208
Views
0
CrossRef citations to date
0
Altmetric
Review

The Progresses in curcuminoids-based Metal Complexes: Especially in Cancer Therapy

, , , , &
Pages 1035-1056 | Received 21 May 2018, Accepted 22 Jan 2019, Published online: 29 May 2019

References

  • Natascia B , SimonaR , AnnalisaBet al. Curcumin as a therapeutic agent in dementia: a mini systematic review of human studies. Sci. World J.2014, 174282 (2014).
  • Naksuriya O , OkonogiS , SchiffelersRM , HenninkWE. Curcumin nanoformulations: a review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials35(10), 3365–3383 (2014).
  • Siviero A , GalloE , MagginiVet al. Curcumin, a golden spice with a low bioavailability. J. Herb. Med.5(2), 57–70 (2015).
  • Stanić Z . Curcumin, a compound from natural sources, a true scientific challenge – a review. Plant Food. Hum. Nutr.72(1), 1–12 (2017).
  • Amalraj A , PiusA , GopiS , GopiS. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives – a review. J. Tradit. Complement. Med.7(2), 205–233 (2017).
  • Pröhl M , SchubertUS , WeigandW , GottschaldtM. Metal complexes of curcumin and curcumin derivatives for molecular imaging and anticancer therapy. Coordin. Chem. Rev.307, 32–41 (2016).
  • Pourreza N , LotfizadehN , GolmohammadiH. Colorimetric sensing of oxalate based on its inhibitory effect on the reaction of Fe (III) with curcumin nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc.192, 251–256 (2017).
  • Mary C , VijayakumarS , ShankarR. Metal chelating ability and antioxidant properties of curcumin–metal complexes – a DFT approach. J. Mol. Graph. Model.79, 1–14 (2017).
  • Mohammed F , Rashid-DoubellF , CassidyS , HenariF. A comparative study of the spectral, fluorometric properties and photostability of natural curcumin, iron- and boron-complexed curcumin. Spectrochim. Acta A Mol. Biomol. Spectrosc.183, 439–450 (2017).
  • Caruso F , PettinariR , RossiMet al. The in vitro antitumor activity of arene–ruthenium (II) curcuminoid complexes improves when decreasing curcumin polarity. J. Inorg. Biochem.162, 44–51 (2016).
  • Balaji B , SomyajitK , BanikB , NagarajuG , ChakravartyAR. Photoactivated DNA cleavage and anticancer activity of oxovanadium (IV) complexes of curcumin. Inorg. Chim. Acta400(5), 142–150 (2013).
  • Abbaoui A , ChatouiH , ElHO , GamraniH. Neuroprotective effect of curcumin-I in copper-induced dopaminergic neurotoxicity in rats: a possible link with Parkinson's disease. Neurosci. Lett.660, 103–108 (2017).
  • Rubio V , ValverdeM , RojasE. Effects of atmospheric pollutants on the Nrf2 survival pathway. Environmen. Sci. Pollut. Res. Int.17(2), 369–382 (2010).
  • Garcíaniño WR , PedrazachaverríJ. Protective effect of curcumin against heavy metals-induced liver damage. Food Chem. Toxicol.69, 182–201 (2014).
  • Chin D , HuebbeP , FrankJ , RimbachG , PallaufK. Curcumin may impair iron status when fed to mice for six months. Redox Biol.2(1), 563–569 (2014).
  • Dinesh B , SaraswathiR. Electrochemical synthesis of nanostructured copper-curcumin complex and its electrocatalytic application towards reduction of 4-nitrophenol. Sensor. Actuat. B-Chem.253, 502–512 (2017).
  • Pignedoli F , ZobiF , SaladiniM , AlbertoR. New 99m Tc(I) and Re(I) curcumin derivatives for molecular imaging. Nucl. Med. Biol.37(6), 683–683 (2010).
  • Pourreza N , SharifiH , GolmohammadiH. Curcumin nanoparticles combined with cloud point extraction for citrate determination in food and drug samples. Microchem. J.129, 213–218 (2016).
  • Kang X , XiaoHH , SongHQ , JingXB , YanLS , QiRG. Advances in drug delivery system for platinum agents based combination therapy. Cancer Biol. Med.12(4), 362–374 (2015).
  • Xiao H , LiW , QiRet al. Co-delivery of daunomycin and oxaliplatin by biodegradable polymers for safer and more efficacious combination therapy. J. Control. Rel.163(3), 304–314 (2012).
