284
Views
0
CrossRef citations to date
0
Altmetric
Review

Insights for the Design of Protein Lysine Methyltransferase G9a Inhibitors

, , &
Pages 993-1014 | Received 12 Aug 2018, Accepted 23 Jan 2019, Published online: 29 May 2019

References

  • Strahl BD , AllisCD. The language of covalent histone modifications. Nature403(6765), 41–45 (2000).
  • Berger SL . The complex language of chromatin regulation during transcription. Nature447(7143), 407–412 (2007).
  • Berger SL , KouzaridesT , ShiekhattarR , ShilatifardA. An operational definition of epigenetics. Genes Dev.23(7), 781–783 (2009).
  • Arents G , BurlingameRW , WangBC , LoveWE , MoudrianakisEN. The nucleosomal core histone octamer at 3.1 A resolution: a tripartite protein assembly and a left-handed superhelix. Proc. Natl Acad. Sci. USA88(22), 10148–10152 (1991).
  • Spotswood HT , TurnerBM. An increasingly complex code. J. Clin. Invest.110(5), 577–582 (2002).
  • Allfrey G , FaulknerR , MirskyAE , AllfreyVG , FaulknerR , MirskyAE. Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc. Natl Acad. Sci. USA51(5), 786–794 (1964).
  • Bannister AJ , KouzaridesT. Regulation of chromatin by histone modifications. Cell Res.21(3), 381–395 (2011).
  • Kouzarides T . Chromatin modifications and their function. Cell128(4), 693–705 (2007).
  • Liu Y , LiuK , QinS , XuC , MinJ. Epigenetic targets and drug discovery: part 1: histone methylation. Pharmacol. Ther.143(3), 275–294 (2014).
  • Copeland RA , SolomonME , RichonVM. Protein methyltransferases as a target class for drug discovery. Nat. Rev. Drug Discov.8(9), 724–732 (2009).
  • Copeland RA . Protein methyltransferase inhibitors as personalized cancer therapeutics. Drug Discov. Today Ther. Strateg.9(2–3), e83–e90 (2012).
  • Arrowsmith CH , BountraC , FishP V , LeeK , SchapiraM. Epigenetic protein families: a new frontier for drug discovery. Nat. Rev. Drug Discov.11(5), 384–400 (2012).
  • Barski A , CuddapahS , CuiKet al. High-resolution profiling of histone methylations in the human genome. Cell129(4), 823–837 (2007).
  • Jones PA , BaylinSB. The epigenomics of cancer. Cell128(4), 683–692 (2007).
  • Wilson CB , RowellE , SekimataM. Epigenetic control of T-helper-cell differentiation. Nat. Rev. Immunol.9(2), 91–105 (2009).
  • Tsankova N , RenthalW , KumarA , NestlerEJ. Epigenetic regulation in psychiatric disorders. Nat. Rev. Neurosci.8(5), 355–367 (2007).
  • Dunham I , SargentCA , KendallE , CampbellRD. Characterization of the class III region in different MHC haplotypes by pulsed-field gel electrophoresis. Immunogenetics32(3), 175–182 (1990).
  • Rea S , EisenhaberF , O'CarrollDet al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature406(6796), 593–599 (2000).
  • O'Carroll D , ScherthanH , Petersa Het al. Isolation and characterization of Suv39h2, a second histone H3 methyltransferase gene that displays testis-specific expression. Mol. Cell. Biol.20(24), 9423–9433 (2000).
  • Zhang X , TamaruH , KhanSIet al. Structure of the Neurospora SET domain protein DIM-5, a histone H3 lysine methyltransferase. Cell111(1), 117–127 (2002).
  • Jenuwein T , LaibleG , DornR , ReuterG. SET domain proteins modulate chromatin domains in eu- and heterochromatin. Cell. Mol. Life Sci.54(1), 80–93 (1998).
  • Dillon SC , ZhangX , TrievelRC , ChengX. The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol.6(8), 227 (2005).
  • Tachibana M , UedaJ , FukudaMet al. Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes Dev.19(7), 815–826 (2005).
  • Tachibana M , SugimotoK , FukushimaT , ShinkaiY. SET domain-containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J. Biol. Chem.276(27), 25309–25317 (2001).
  • Tachibana M , SugimotoK , NozakiMet al. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev.16(14), 1779–1791 (2002).
  • Yu Y , SongC , ZhangQet al. Histone H3 lysine 56 methylation regulates DNA replication through its interaction with PCNA. Mol. Cell46(1), 7–17 (2012).
  • Weiss T , HergethS , ZeisslerUet al. Histone H1 variant-specific lysine methylation by G9a/KMT1C and Glp1/KMT1D. Epigenetics chromatin3(1), 7 (2010).
  • Trojer P , ZhangJ , YonezawaMet al. Dynamic histone H1 isotype 4 methylation and demethylation by histone lysine methyltransferase G9a/KMT1C and the jumonji domain-containing JMJD2/KDM4 proteins. J. Biol. Chem.284(13), 8395–8405 (2009).
  • Lan J , LepikhovK , GiehrP , WalterJ. Histone and DNA methylation control by H3 serine 10/threonine 11 phosphorylation in the mouse zygote. Epigenetics Chromatin10(1), 5 (2017).
  • Chin HG , PradhanM , EstèvePO , PatnaikD , EvansTC , PradhanS. Sequence specificity and role of proximal amino acids of the histone H3 tail on catalysis of murine G9a lysine 9 histone H3 methyltransferase. Biochemistry44(39), 12998–13006 (2005).
