4,044
Views
1
CrossRef citations to date
0
Altmetric
Review

Peeking at G-protein-coupled Receptors Through the Molecular Dynamics Keyhole

, &
Pages 599-615 | Received 10 Aug 2018, Accepted 04 Jan 2019, Published online: 19 Mar 2019

References

  • Fredriksson R Lagerström MC Lundin L-G Schiöth HB . The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints . Mol. Pharmacol.63 ( 6 ), 1256 – 1272 ( 2003 ).
  • Kiselyov K Shin DM Muallem S . Signalling specificity in GPCR-dependent Ca2+ signalling . Cell Signal.15 ( 3 ), 243 – 253 ( 2003 ).
  • Weis WI Kobilka BK . The molecular basis of G protein-coupled receptor activation . Annu. Rev. Biochem.87 , 897 – 919 ( 2018 ).
  • Hilger D Masureel M Kobilka BK . Structure and dynamics of GPCR signaling complexes . Nat. Struct. Mol. Biol.25 ( 1 ), 4 – 12 ( 2018 ).
  • Tesmer JJG . Hitchhiking on the heptahelical highway: structure and function of 7TM receptor complexes . Nat. Rev. Mol. Cell Biol.17 ( 7 ), 439 – 450 ( 2016 ).
  • Katritch V Cherezov V Stevens RC . Structure–function of the G protein-coupled receptor superfamily . Annu. Rev. Pharmacol. Toxicol.53 , 531 – 556 ( 2013 ).
  • Kobilka BK . G protein coupled receptor structure and activation . Biochim. Biophys. Acta1768 ( 4 ), 794 – 807 ( 2007 ).
  • Hauser AS Attwood MM Rask-Andersen M Schiöth HB Gloriam DE . Trends in GPCR drug discovery: new agents, targets and indications . Nat. Rev. Drug Discov.16 ( 12 ), 829 – 842 ( 2017 ).
  • Pándy-Szekeres G Munk C Tsonkov TM et al. GPCRdb in 2018: adding GPCR structure models and ligands . Nucleic Acids Res.46 ( D1 ), D440 – D446 ( 2018 ).
  • Martínez-Rosell G Giorgino T Harvey MJ de Fabritiis G . Drug discovery and molecular dynamics: methods, applications and perspective beyond the second timescale . Curr. Top. Med. Chem.17 ( 23 ), 2617 – 2625 ( 2017 ).
  • McCammon JA Gelin BR Karplus M . Dynamics of folded proteins . Nature267 ( 5612 ), 585 – 590 ( 1977 ).
  • Shaw DE . Millisecond-long molecular dynamics simulations of proteins on a special-purpose machine . Biophys. J.104 ( 2 ), 45a ( 2013 ).
  • Deupi X Kobilka BK . Energy landscapes as a tool to integrate GPCR structure, dynamics, and function . Physiology (Bethesda)25 ( 5 ), 293 – 303 ( 2010 ).
  • Doerr S De Fabritiis G . On-the-fly learning and sampling of ligand binding by high-throughput molecular simulations . J. Chem. Theory Comput.10 ( 5 ), 2064 – 2069 ( 2014 ).
  • Bernardi RC Melo MCR Schulten K . Enhanced sampling techniques in molecular dynamics simulations of biological systems . Biochim. Biophys. Acta1850 ( 5 ), 872 – 877 ( 2015 ).
  • De Vivo M Masetti M Bottegoni G Cavalli A . Role of molecular dynamics and related methods in drug discovery . J. Med. Chem.59 ( 9 ), 4035 – 4061 ( 2016 ).
  • Deganutti G Moro S . Estimation of kinetic and thermodynamic ligand-binding parameters using computational strategies . Future Med. Chem.9 ( 5 ), 507 – 523 ( 2017 ).
  • Tummino PJ Copeland RA . Residence time of receptor-ligand complexes and its effect on biological function . Biochemistry47 ( 20 ), 5481 – 5492 ( 2008 ).
  • Copeland RA Pompliano DL Meek TD . Drug-target residence time and its implications for lead optimization . Nat. Rev. Drug Discov.5 ( 9 ), 730 – 739 ( 2006 ).
  • Dahl G Akerud T . Pharmacokinetics and the drug-target residence time concept . Drug Discov. Today18 ( 15–16 ), 697 – 707 ( 2013 ).
  • Copeland RA . The drug-target residence time model: a 10-year retrospective . Nat. Rev. Drug Discov.15 ( 2 ), 87 – 95 ( 2016 ).
  • Casarosa P Bouyssou T Germeyer S Schnapp A Gantner F Pieper M . Preclinical evaluation of long-acting muscarinic antagonists: comparison of tiotropium and investigational drugs . J. Pharmacol. Exp. Ther.330 ( 2 ), 660 – 668 ( 2009 ).