  • Kang X , ZhaoC , YanL , QiR , JingX , WangZ. Sensitizing nanoparticle based platinum (IV) drugs by curcumin for better chemotherapy. Colloids Surf. B Biointerfaces145, 812–819 (2016).
  • Rezaee R , MomtaziAA , MonemiA , SahebkarA. Curcumin: a potentially powerful tool to reverse cisplatin-induced toxicity. Pharmacol. Res.117, 218–227 (2017).
  • Benammi H , ElHO , RomaneA , GamraniH. A blunted anxiolytic like effect of curcumin against acute lead induced anxiety in rat: involvement of serotonin. Acta Histochem.116(5), 920–925 (2014).
  • El-Twab SMA , Abdul-HamidM. Curcumin mitigates lithium-induced thyroid dysfunction by modulating antioxidant status, apoptosis and inflammatory cytokines. J. Basic Appl. Zool.76(C), 7–19 (2016).
  • Banerjee S , ChakravartyAR. Metal complexes of curcumin for cellular imaging, targeting, and photoinduced anticancer activity. Acc. Chem. Res.48(7), 2075–2083 (2015).
  • Pettinari R , MarchettiF , CondelloFet al. Ruthenium (II)-arene RAPTA type complexes containing curcumin and bisdemethoxycurcumin display potent and selective anticancer activity. Organometallics33(14), 3709 (2014).
  • Goswami TK , GadadharS , GoleB , KarandeAA , ChakravartyAR. Photocytotoxicity of copper (II) complexes of curcumin and N-ferrocenylmethyl-L-amino acids. Eur. J. Med. Chem.63, 800–810 (2013).
  • Samya B , PujaP , ImranK , AkhtarH , PaturuK , ChakravartyAR. Mitochondria targeting photocytotoxic oxidovanadium (IV) complexes of curcumin and (acridinyl)dipyridophenazine in visible light. Zeitschrift Für Anorganische Und Allgemeine Chemie640(6), 1195–1204 (2014).
  • Yoshikawa Y , YasuiH. Zinc complexes developed as metallopharmaceutics for treating diabetes mellitus based on the bio-medicinal inorganic chemistry. Curr. Top. Med. Chem.12(3), 210–218 (2012).
  • Ricciardi L , PucciD , PirilloS , DedaML. Emission solvatochromic behavior of a pentacoordinated Zn (II) complex: a viable tool for studying the metallodrug-protein interaction. J. Lumin.151(151), 138–142 (2014).
  • Al-Ali K , AbdelFatah HS , El-BadryYA. Dual effect of curcumin–zinc complex in controlling diabetes mellitus in experimentally induced diabetic rats. Biol. Pharm. Bull.39(11), 1774–1780 (2016).
  • Garufi A , TrisciuoglioD , PorruMet al. A fluorescent curcumin-based Zn (II)-complex reactivates mutant (R175H and R273H)p53 in cancer cells. J. Exp. Clin. Cancer Res.32(1), 72 (2013).
  • Pucci D , CrispiniA , SanzMBet al. Improving the bioactivity of Zn (II)-curcumin based complexes. Dalton Trans.42(26), 9679–9687 (2013).
  • Ince S , KucukkurtI , DemirelHH , AcarozDA , AkbelE , CigerciIH. Protective effects of boron on cyclophosphamide induced lipid peroxidation and genotoxicity in rats. Chemosphere108, 197–204 (2014).
  • Lu WP , MeiXT , WangY , ZhengYP , XueYF , XuDH. Zn (II)-curcumin protects against oxidative stress, deleterious changes in sperm parameters and histological alterations in a male mouse model of cyclophosphamide-induced reproductive damage. Environ. Toxicol. Pharmacol.39(2), 515–524 (2015).
  • Yu C , MeiXT , ZhengYP , XuDH. Zn (II)-curcumin protects against hemorheological alterations, oxidative stress and liver injury in a rat model of acute alcoholism. Environ. Toxicol. Pharmacol.37(2), 729–737 (2014).
  • Mei XT , XuDH , XuSK , ZhengYP , XuSB. Zinc (II)-curcumin accelerates the healing of acetic acid-induced chronic gastric ulcers in rats by decreasing oxidative stress and downregulation of matrix metalloproteinase-9. Food Chem. Toxicol.60(10), 448–454 (2013).
  • Upadhyaya L , SinghJ , AgarwalVet al. Efficient water soluble nanostructured ZnO grafted O-carboxymethyl chitosan/curcumin-nanocomposite for cancer therapy. Process Biochem.50(4), 678–688 (2015).
  • Zhang W , ChenC , ShiHet al. Curcumin is a biologically active copper chelator with antitumor activity. Phytomedicine23(1), 1 (2016).
