 (3), 396 – 407 (2016).
  • Torrecilla S Llovet JM . New molecular therapies for hepatocellular carcinoma. Clin. Res. Hepatol. Gastroenterol.39 (Suppl. 1), S80 – S85 (2015).
  • Gao Q Wang Z-C Duan M et al. Cell culture system for analysis of genetic heterogeneity within hepatocellular carcinomas and response to pharmacologic agents. Gastroenterology152 (1), 232 – 242 (2017).
  • Sawey ET Chanrion M Cai C et al. Identification of a therapeutic strategy targeting amplified FGF19 in liver cancer by oncogenomic screening. Cancer Cell19 (3), 347 – 358 (2011).
  • Miura S Mitsuhashi N Shimizu H et al. Fibroblast growth factor 19 expression correlates with tumor progression and poorer prognosis of hepatocellular carcinoma. BMC Cancer12, 56 (2012).
  • Hyeon J Ahn S Lee JJ Song DH Park C-K . Expression of fibroblast growth factor 19 is associated with recurrence and poor prognosis of hepatocellular carcinoma. Dig. Dis. Sci.58 (7), 1916 – 1922 (2013).
  • Uriarte I Latasa MU Carotti S et al. Ileal FGF15 contributes to fibrosis-associated hepatocellular carcinoma development. Int. J. Cancer136 (10), 2469 – 2475 (2015).
  • Zhou M Luo J Chen M et al. Mouse species-specific control of hepatocarcinogenesis and metabolism by FGF19/FGF15. J. Hepatol.66 (6), 1182 – 1192 (2017).
  • Zhou M Yang H Learned RM Tian H Ling L . Non-cell-autonomous activation of IL-6/STAT3 signaling mediates FGF19-driven hepatocarcinogenesis. Nat. Commun.8, 15433 (2017).
  • Wan ZY Tian JS Tan HWS et al. Mechanistic target of rapamycin complex 1 is an essential mediator of metabolic and mitogenic effects of fibroblast growth factor 19 in hepatoma cells. Hepatology64 (4), 1289 – 1301 (2016).
  • Zhao H Lv F Liang G et al. FGF19 promotes transition in hepatocellular carcinoma cells by modulating the GSK3β/β-catenin signaling cascade via FGFR4 activation. Oncotarget7 (12), 13575 – 13586 (2015).
  • Ho HK Pok S Streit S et al. Fibroblast growth factor receptor 4 regulates proliferation, anti-apoptosis and alpha-fetoprotein secretion during hepatocellular carcinoma progression and represents a potential target for therapeutic intervention. J. Hepatol.50 (1), 118 – 127 (2009).
  • Chen Z Xie B Zhu Q et al. FGFR4 and TGF-β1 expression in hepatocellular carcinoma: correlation with clinicopathological features and prognosis. Int. J. Med. Sci.10 (13), 1868 – 1875 (2013).
  • Nagamatsu H Teishima J Goto K et al. FGF19 promotes progression of prostate cancer. Prostate75 (10), 1092 – 1101 (2015).
  • Desnoyers LR Pai R Ferrando RE et al. Targeting FGF19 inhibits tumor growth in colon cancer xenograft and FGF19 transgenic hepatocellular carcinoma models. Oncogene27 (1), 85 – 97 (2008).
  • Wang S Zhao D Tian R et al. FGF19 contributes to tumor progression in gastric cancer by promoting migration and invasion. Oncol. Res.23 (4), 197 – 203 (2016).
  • Chenau J Michelland S De Fraipont F et al. The cell line secretome, a suitable tool for investigating proteins released in vivo by tumors: application to the study of p53-modulated proteins secreted in lung cancer cells. J. Proteome Res.8 (10), 4579 – 4591 (2009).
  • Buhmeida A Dallol A Merdad A et al. High fibroblast growth factor 19 (FGF19) expression predicts worse prognosis in invasive ductal carcinoma of breast. Tumor Biol.35 (3), 2817 – 2824 (2014).
  • Dallol A Buhmeida A Merdad A et al. Frequent methylation of the KLOTHO gene and overexpression of the FGFR4 receptor in invasive ductal carcinoma of the breast. Tumor Biol.36 (12), 9677 – 9683 (2015).
  • Heilmann AM Subbiah V Wang K et al. Comprehensive genomic profiling of clinically advanced medullary thyroid carcinoma. Oncology90 (6), 339 – 346 (2016).
  • Zhang X Wang Z Tian L Xie J Zou G Jiang F . Increased expression of FGF19 contributes to tumor progression and cell motility of human thyroid cancer. Otolaryngol. Neck Surg.154 (1), 52 – 58 (2016).