  • Tautermann CS Kiechle T Seeliger D et al. Molecular basis for the long duration of action and kinetic selectivity of tiotropium for the muscarinic M3 receptor . J. Med. Chem.56 ( 21 ), 8746 – 8756 ( 2013 ).
  • Kapur S Seeman P . Antipsychotic agents differ in how fast they come off the dopamine D2 receptors. Implications for atypical antipsychotic action . J. Psychiatr. Neurosci.25 ( 2 ), 161 – 166 ( 2000 ).
  • Tarsy D Baldessarini RJ . Epidemiology of tardive dyskinesia: is risk declining with modern antipsychotics?Mov. Disord.21 ( 5 ), 589 – 598 ( 2006 ).
  • Soethoudt M Hoorens MWH Doelman W Martella A van der Stelt M Heitman LH . Structure–kinetic relationship studies of cannabinoid CB2 receptor agonists reveal substituent-specific lipophilic effects on residence time . Biochem. Pharmacol.152 , 129 – 142 ( 2018 ).
  • Schuetz DA de Witte WEA Wong YC et al. Kinetics for drug discovery: an industry-driven effort to target drug residence time . Drug Discov. Today22 ( 6 ), 896 – 911 ( 2017 ).
  • Guo D Heitman LH IJzerman AP . Kinetic aspects of the interaction between ligand and G protein-coupled receptor: the case of the adenosine receptors . Chem. Rev.117 ( 1 ), 38 – 66 ( 2017 ).
  • Swinney DC Haubrich BA Van Liefde I Vauquelin G . The role of binding kinetics in GPCR drug discovery . Curr. Top. Med. Chem.15 ( 24 ), 2504 – 2522 ( 2015 ).
  • Strasser A Wittmann H-J Seifert R . Binding kinetics and pathways of ligands to GPCRs . Trends Pharmacol. Sci.38 ( 8 ), 717 – 732 ( 2017 ).
  • Dror RO Pan AC Arlow DH et al. Pathway and mechanism of drug binding to G-protein-coupled receptors . Proc. Natl Acad. Sci. USA108 ( 32 ), 13118 – 13123 ( 2011 ).
  • González A Perez-Acle T Pardo L Deupi X . Molecular basis of ligand dissociation in β-adrenergic receptors . PLoS ONE6 ( 9 ), e23815 ( 2011 ).
  • Kruse AC Hu J Pan AC et al. Structure and dynamics of the M3 muscarinic acetylcholine receptor . Nature482 ( 7386 ), 552 – 556 ( 2012 ).
  • Radić Z Kirchhoff PD Quinn DM McCammon JA Taylor P . Electrostatic influence on the kinetics of ligand binding to acetylcholinesterase. Distinctions between active center ligands and fasciculin . J. Biol. Chem.272 ( 37 ), 23265 – 23277 ( 1997 ).
  • Carpenter B Lebon G . Human adenosine a2a receptor: molecular mechanism of ligand binding and activation . Front. Pharmacol.8 , 898 ( 2017 ).
  • Guo D Pan AC Dror RO et al. Molecular basis of ligand dissociation from the adenosine A2A receptor . Mol. Pharmacol.89 ( 5 ), 485 – 491 ( 2016 ).
  • Segala E Guo D Cheng RKY et al. Controlling the dissociation of ligands from the adenosine A2A receptor through modulation of salt bridge strength . J. Med. Chem.59 ( 13 ), 6470 – 6479 ( 2016 ).
  • Sabbadin D Ciancetta A Deganutti G Cuzzolin A Moro S . Exploring the recognition pathway at the human A2A adenosine receptor of the endogenous agonist adenosine using supervised molecular dynamics simulations . Medchemcomm6 ( 6 ), 1081 – 1085 ( 2015 ).
  • Deganutti G Welihinda A Moro S . Comparison of the human A2A adenosine receptor recognition by adenosine and inosine: new insight from supervised molecular dynamics simulations . ChemMedChem.12 ( 16 ), 1319 – 1326 ( 2017 ).
  • Sabbadin D Moro S . Supervised molecular dynamics (SuMD) as a helpful tool to depict GPCR-ligand recognition pathway in a nanosecond time scale . J. Chem. Inf. Model.54 ( 2 ), 372 – 376 ( 2014 ).
  • Cuzzolin A Sturlese M Deganutti G et al. Deciphering the complexity of ligand–protein recognition pathways using supervised molecular dynamics (SuMD) simulations . J. Chem. Inf. Model.56 ( 4 ), 687 – 705 ( 2016 ).