  • Joseph J , SumanA , NagashriK , JoseyphusRS , BalakrishnanN. Synthesis, characterization and biological studies of copper (II) complexes with 2-aminobenzimidazole derivatives. J. Mol. Struct.1137, 17–26 (2017).
  • Lee HM , PatelV , ShyurLF , LeeWL. Copper supplementation amplifies the anti-tumor effect of curcumin in oral cancer cells. Phytomedicine23(12), 1535–1544 (2016).
  • Chauhan G , RathG , GoyalAK. In-vitro anti-viral screening and cytotoxicity evaluation of copper–curcumin complex. Artif. Cells Nanomed. Biotechnol.41(4), 276–281 (2013).
  • Ferrari E , BenassiR , SaladiniM , OrtecaG , GazovaZ , SiposovaK. In vitro study on potential pharmacological activity of curcumin analogues and their copper complexes. Chem. Biol. Drug Des.89(3), 411–419 (2017).
  • Ferrari E , BenassiR , SacchiS , PignedoliF , AstiM , SaladiniM. Curcumin derivatives as metal-chelating agents with potential multifunctional activity for pharmaceutical applications. J. Inorg. Biochem.139, 38–48 (2014).
  • Rubagotti S , CrociS , FerrariEet al. Affinity of nat/68Ga-labelled curcumin and curcuminoid complexes for β-amyloid plaques: towards the development of new metal-curcumin based radiotracers. Int. J. Mol. Sci.17(9), 1480 (2016).
  • Shahabadi N , FalsafiM , MoghadamNH. DNA interaction studies of a novel Cu (II) complex as an intercalator containing curcumin and bathophenanthroline ligands. J. Photochem. Photobiol. B122(5), 45–51 (2013).
  • Song Z , YuanW , ZhuR , WangS , ZhangC , YangB. Study on the interaction between curcumin and CopC by spectroscopic and docking methods. Int. J. Biol. Macromol.96, 192–199 (2017).
  • Gaurav C , GoutamR , RohanKN , SwetaKT , AbhayCS , AmitGK. (Copper–curcumin) β-cyclodextrin vaginal gel: delivering a novel metal-herbal approach for the development of topical contraception prophylaxis. Eur. J. Pharm. Sci.65, 183–191 (2014).
  • Zongxin P , JiafengW , BoJ , GangC , ShuangshengZ. A curcumin-based TPA four-branched copper (II) complex probe for in vivo early tumor detection. Mater. Sci. Eng. C Mater. Biol. Appl.46, 565–571 (2015).
  • Shruti S , SalinasAJ , FerrariEet al. Curcumin release from cerium, gallium and zinc containing mesoporous bioactive glasses. Micropor. Mesopor. Mat.180(6), 92–101 (2013).
  • Sharma V , SivapackiamJ , HarpstriteSEet al. A generator-produced gallium-68 radiopharmaceutical for PET imaging of myocardial perfusion. PloS ONE9(10), e109361 (2014).
  • Asti M , FerrariE , CrociSet al. Synthesis and characterization of (68)Ga-labeled curcumin and curcuminoid complexes as potential radiotracers for imaging of cancer and Alzheimer's disease. Inorg. Chem.53(10), 4922–4933 (2014).
  • Lange JL , HayneDJ , RoseltP , McLeanCA , WhiteJM , DonnellyPS. A gallium (III) Schiff base-curcumin complex that binds to amyloid-β plaques. J. Inorg. Biochem.162, 274–279 (2016).
  • Jahangoshaei P , HassaniL , MohammadiF , HamidiA , MohammadiK. Erratum to: investigating the effect of gallium curcumin and gallium diacetylcurcumin complexes on the structure, function and oxidative stability of the peroxidase enzyme and their anticancer and antibacterial activities. J. Biol. Inorg. Chem.20(7), 1135–1146 (2015).
  • Glenister A , ChenC , TondlEM , PatersonD , HambleyTW , RenfrewAK. Targeting curcumin to specific tumour cell environments: the influence of ancillary ligands. Metallomics9(6), 699–705 (2017).
  • Renfrew AK , BryceNS , HambleyTW. Delivery and release of curcumin by a hypoxia-activated cobalt chaperone: a XANES and FLIM study. Chem. Sci.4(9), 3731–3739 (2013).
  • Renfrew AK , BryceNS , HambleyT. Cobalt (III) chaperone complexes of curcumin: photoreduction, cellular accumulation and light-selective toxicity towards tumour cells. Chemistry21(43), 15224–15234 (2015).