  • St Bernard R Zheng L Liu W Winer D Asa SL Ezzat S . Fibroblast growth factor receptors as molecular targets in thyroid carcinoma. Endocrinology146 (3), 1145 – 1153 (2005).
  • Xu Y-F Yang X-Q Lu X-F et al. Fibroblast growth factor receptor 4 promotes progression and correlates to poor prognosis in cholangiocarcinoma. Biochem. Biophys. Res. Commun.446 (1), 54 – 60 (2014).
  • Spinola M Leani V Pignatiello C et al. Functional FGFR4 Gly388Arg polymorphism predicts prognosis in lung adenocarcinoma patients. J. Clin. Oncol.23 (29), 7307 – 7311 (2005).
  • Bange J Prechtl D Cheburkin Y et al. Cancer progression and tumor cell motility are associated with the FGFR4 Arg(388) allele. Cancer Res.62 (3), 840 – 847 (2002).
  • Wang J Stockton DW Ittmann M . The fibroblast growth factor receptor-4 Arg388 allele is associated with prostate cancer initiation and progression. Clin. Cancer Res.10 (18 Pt 1), 6169 – 6178 (2004).
  • Schreuder TCMA Marsman HA Lenicek M et al. The hepatic response to FGF19 is impaired in patients with nonalcoholic fatty liver disease and insulin resistance. Am. J. Physiol. Gastrointest. Liver Physiol.298 (3), G440 – G445 (2010).
  • Wojcik M Janus D Dolezal-Oltarzewska K et al. A decrease in fasting FGF19 levels is associated with the development of non-alcoholic fatty liver disease in obese adolescents. J. Pediatr. Endocrinol. Metab.25 (11–12), 1089 – 1093 (2012).
  • Wunsch E Milkiewicz M Wasik U et al. Expression of hepatic fibroblast growth factor 19 is enhanced in primary biliary cirrhosis and correlates with severity of the disease. Sci. Rep.5, 13462 (2015).
  • Lenicek M Duricova D Komarek V et al. Bile acid malabsorption in inflammatory bowel disease: assessment by serum markers. Inflamm. Bowel Dis.17 (6), 1322 – 1327 (2011).
  • Nolan JD Johnston IM Pattni SS Dew T Orchard TR Walters JRF . Diarrhea in Crohn's disease: investigating the role of the ileal hormone fibroblast growth factor 19. J. Crohn's Colitis9 (2), 125 – 131 (2015).
  • Barutcuoglu B Basol G Cakir Y et al. Fibroblast growth factor-19 levels in Type 2 diabetic patients with metabolic syndrome. Ann. Clin. Lab. Sci.41 (4), 390 – 396 (2011).
  • Wang C Yang C Chang JY et al. Hepatocyte FRS2α is essential for the endocrine fibroblast growth factor to limit the amplitude of bile acid production induced by prandial activity. Curr. Mol. Med.14 (6), 703 – 711 (2014).
  • Jung D York JP Wang L et al. FXR-induced secretion of FGF15/19 inhibits CYP27 expression in cholangiocytes through p38 kinase pathway. Eur. J. Physiol.466 (5), 1011 – 1019 (2014).
  • Song K-H Li T Owsley E Strom S Chaing JYL . Bile acids activate fibroblast growth factor 19 signaling in human hepatocytes to inhibit cholesterol 7α-hydroxylase gene expression. Hepatology49 (1), 297 – 305 (2009).
  • Shin D-J Osborne TF . FGF15/FGFR4 integrates growth factor signaling with hepatic bile acid metabolism and insulin action. J. Biol. Chem.284 (17), 11110 – 11120 (2009).
  • Hu L Cong L . Fibroblast growth factor 19 is correlated with an unfavorable prognosis and promotes progression by activating fibroblast growth factor receptor 4 in advanced-stage serous ovarian cancer. Oncol. Rep.34 (5), 2683 – 2691 (2015).
  • Shi S Zhang Q Xia Y et al. Mesenchymal stem cell-derived exosomes facilitate nasopharyngeal carcinoma progression. Am. J. Cancer Res.6 (2), 459 – 472 (2016).
  • Drafahl KA McAndrew CW Meyer AN Haas M Donoghue DJ . The receptor tyrosine kinase FGFR4 negatively regulates NF-κB signaling. PLoS ONE5 (12), e14412 (2010).