  • Christopoulos A Kenakin T . G protein-coupled receptor allosterism and complexing . Pharmacol. Rev.54 ( 2 ), 323 – 374 ( 2002 ).
  • DeVree BT Mahoney JP Vélez-Ruiz GA et al. Allosteric coupling from G protein to the agonist-binding pocket in GPCRs . Nature535 ( 7610 ), 182 – 186 ( 2016 ).
  • Deganutti G Salmaso V Moro S . Could adenosine recognize its receptors with a stoichiometry other than 1:1?Mol. Inform.37 ( 8 ), e1800009 ( 2018 ).
  • Igonet S Raingeval C Cecon E et al. Enabling STD-NMR fragment screening using stabilized native GPCR: a case study of adenosine receptor . Sci. Rep.8 ( 1 ), 8142 ( 2018 ).
  • Deganutti G Zhukov A Deflorian F et al. Impact of protein–ligand solvation and desolvation on transition state thermodynamic properties of adenosine A2A ligand binding kinetics . In Silico Pharmacol.5 ( 1 ), 16 ( 2016 ).
  • Yuan X Raniolo S Limongelli V Xu Y . The molecular mechanism underlying ligand binding to the membrane-embedded site of a G-protein-coupled receptor . J. Chem. Theory Comput.14 ( 5 ), 2761 – 2770 ( 2018 ).
  • Hurst DP Grossfield A Lynch DL et al. A lipid pathway for ligand binding is necessary for a cannabinoid G protein-coupled receptor . J. Biol. Chem.285 ( 23 ), 17954 – 17964 ( 2010 ).
  • Stanley N Pardo L Fabritiis GD . The pathway of ligand entry from the membrane bilayer to a lipid G protein-coupled receptor . Sci. Rep.6 , 22639 ( 2016 ).
  • Bokoch MP Jo HI Valcourt JR et al. Entry from the lipid bilayer: a novel pathway for inhibition of a peptide G-protein coupled receptor by a lipophilic small molecule . Biophys. J.108 ( 2 ), 350a ( 2015 ).
  • Bokoch MP Jo H Valcourt JR et al. Entry from the lipid bilayer: a possible pathway for inhibition of a peptide G protein-coupled receptor by a lipophilic small molecule . Biochemistry57 ( 39 ), 5748 – 5758 ( 2018 ).
  • Bruce NJ Ganotra GK Kokh DB Sadiq SK Wade RC . New approaches for computing ligand-receptor binding kinetics . Curr. Opin. Struct. Biol.49 , 1 – 10 ( 2018 ).
  • Pande VS Beauchamp K Bowman GR . Everything you wanted to know about Markov state models but were afraid to ask . Methods52 ( 1 ), 99 – 105 ( 2010 ).
  • Plattner N Doerr S De Fabritiis G Noé F . Complete protein–protein association kinetics in atomic detail revealed by molecular dynamics simulations and Markov modelling . Nat. Chem.9 ( 10 ), 1005 – 1011 ( 2017 ).
  • Paul F Wehmeyer C Abualrous ET et al. Protein-peptide association kinetics beyond the seconds timescale from atomistic simulations . Nat. Commun.8 ( 1 ), 1095 ( 2017 ).
  • Bortolato A Deflorian F Weiss DR Mason JS . Decoding the role of water dynamics in ligand–protein unbinding: CRF1R as a test case . J. Chem. Inf. Model.55 ( 9 ), 1857 – 1866 ( 2015 ).
  • Doré AS Bortolato A Hollenstein K Cheng RKY Read RJ Marshall FH . Decoding corticotropin-releasing factor receptor type 1 crystal structures . Curr. Mol. Pharmacol.10 ( 4 ), 334 – 344 ( 2017 ).
  • Rosenbaum DM Rasmussen SGF Kobilka BK . The structure and function of G-protein-coupled receptors . Nature459 ( 7245 ), 356 – 363 ( 2009 ).
  • Pierce KL Premont RT Lefkowitz RJ . Seven-transmembrane receptors . Nat. Rev. Mol. Cell Biol.3 ( 9 ), 639 – 650 ( 2002 ).
  • De Lean A Stadel JM Lefkowitz RJ . A ternary complex model explains the agonist-specific binding properties of the adenylate cyclase-coupled beta-adrenergic receptor . J. Biol. Chem.255 ( 15 ), 7108 – 7117 ( 1980 ).
  • Kobilka BK Deupi X . Conformational complexity of G-protein-coupled receptors . Trends Pharmacol. Sci.28 ( 8 ), 397 – 406 ( 2007 ).
  • Latorraca NR Venkatakrishnan AJ Dror RO . GPCR dynamics: structures in motion . Chem. Rev.117 ( 1 ), 139 – 155 ( 2017 ).