  • Garai A , PantI , BanerjeeS , BanikB , KondaiahP , ChakravartyAR. Photorelease and cellular delivery of mitocurcumin from its cytotoxic cobalt (III) complex in visible light. Inorg. Chem.55(12), 6027–6035 (2016).
  • Castonguay A , DoucetC , JuhasM , MaysingerD. New ruthenium (II)–letrozole complexes as anticancer therapeutics. J. Med. Chem.55(20), 8799–8806 (2012).
  • Bonfili L , PettinariR , CuccioloniMet al. Arene–Ru (II) complexes of curcumin exert antitumor activity via proteasome inhibition and apoptosis induction. Chem. Med. Chem.7(11), 2010–2020 (2012).
  • Antonyan A , DeA , VitaliLAet al. Evaluation of (arene)Ru (II) complexes of curcumin as inhibitors of dipeptidyl peptidase IV. Biochimie99(1), 146–152 (2014).
  • Caruso F , RossiM , BensonAet al. Ruthenium-arene complexes of curcumin: x-ray and density functional theory structure, synthesis, and spectroscopic characterization, in vitro antitumor activity, and DNA docking studies of (p-cymene)Ru(curcuminato)chloro. J. Med. Chem.55(3), 1072–1081 (2012).
  • Huang S , PengS , ZhuFet al. Multispectroscopic investigation of the interaction between two ruthenium (II) arene complexes of curcumin analogs and human serum albumin. Biol. Trace Elem. Res.169(2), 189–203 (2016).
  • Huang S , LiangY , HuangCet al. Systematical investigation of binding interaction between novel ruthenium (II) arene complex with curcumin analogs and ctDNA. Luminescence31(7), 1384–1394 (2016).
  • Badria FA , IbrahimAS , BadriaAF , ElmarakbyAA. Curcumin attenuates iron accumulation and oxidative stress in the liver and spleen of chronic iron-overloaded rats. PloS ONE10(7), e0134156 (2015).
  • Messner DJ , SurragoC , FiordalisiC , ChungWY , KowdleyKV. Isolation and characterization of iron chelators from turmeric (Curcuma longa): selective metal binding by curcuminoids. Biometals30(5), 699–708 (2017).
  • Messner DJ , RobinsonT , KowdleyKV. Curcumin and turmeric modulate the tumor-promoting effects of iron in vitro. Nutr. Cancer69(3), 481–489 (2017).
  • Ostrowski W . Curcuminoids and acetylacetone: iron complexes as studied by electrospray ionization mass spectrometry. Eur. J. Mass Spectrom.21(1), 45–50 (2015).
  • Bhandari R , GuptaP , DziublaT , HiltJZ. Single step synthesis, characterization and applications of curcumin functionalized iron oxide magnetic nanoparticles. Mater. Sci. Eng. C Mater. Biol. Appl.67, 59–64 (2016).
  • Lokesh KN , Channarayappa , VenkatarangannaM , GowthamRG , PatilH , DaveH. Augmentation of antioxidant and iron (III) chelation properties of tertiary mixture of bioactive ligands. J. Trace Elem. Med. Biol.45, 114–124 (2018).
  • Bhat MP , Madhuprasad , PatilPet al. Turmeric, naturally available colorimetric receptor for quantitative detection of fluoride and iron. Chem. Eng. J.303, 14–21 (2016).
  • Mohammadi K , ThompsonKH , PatrickBOet al. Synthesis and characterization of dual function vanadyl, gallium and indium curcumin complexes for medicinal applications. J. Inorg. Biochem.99(11), 2217–2225 (2005).
  • Barazesh A , FouladvandM , FarrokhzadF , TajbakhshS , NaeimiB , MohammadiKH. Evaluation of in vitro anti-leishmanial activities of curcumin and its derivatives “gallium curcumin, indium curcumin and diacetylecurcumin”. Inter. J. Infect. Dis.16, e151–e152 (2012).
  • Hamidi A , HassaniL , MohammadiF , JahangoshayiP , MohammadiK. The biological effects of vanadyl curcumin and vanadyl diacetylcurcumin complexes: the effect on structure, function and oxidative stability of the peroxidase enzyme, antibacterial activity and cytotoxic effect. J. Enzyme Inhib. Med. Chem.31(6), 1124–1131 (2015).
  • Banerjee S , PantI , KhanIet al. Remarkable enhancement in photocytotoxicity and hydrolytic stability of curcumin on binding to an oxovanadium (IV) moiety. Dalton Trans.44(9), 4108–4122 (2015).