  • Pai R Dunlap D Qing J Mohtashemi I Hotzel K French DM . Inhibition of fibroblast growth factor 19 reduces tumor growth by modulating β-catenin signaling. Cancer Res.68 (13), 5086 – 5095 (2008).
  • Zhao H Lv F Liang G et al. FGF19 promotes epithelial–mesenchymal transition in hepatocellular carcinoma cells by modulating the GSK3β/β-catenin signaling cascade via FGFR4 activation. Oncotarget7 (12), 13575 – 13586 (2015).
  • Teng Y Zhao H Gao L Zhang W Shull AY Shay C . FGF19 protects hepatocellular carcinoma cells against endoplasmic reticulum stress via activation of FGFR4-GSK3β-Nrf2 signaling. Cancer Res.77 (22), 6215 – 6225 (2017).
  • Zhou M Wang X Phung V et al. Separating tumorigenicity from bile acid regulatory activity for endocrine hormone FGF19. Cancer Res.74 (12), 3306 – 3317 (2014).
  • Katoh M . FGFR inhibitors: effects on cancer cells, tumor microenvironment and whole-body homeostasis (review). Int. J. Mol. Med.38 (1), 3 – 15 (2016).
  • Guagnano V Kauffmann A Wöhrle S et al. FGFR genetic alterations predict for sensitivity to NVP-BGJ398, a selective pan-FGFR inhibitor. Cancer Discov.2 (12), 1118 – 1133 (2017).
  • Li SQ Cheuk AT Shern JF et al. Targeting wild-type and mutationally activated FGFR4 in rhabdomyosarcoma with the inhibitor ponatinib. PLoS ONE8 (10), e76551 (2013).
  • Lesca E Lammens A Huber R Augustin M . Structural analysis of the human fibroblast growth factor receptor 4 kinase. J. Mol. Biol.426 (22), 3744 – 3756 (2014).
  • Huang Z Tan L Wang H et al. DFG-out mode of inhibition by an irreversible type – 1 inhibitor capable of overcoming gate-keeper mutations in FGF receptors. ACS Chem. Biol.10 (1), 299 – 309 (2015).
  • Tan L Wang J Tanizaki J et al. Development of covalent inhibitors that can overcome resistance to first-generation FGFR kinase inhibitors. Proc. Natl Acad. Sci. USA111 (45), E4869 – E4877 (2014).
  • Wu D Guo M Philips MA et al. Crystal structure of the FGFR4/LY2874455 complex reveals insights into the pan-FGFR selectivity of LY2874455. PLoS ONE11 (9), e162491 (2016).
  • Michael M Bang Y Park YS et al. A Phase I study of LY2874455, an oral selective pan-FGFR inhibitor, in patients with advanced cancer. Target. Oncol.12 (4), 463 – 474 (2017).
  • Perera TPS Jovcheva E Mevellec L et al. Discovery and pharmacological characterization of JNJ-42756493 (erdafitinib), a functionally selective small-molecule FGFR family inhibitor. Mol. Cancer Ther.16 (6), 1010 – 1020 (2017).
  • Tabernero J Bahleda R Dienstmann R et al. Phase I dose-escalation study of JNJ-42756493, an oral pan–fibroblast growth factor receptor inhibitor, in patients with advanced solid tumors. J. Clin. Oncol.33 (30), 3401 – 3408 (2017).
  • André F Cortés J . Rationale for targeting fibroblast growth factor receptor signaling in breast cancer. Breast Cancer Res. Treat.150 (1), 1 – 8 (2015).
  • Peláez-García A Barderas R Torres S et al. FGFR4 role in epithelial–mesenchymal transition and its therapeutic value in colorectal cancer. PLoS ONE8 (5), e63695 (2013).
  • Wang Y Chen Z Dai M et al. Discovery and optimization of selective FGFR4 inhibitors via scaffold hopping. Bioorg. Med. Chem. Lett.27 (11), 2420 – 2423 (2017).
  • Mo C Zhang Z Guise CP et al. 2-Aminopyrimidine derivatives as new selective fibroblast growth factor receptor 4 (FGFR4) inhibitors. ACS Med. Chem. Lett.8 (5), 543 – 548 (2017).
  • Hagel M Miduturu C Sheets M et al. First selective small molecule inhibitor of FGFR4 for the treatment of hepatocellular carcinomas with an activated FGFR4 signaling pathway. Cancer Discov.5 (4), 424 – 437 (2015).
  • Packer LM Pollock PM . Paralog-specific kinase inhibition of FGFR4: adding to the arsenal of anti-FGFR agents. Cancer Discov.5 (4), 355 – 357 (2015).