  • Venkatakrishnan AJ Deupi X Lebon G Tate CG Schertler GF Babu MM . Molecular signatures of G-protein-coupled receptors . Nature494 ( 7436 ), 185 – 194 ( 2013 ).
  • de Graaf C Song G Cao C et al. Extending the structural view of class B GPCRs . Trends Biochem. Sci.42 ( 12 ), 946 – 960 ( 2017 ).
  • Venkatakrishnan AJ Deupi X Lebon G et al. Diverse activation pathways in class A GPCRs converge near the G-protein-coupling region . Nature536 ( 7617 ), 484 – 487 ( 2016 ).
  • Isberg V Mordalski S Munk C et al. GPCRdb: an information system for G protein-coupled receptors . Nucleic Acids Res.44 ( D1 ), D356 – D364 ( 2016 ).
  • Dror RO Arlow DH Maragakis P et al. Activation mechanism of the β2-adrenergic receptor . Proc. Natl. Acad. Sci. USA108 ( 46 ), 18684 – 18689 ( 2011 ).
  • Rasmussen SGF DeVree BT Zou Y et al. Crystal structure of the β2 adrenergic receptor-Gs protein complex . Nature477 ( 7366 ), 549 – 555 ( 2011 ).
  • Rasmussen SGF Choi H-J Fung JJ et al. Structure of a nanobody-stabilized active state of the β(2) adrenoceptor . Nature469 ( 7329 ), 175 – 180 ( 2011 ).
  • Ghanouni P Gryczynski Z Steenhuis JJ et al. Functionally different agonists induce distinct conformations in the G protein coupling domain of the beta 2 adrenergic receptor . J. Biol. Chem.276 ( 27 ), 24433 – 24436 ( 2001 ).
  • Huang W Manglik A Venkatakrishnan AJ et al. Structural insights into μ-opioid receptor activation . Nature524 ( 7565 ), 315 – 321 ( 2015 ).
  • Sena DM Cong X Giorgetti A Kless A Carloni P . Structural heterogeneity of the μ-opioid receptor's conformational ensemble in the apo state . Sci. Rep.8 , 45761 ( 2017 ).
  • Nygaard R Zou Y Dror RO et al. The dynamic process of β(2)-adrenergic receptor activation . Cell152 ( 3 ), 532 – 542 ( 2013 ).
  • Kohlhoff KJ Shukla D Lawrenz M et al. Cloud-based simulations on Google Exacycle reveal ligand modulation of GPCR activation pathways . Nat. Chem.6 ( 1 ), 15 – 21 ( 2014 ).
  • Li J Jonsson AL Beuming T Shelley JC Voth GA . Ligand-dependent activation and deactivation of the human adenosine A(2A) receptor . J. Am. Chem. Soc.135 ( 23 ), 8749 – 8759 ( 2013 ).
  • Lee Y Choi S Hyeon C . Communication over the network of binary switches regulates the activation of A2A adenosine receptor . PLoS Comput. Biol.11 ( 2 ), e1004044 ( 2015 ).
  • Miao Y Nichols SE Gasper PM Metzger VT McCammon JA . Activation and dynamic network of the M2 muscarinic receptor . Proc. Natl Acad. Sci. USA110 ( 27 ), 10982 – 10987 ( 2013 ).
  • Jiménez-Rosés M Matsoukas M-T Caltabiano G Cordomí A . Ligand-triggered structural changes in the M2 muscarinic acetylcholine receptor . J. Chem. Inf. Model.58 ( 5 ), 1074 – 1082 ( 2018 ).
  • Kruse AC Ring AM Manglik A et al. Activation and allosteric modulation of a muscarinic acetylcholine receptor . Nature504 ( 7478 ), 101 – 106 ( 2013 ).
  • Pupo AS Duarte DA Lima V Teixeira LB Parreiras-E-Silva LT Costa-Neto CM . Recent updates on GPCR biased agonism . Pharmacol. Res.112 , 49 – 57 ( 2016 ).
  • Shukla AK Singh G Ghosh E . Emerging structural insights into biased GPCR signaling . Trends Biochem. Sci.39 ( 12 ), 594 – 602 ( 2014 ).
  • Smith JS Lefkowitz RJ Rajagopal S . Biased signalling: from simple switches to allosteric microprocessors . Nat. Rev. Drug Discov.17 ( 4 ), 243 – 260 ( 2018 ).
  • Liang Y-L Khoshouei M Glukhova A et al. Phase-plate cryo-EM structure of a biased agonist-bound human GLP-1 receptor-Gs complex . Nature555 ( 7694 ), 121 – 125 ( 2018 ).