  • Balaji B , BalakrishnanB , PerumallaS , KarandeAA , ChakravartyAR. Photoactivated cytotoxicity of ferrocenyl-terpyridine oxovanadium (IV) complexes of curcuminoids. Eur. J. Med. Chem.85(15), 458–467 (2014).
  • Icsel C , YilmazVT , KayaYet al. Cationic Pd (II)/Pt (II) 5,5-diethylbarbiturate complexes with bis(2-pyridylmethyl)amine and terpyridine: synthesis, structures, DNA/BSA interactions, intracellular distribution, cytotoxic activity and induction of apoptosis. J. Inorg. Biochem.152, 38–52 (2015).
  • Tunc D , DereE , KarakasD , CevatemreB , YilmazVT , UlukayaE. Cytotoxic and apoptotic effects of the combination of palladium (II) 5,5-diethylbarbiturate complex with bis(2-pyridylmethyl)amine and curcumin on non small lung cancer cell lines. Bioorgan. Med. Chem.25(5), 1717–1723 (2017).
  • Fischer-Fodor E , MiklášR , RišiaňováLet al. Novel palladium (II) complexes that influence prominin-1/CD133 expression and stem cell cactor release in tumor cells. Molecules22(4), 561 (2017).
  • Li Y , GuZ , ZhangCet al. Synthesis, characterization and ROS-mediated antitumor effects of palladium (II) complexes of curcuminoids. Eur. J. Med. Chem.144, 662–671 (2017).
  • Dhanavel S , NivethaaEaK , NarayananV , StephenA. In vitro cytotoxicity study of dual drug loaded chitosan/palladium nanocomposite towards HT-29 cancer cells. Mater. Sci. Engin. C Mater. Biol. Appl.75, 1399–1410 (2017).
  • Zhang JC . Effects of strontium nitrate on the proliferation, differentiation and mineralization function of primary mouse osteoblasts in vitro. Chinese J. Inorg. Chem.28(2), 374–380 (2012).
  • Mawani Y , OrvigC. Improved separation of the curcuminoids, syntheses of their rare earth complexes, and studies of potential antiosteoporotic activity. J. Inorg. Biochem.132(1), 52–58 (2014).
  • Song YM , YangML , MaJH , ZhangYM. [Photochromic properties of complexes of curcumin aniline schiff base with rare earth]. Spectrosc. Spect. Anal.33(12), 3202–3206 (2013).
  • Hussain A , SomyajitK , BanikB , BanerjeeS , NagarajuG , ChakravartyAR. Enhancing the photocytotoxic potential of curcumin on terpyridyl lanthanide (III) complex formation. Dalton Trans.42(1), 182–195 (2013).
  • Rajesh J , GubendranA , RajagopalG , AthappanP. Synthesis, spectra and DNA interactions of certain mononuclear transition metal (II) complexes of macrocyclic tetraaza diacetyl curcumin ligand. J. Mol. Struct.1010, 169–178 (2012).
  • Menelaou M , WeyhermüllerT , SolerM , Aliaga-AlcaldeN. Novel paramagnetic-luminescent building blocks containing manganese (II) and anthracene-based curcuminoids. Polyhedron52(2), 398–405 (2013).
  • Kamalasanan K , Anupriya , DeepaMK , SharmaCP. Supramolecular curcumin-barium prodrugs for formulating with ceramic particles. Colloids Surf. B Biointerfaces122(122C), 301–308 (2014).
  • Abou-Gamra ZM , AhmedMA. Synthesis of mesoporous TiO2-curcumin nanoparticles for photocatalytic degradation of methylene blue dye. J. Photochem. Photobiol. B160, 134–141 (2016).
  • Pettinari R , MarchettiF , PettinariCet al. Organometallic rhodium (III) and iridium (III) cyclopentadienyl complexes with curcumin and bisdemethoxycurcumin co-ligands. Dalton Trans.44(47), 20523–20531 (2015).
  • Mahmood K , ZiaKM , ZuberM , SalmanM , AnjumMN. Recent developments in curcumin and curcumin based polymeric materials for biomedical applications: a review. Int. J. Biol. Macromol.81, 877–890 (2015).
  • Singh P , KotiaV , GhoshD , MohiteG , KumarA , MajiS. Curcumin modulates alpha-synuclein aggregation and toxicity. Acs Chem. Neurosci.4(3), 393–407 (2013).
  • Nguyen TT , JungSJ , KangHKet al. Production of rubusoside from stevioside by using a thermostable lactase from Thermus thermophilus and solubility enhancement of liquiritin and teniposide. Enzyme Microb. Technol.64–65(7), 38 (2014).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.