  • Kim R Sharma S Meyer T et al. First-in-human study of BLU-554, a potent, highly-selective FGFR4 inhibitor designed for hepatocellular carcinoma (HCC) with FGFR4 pathway activation. Eur. J. Cancer69, S41 (2016).
  • French DM Lin BC Wang M et al. Targeting FGFR4 inhibits hepatocellular carcinoma in preclinical mouse models. PLoS ONE7 (5), e36713 (2012).
  • Tucker JA Klein T Breed J et al. Structural insights into FGFR kinase isoform selectivity: diverse binding modes of AZD4547 and ponatinib in complex with FGFR1 and FGFR4. Structure22 (12), 1764 – 1774 (2014).
  • Tiong KH Tan BS Choo HL et al. Fibroblast growth factor receptor 4 (FGFR4) and fibroblast growth factor 19 (FGF19) autocrine enhance breast cancer cells survival. Oncotarget7 (36), 57633 – 57650 (2016).
  • Zhou M Learned RM Rossi SJ DePaoli AM Tian H Ling L . Engineered fibroblast growth factor 19 reduces liver injury and resolves sclerosing cholangitis in Mdr2-deficient mice. Hepatology63 (3), 914 – 929 (2016).
  • Ezzat S Zheng L Yu S Asa SL . A soluble dominant negative fibroblast growth factor receptor 4 isoform in human MCF-7 breast cancer cells. Biochem. Biophys. Res. Commun.287 (1), 60 – 65 (2001).
  • Gao L Wang X Tang Y Huang S Hu CA Teng Y . FGF19/FGFR4 signaling contributes to the resistance of hepatocellular carcinoma to sorafenib. J. Exp. Clin. Cancer Res.36 (1), 8 (2017).
  • Gao L Shay C Lv F Wang X Teng Y . Implications of FGF19 on sorafenib-mediated nitric oxide production in hepatocellular carcinoma cells – a short report. Cell Oncol. (Dordr.)41 (1), 85 – 91 (2018).
  • Halatsch M-E Löw S Mursch K et al. Candidate genes for sensitivity and resistance of human glioblastoma multiforme cell lines to erlotinib. J. Neurosurg.111 (2), 211 – 218 (2009).
  • Wang W-B Yang Y Zhao Y-P Zhang T-P Liao Q Shu H . Recent studies of 5-fluorouracil resistance in pancreatic cancer. World J. Gastroenterol.20 (42), 15682 – 15690 (2014).
  • Turkington RC Longley DB Allen WL et al. Fibroblast growth factor receptor 4 (FGFR4): a targetable regulator of drug resistance in colorectal cancer. Cell Death Dis.5 (2), e1046 (2014).
  • Ye Y-W Hu S Shi Y-Q et al. Combination of the FGFR4 inhibitor PD173074 and 5-fluorouracil reduces proliferation and promotes apoptosis in gastric cancer. Oncol. Rep.30 (6), 2777 – 2784 (2013).
  • Shafei A El-Bakly W Sobhy A et al. A review on the efficacy and toxicity of different doxorubicin nanoparticles for targeted therapy in metastatic breast cancer. Biomed. Pharmacother.95, 1209 – 1218 (2017).
  • Roidl A Berger H-J Kumar S Bange J Knyazev P Ullrich A . Resistance to chemotherapy is associated with fibroblast growth factor receptor 4 up-regulation. Clin. Cancer Res.15 (6), 2058 – 2066 (2009).
  • Guo Y Ding Y Zhang T An H . Sinapine reverses multi-drug resistance in MCF-7/dox cancer cells by downregulating FGFR4/FRS2α-ERK1/2 pathway-mediated NF-κB activation. Phytomedicine23 (3), 267 – 273 (2016).
  • Ahmed MA Selzer E Dörr W et al. Fibroblast growth factor receptor 4 induced resistance to radiation therapy in colorectal cancer. Oncotarget7 (43), 69976 – 69990 (2016).
  • Santoro A Rimassa L Borbath I et al. Tivantinib for second-line treatment of advanced hepatocellular carcinoma: a randomised, placebo-controlled Phase II study. Lancet Oncol.14 (1), 55 – 63 (2013).
  • Glen H . Pazopanib for the treatment of patients with advanced renal cell carcinoma. Future Oncol.12 (19), 2195 – 2204 (2016).
  • Pai R French D Ma N et al. Antibody-mediated inhibition of fibroblast growth factor 19 results in increased bile acids synthesis and ileal malabsorption of bile acids in cynomolgus monkeys. Toxicol. Sci.126 (2), 446 – 456 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.