  • Violin JD Crombie AL Soergel DG Lark MW . Biased ligands at G-protein-coupled receptors: promise and progress . Trends Pharmacol. Sci.35 ( 7 ), 308 – 316 ( 2014 ).
  • Klein Herenbrink C Sykes DA Donthamsetti P et al. The role of kinetic context in apparent biased agonism at GPCRs . Nat. Commun.7 , 10842 ( 2016 ).
  • Grundmann M Kostenis E . Temporal bias: time-encoded dynamic GPCR signaling . Trends Pharmacol. Sci.38 ( 12 ), 1110 – 1124 ( 2017 ).
  • Schneider S Provasi D Filizola M . How oliceridine (TRV-130) binds and stabilizes a μ-opioid receptor conformational state that selectively triggers G protein signaling pathways . Biochemistry55 ( 46 ), 6456 – 6466 ( 2016 ).
  • Singla N Minkowitz HS Soergel DG et al. A randomized, Phase IIb study investigating oliceridine (TRV130), a novel μ-receptor G-protein pathway selective (μ-GPS) modulator, for the management of moderate to severe acute pain following abdominoplasty . J. Pain Res.10 , 2413 – 2424 ( 2017 ).
  • Miao Y McCammon JA . Mechanism of the G-protein mimetic nanobody binding to a muscarinic G-protein-coupled receptor . Proc. Natl Acad. Sci. USA115 ( 12 ), 3036 – 3041 ( 2018 ).
  • Eichel K Jullié D Barsi-Rhyne B et al. Catalytic activation of β-arrestin by GPCRs . Nature557 ( 7705 ), 381 – 386 ( 2018 ).
  • Latorraca NR Wang JK Bauer B et al. Molecular mechanism of GPCR-mediated arrestin activation . Nature557 ( 7705 ), 452 – 456 ( 2018 ).
  • Ballesteros JA Weinstein H . Integrated methods for the construction of three-dimensional models and computational probing of structure–function relations in G protein-coupled receptors . Methods Neurosci.25 , 366 – 428 ( 1995 ).
  • Thal DM Glukhova A Sexton PM Christopoulos A . Structural insights into G-protein-coupled receptor allostery . Nature559 ( 7712 ), 45 – 53 ( 2018 ).
  • van der Westhuizen ET Valant C Sexton PM Christopoulos A . Endogenous allosteric modulators of G protein-coupled receptors . J. Pharmacol. Exp. Ther.353 ( 2 ), 246 – 260 ( 2015 ).
  • Wootten D Christopoulos A Sexton PM . Emerging paradigms in GPCR allostery: implications for drug discovery . Nat. Rev. Drug Discov.12 ( 8 ), 630 – 644 ( 2013 ).
  • Katritch V Fenalti G Abola EE Roth BL Cherezov V Stevens RC . Allosteric sodium in class A GPCR signaling . Trends Biochem. Sci.39 ( 5 ), 233 – 244 ( 2014 ).
  • Liu W Chun E Thompson AA et al. Structural basis for allosteric regulation of GPCRs by sodium ions . Science337 ( 6091 ), 232 – 236 ( 2012 ).
  • Selent J Sanz F Pastor M De Fabritiis G . Induced effects of sodium ions on dopaminergic G-protein coupled receptors . PLoS Comput. Biol.6 ( 8 ), e1000884 ( 2010 ).
  • Miao Y Caliman AD McCammon JA . Allosteric effects of sodium ion binding on activation of the m3 muscarinic g-protein-coupled receptor . Biophys. J.108 ( 7 ), 1796 – 1806 ( 2015 ).
  • Yuan S Vogel H Filipek S . The role of water and sodium ions in the activation of the μ-opioid receptor . Angew. Chem. Int. Ed. Engl.52 ( 38 ), 10112 – 10115 ( 2013 ).
  • Gutiérrez-de-Terán H Massink A Rodríguez D et al. The role of a sodium ion binding site in the allosteric modulation of the A(2A) adenosine G protein-coupled receptor . Structure21 ( 12 ), 2175 – 2185 ( 2013 ).
  • Bartuzi D Kaczor AA Matosiuk D . Interplay between two allosteric sites and their influence on agonist binding in human μ opioid receptor . J. Chem. Inf. Model.56 ( 3 ), 563 – 570 ( 2016 ).
  • Massink A Gutiérrez-de-Terán H Lenselink EB et al. Sodium ion binding pocket mutations and adenosine A2A receptor function . Mol. Pharmacol.87 ( 2 ), 305 – 313 ( 2015 ).
  • Shang Y LeRouzic V Schneider S Bisignano P Pasternak GW Filizola M . Mechanistic insights into the allosteric modulation of opioid receptors by sodium ions . Biochemistry53 ( 31 ), 5140 – 5149 ( 2014 ).
  • Selvam B Shamsi Z Shukla D . Universality of the sodium ion binding mechanism in class A G-protein-coupled receptors . Angew. Chem. Int. Ed. Engl.57 ( 12 ), 3048 – 3053 ( 2018 ).
  • Vohra S Taddese B Conner AC et al. Similarity between class A and class B G-protein-coupled receptors exemplified through calcitonin gene-related peptide receptor modelling and mutagenesis studies . J. R. Soc. Interface.10 ( 79 ), 20120846 ( 2013 ).
  • Pasternak GW Snowman AM Snyder SH . Selective enhancement of [3H]opiate agonist binding by divalent cations . Mol. Pharmacol.11 ( 6 ), 735 – 744 ( 1975 ).
  • Burgmer U Schulz U Tränkle C Mohr K . Interaction of Mg2+ with the allosteric site of muscarinic M2 receptors . Naunyn Schmiedebergs Arch. Pharmacol.357 ( 4 ), 363 – 370 ( 1998 ).
  • Johansson B Parkinson FE Fredholm BB . Effects of mono- and divalent ions on the binding of the adenosine analogue CGS 21680 to adenosine A2 receptors in rat striatum . Biochem. Pharmacol.44 ( 12 ), 2365 – 2370 ( 1992 ).
  • Mazzoni MR Martini C Lucacchini A . Regulation of agonist binding to A2A adenosine receptors: effects of guanine nucleotides (GDP[S] and GTP[S]) and Mg2+ ion . Biochim. Biophys. Acta1220 ( 1 ), 76 – 84 ( 1993 ).
  • Ye L Neale C Sljoka A et al. Mechanistic insights into allosteric regulation of the A2A adenosine G protein-coupled receptor by physiological cations . Nat. Commun.9 ( 1 ), 1372 ( 2018 ).
  • Gentry PR Sexton PM Christopoulos A . Novel allosteric modulators of G protein-coupled receptors . J. Biol. Chem.290 ( 32 ), 19478 – 19488 ( 2015 ).
  • Aurelio L Valant C Flynn BL Sexton PM Christopoulos A Scammells PJ . Allosteric modulators of the adenosine A1 receptor: synthesis and pharmacological evaluation of 4-substituted 2-amino-3-benzoylthiophenes . J. Med. Chem.52 ( 14 ), 4543 – 4547 ( 2009 ).
  • Dror RO Green HF Valant C et al. Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs . Nature503 ( 7475 ), 295 – 299 ( 2013 ).
  • Shang Y Yeatman HR Provasi D et al. Proposed mode of binding and action of positive allosteric modulators at opioid receptors . ACS Chem. Biol.11 ( 5 ), 1220 – 1229 ( 2016 ).
  • Deganutti G Cuzzolin A Ciancetta A Moro S . Understanding allosteric interactions in G protein-coupled receptors using supervised molecular dynamics: a prototype study analysing the human A3 adenosine receptor positive allosteric modulator LUF6000 . Bioorg. Med. Chem.23 ( 14 ), 4065 – 4071 ( 2015 ).
  • Saleh N Hucke O Montel F et al. Multiple binding sites contribute to the mechanism of mixed agonistic and positive allosteric modulators of the Cannabinoid CB1 receptor . Angew. Chem. Int. Ed. Engl.57 ( 10 ), 2580 – 2585 ( 2018 ).
  • Vaidehi N Bhattacharya S . Allosteric communication pipelines in G-protein-coupled receptors . Curr. Opin. Pharmacol.30 , 76 – 83 ( 2016 ).
  • Pandini A Fornili A Fraternali F Kleinjung J . Detection of allosteric signal transmission by information-theoretic analysis of protein dynamics . FASEB J.26 ( 2 ), 868 – 881 ( 2012 ).
  • Rivalta I Sultan MM Lee N-S Manley GA Loria JP Batista VS . Allosteric pathways in imidazole glycerol phosphate synthase . Proc. Natl Acad. Sci. USA109 ( 22 ), E1428 – E1436 ( 2012 ).
  • McClendon CL Friedland G Mobley DL Amirkhani H Jacobson MP . Quantifying correlations between allosteric sites in thermodynamic ensembles . J. Chem. Theory Comput.5 ( 9 ), 2486 – 2502 ( 2009 ).
  • Bhattacharya S Vaidehi N . Differences in allosteric communication pipelines in the inactive and active states of a GPCR . Biophys. J.107 ( 2 ), 422 – 434 ( 2014 ).
  • La Sala G Decherchi S De Vivo M Rocchia W . Allosteric communication networks in proteins revealed through pocket crosstalk analysis . ACS Cent. Sci.3 ( 9 ), 949 – 960 ( 2017 ).
  • Venkatakrishnan AJ Ma A Fonseca R et al. Stable networks of water-mediated interactions are conserved in activation of diverse GPCRs . BioRxiv ( 2018 ). www.biorxiv.org/content/biorxiv/early/2018/06/20/351502.full.pdf
  • Yuan S Palczewski K Peng Q Kolinski M Vogel H Filipek S . The mechanism of ligand-induced activation or inhibition of μ- and κ-opioid receptors . Angew. Chem. Int. Ed. Engl.54 ( 26 ), 7560 – 7563 ( 2015 ).
  • Yuan S Filipek S Palczewski K Vogel H . Activation of G-protein-coupled receptors correlates with the formation of a continuous internal water pathway . Nat. Commun.5 , 4733 ( 2014 ).
  • Lee Y Kim S Choi S Hyeon C . Ultraslow water-mediated transmembrane interactions regulate the activation of A2A adenosine receptor . Biophys. J.111 ( 6 ), 1180 – 1191 ( 2016 ).
  • Abel R Young T Farid R Berne BJ Friesner RA . Role of the active-site solvent in the thermodynamics of factor Xa ligand binding . J. Am. Chem. Soc.130 ( 9 ), 2817 – 2831 ( 2008 ).
  • Ramsey S Nguyen C Salomon-Ferrer R Walker RC Gilson MK Kurtzman T . Solvation thermodynamic mapping of molecular surfaces in AmberTools: GIST . J. Comput. Chem.37 ( 21 ), 2029 – 2037 ( 2016 ).
  • López ED Arcon JP Gauto DF et al. WATCLUST: a tool for improving the design of drugs based on protein–water interactions . Bioinformatics31 ( 22 ), 3697 – 3699 ( 2015 ).
  • Hu B Lill MA . WATsite: hydration site prediction program with PyMOL interface . J. Comput. Chem.35 ( 16 ), 1255 – 1260 ( 2014 ).
  • Cuzzolin A Deganutti G Salmaso V Sturlese M Moro S . AquaMMapS: an alternative tool to monitor the role of water molecules during protein–ligand association . ChemMedChem.13 ( 6 ), 522 – 531 ( 2018 ).
  • Zia SR Gaspari R Decherchi S Rocchia W . Probing hydration patterns in class-A GPCRs via biased MD: the A2A receptor . J. Chem. Theory Comput.12 ( 12 ), 6049 – 6061 ( 2016 ).
  • Higgs C Beuming T Sherman W . Hydration site thermodynamics explain SARs for triazolylpurines analogues binding to the A2A receptor . ACS Med. Chem. Lett.1 ( 4 ), 160 – 164 ( 2010 ).
  • Bortolato A Tehan BG Bodnarchuk MS Essex JW Mason JS . Water network perturbation in ligand binding: adenosine A(2A) antagonists as a case study . J. Chem. Inf. Model.53 ( 7 ), 1700 – 1713 ( 2013 ).
  • Hedger G Sansom MSP . Lipid interaction sites on channels, transporters and receptors: recent insights from molecular dynamics simulations . Biochim. Biophys. Acta.1858 ( 10 ), 2390 – 2400 ( 2016 ).
  • Escribá PV Wedegaertner PB Goñi FM Vögler O . Lipid–protein interactions in GPCR-associated signaling . Biochim. Biophys. Acta.1768 ( 4 ), 836 – 852 ( 2007 ).
  • Mondal S Khelashvili G Weinstein H . Not just an oil slick: how the energetics of protein–membrane interactions impacts the function and organization of transmembrane proteins . Biophys. J.106 ( 11 ), 2305 – 2316 ( 2014 ).
  • Grossfield A Feller SE Pitman MC . A role for direct interactions in the modulation of rhodopsin by omega-3 polyunsaturated lipids . Proc. Natl Acad. Sci. USA103 ( 13 ), 4888 – 4893 ( 2006 ).
  • Salas-Estrada LA Leioatts N Romo TD Grossfield A . Lipids alter rhodopsin function via ligand-like and solvent-like interactions . Biophys. J.114 ( 2 ), 355 – 367 ( 2018 ).
  • Khelashvili G Grossfield A Feller SE Pitman MC Weinstein H . Structural and dynamic effects of cholesterol at preferred sites of interaction with rhodopsin identified from microsecond length molecular dynamics simulations . Proteins76 ( 2 ), 403 – 417 ( 2009 ).
  • Cang X Du Y Mao Y Wang Y Yang H Jiang H . Mapping the functional binding sites of cholesterol in β2-adrenergic receptor by long-time molecular dynamics simulations . J. Phys. Chem. B.117 ( 4 ), 1085 – 1094 ( 2013 ).
  • Terrillon S Bouvier M . Roles of G-protein-coupled receptor dimerization . EMBO Rep.5 ( 1 ), 30 – 34 ( 2004 ).
  • Milligan G . G protein-coupled receptor dimerisation: molecular basis and relevance to function . Biochim. Biophys. Acta1768 ( 4 ), 825 – 835 ( 2007 ).
  • Shan J Khelashvili G Mondal S Mehler EL Weinstein H . Ligand-dependent conformations and dynamics of the serotonin 5-HT(2A) receptor determine its activation and membrane-driven oligomerization properties . PLoS Comput. Biol.8 ( 4 ), e1002473 ( 2012 ).
  • Lee JY Lyman E . Predictions for cholesterol interaction sites on the A2A adenosine receptor . J. Am. Chem. Soc.134 ( 40 ), 16512 – 16515 ( 2012 ).
  • Neale C Herce HD Pomès R García AE . Can specific protein-lipid interactions stabilize an active state of the beta 2 adrenergic receptor?Biophys. J.109 ( 8 ), 1652 – 1662 ( 2015 ).
  • Bruzzese A Gil C Dalton JAR Giraldo J . Structural insights into positive and negative allosteric regulation of a G protein-coupled receptor through protein–lipid interactions . Sci. Rep.8 ( 1 ), 4456 ( 2018 ).
  • Yen H-Y Hoi KK Liko I et al. PtdIns(4,5)P2 stabilizes active states of GPCRs and enhances selectivity of G-protein coupling . Nature559 ( 7714 ), 423 – 427 ( 2018 ).
  • Liang Y-L Khoshouei M Deganutti G et al. Cryo-EM structure of the active, Gs-protein complexed, human CGRP receptor . Nature561 , 492 – 497 ( 2018 ).
  • Hoare SRJ . Mechanisms of peptide and nonpeptide ligand binding to Class B G-protein-coupled receptors . Drug Discov. Today10 ( 6 ), 417 – 427 ( 2005 ).
  • Hollenstein K de Graaf C Bortolato A Wang M-W Marshall FH Stevens RC . Insights into the structure of class B GPCRs . Trends Pharmacol. Sci.35 ( 1 ), 12 – 22 ( 2014 ).
  • Bortolato A Doré AS Hollenstein K Tehan BG Mason JS Marshall FH . Structure of class B GPCRs: new horizons for drug discovery . Br. J. Pharmacol.171 ( 13 ), 3132 – 3145 ( 2014 ).
  • Wootten D Miller LJ Koole C Christopoulos A Sexton PM . Allostery and biased agonism at class B G protein-coupled receptors . Chem. Rev.117 ( 1 ), 111 – 138 ( 2017 ).
  • Yang L Yang D de Graaf C et al. Conformational states of the full-length glucagon receptor . Nat. Commun.6 , 7859 ( 2015 ).
  • Woolley MJ Reynolds CA Simms J et al. Receptor activity-modifying protein dependent and independent activation mechanisms in the coupling of calcitonin gene-related peptide and adrenomedullin receptors to Gs . Biochem. Pharmacol.142 , 96 – 110 ( 2017 ).
  • Bower RL Yule L Rees TA et al. Molecular signature for receptor engagement in the metabolic peptide hormone amylin . ACS Pharmacol. Transl. Sci.1 , 32 – 49 ( 2018 ).
  • Wootten D Reynolds CA Smith KJ et al. Key interactions by conserved polar amino acids located at the transmembrane helical boundaries in Class B GPCRs modulate activation, effector specificity and biased signalling in the glucagon-like peptide-1 receptor . Biochem. Pharmacol.118 , 68 – 87 ( 2016 ).
  • Wootten D Reynolds CA Koole C et al. A hydrogen-bonded polar network in the core of the glucagon-like peptide-1 receptor is a fulcrum for biased agonism: lessons from class B crystal structures . Mol. Pharmacol.89 ( 3 ), 335 – 347 ( 2016 ).
  • Wootten D Reynolds CA Smith KJ et al. The extracellular surface of the GLP-1 receptor is a molecular trigger for biased agonism . Cell165 ( 7 ), 1632 – 1643 ( 2016 ).
  • Dal Maso E Zhu Y Pham V et al. Extracellular loops 2 and 3 of the calcitonin receptor selectively modify agonist binding and efficacy . Biochem. Pharmacol.150 , 214 – 244 ( 2018 ).
  • Weaver RE Mobarec JC Wigglesworth MJ Reynolds CA Donnelly D . High affinity binding of the peptide agonist TIP-39 to the parathyroid hormone 2 (PTH2) receptor requires the hydroxyl group of Tyr-318 on transmembrane helix 5 . Biochem. Pharmacol.127 , 71 – 81 ( 2017 ).