  • Rathert P , DhayalanA , MurakamiMet al. Protein lysine methyltransferase G9a acts on non-histone targets. Nat. Chem. Biol.4(6), 344–346 (2008).
  • Sancho M , DianiE , BeatoM , JordanA. Depletion of human histone H1 variants uncovers specific roles in gene expression and cell growth. PLoS Genet.4(10), (2008).
  • Huang J , DorseyJ , ChuikovSet al. G9a and GLP methylate lysine 373 in the tumor suppressor p53. J. Biol. Chem.285(13), 9636–9641 (2010).
  • Ling BMT , BharathyN , ChungT-Ket al. Lysine methyltransferase G9a methylates the transcription factor MyoD and regulates skeletal muscle differentiation. Proc. Natl Acad. Sci. USA109(3), 841–846 (2012).
  • Lee JS , KimY , KimISet al. Negative regulation of hypoxic responses via induced reptin methylation. Mol. Cell39(1), 71–85 (2010).
  • Choi J , JangH , KimHet al. Modulation of lysine methylation in myocyte enhancer factor 2 during skeletal muscle cell differentiation. Nucleic Acids Res.42(1), 224–234 (2014).
  • Nair SS , LiDQ , KumarR. A core chromatin remodeling factor instructs global chromatin signaling through multivalent reading of nucleosome codes. Mol. Cell49(4), 704–718 (2013).
  • Sampath SC , MarazziI , YapKLet al. Methylation of a histone mimic within the histone methyltransferase G9a regulates protein complex assembly. Mol. Cell27(4), 596–608 (2007).
  • Purcell DJ , JeongKW , BittencourtD , GerkeDS , StallcupMR. A distinct mechanism for coactivator versus corepressor function by histone methyltransferase G9a in transcriptional regulation. J. Biol. Chem.286(49), 41963–41971 (2011).
  • Bittencourt D , WuD-Y , JeongKWet al. G9a functions as a molecular scaffold for assembly of transcriptional coactivators on a subset of glucocorticoid receptor target genes. Proc. Natl Acad. Sci. USA109(48), 19673–19678 (2012).
  • Purcell DJ , KhalidO , OuCYet al. Recruitment of coregulator G9a by Runx2 for selective enhancement or suppression of transcription. J. Cell. Biochem.113(7), 2406–2414 (2012).
  • Tamaru H , SelkerEU. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. Nature414(6861), 277–283 (2001).
  • Tachibana M , MatsumuraY , FukudaM , KimuraH , ShinkaiY. G9a/GLP complexes independently mediate H3K9 and DNA methylation to silence transcription. EMBO J.27(20), 2681–2690 (2008).
  • Auclair G , BorgelJ , SanzLAet al. EHMT2 directs DNA methylation for efficient gene silencing in mouse embryos. Genome Res.26(2), 192–202 (2016).
  • Feldman N , GersonA , FangJet al. G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis. Nat. Cell Biol.8(2), 188–194 (2006).
  • Yamamizu K , FujiharaM , TachibanaMet al. Protein kinase A determines timing of early differentiation through epigenetic regulation with G9a. Cell Stem Cell10(6), 759–770 (2012).
  • Chen X , Skutt-KakariaK , DavisonJet al. G9a/GLP-dependent histone H3K9me2 patterning during human hematopoietic stem cell lineage commitment. Genes Dev.26(22), 2499–2511 (2012).
  • Chang Y , ZhangX , HortonJRet al. Structural basis for G9a-like protein lysine methyltransferase inhibition by BIX-01294. Nat. Struct. Mol. Biol.16(3), 312–317 (2009).
  • Ma DK , ChiangC-HJ , PonnusamyK , MingG-L , SongH. G9a and Jhdm2a regulate embryonic stem cell fusion-induced reprogramming of adult neural stem cells. Stem Cells26(8), 2131–2141 (2008).
  • Kubicek S , O’SullivanRJ , AugustEMet al. Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase. Mol. Cell25(3), 473–481 (2007).
  • Shi Y , DespontsC , DoJT , HahmHS , SchölerHR , DingS. Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell3(5), 568–574 (2008).
  • Ding J , LiT , WangXet al. The histone H3 methyltransferase G9A epigenetically activates the serine-glycine synthesis pathway to sustain cancer cell survival and proliferation. Cell Metabolism18(6), 896–907 (2013).
  • McGrath J , TrojerP. Targeting histone lysine methylation in cancer. Pharmacol. Ther.150, 1–22 (2015).
  • Esteve P-O , ChinHG , SmallwoodAet al. Direct interaction between DNMT1 and G9a coordinates DNA and histone methylation during replication. Genes Dev.20(22), 3089–3103 (2006).
  • Oh S-T , KimK-B , ChaeY-C , KangJ-Y , HahnY , SeoS-B. H3K9 histone methyltransferase G9a-mediated transcriptional activation of p21. FEBS Lett.588(5), 685–691 (2014).
  • Ren A , QiuY , CuiH , FuG. Inhibition of H3K9 methyltransferase G9a induces autophagy and apoptosis in oral squamous cell carcinoma. Biochem. Biophys. Res. Commun.459(1), 10–17 (2015).
  • Yu H , LinQ , WangYet al. Inhibition of H3K9 methyltransferases G9a/GLP prevents ototoxicity and ongoing hair cell death. Cell Death Dis.4(2), e506 (2013).
  • Yuan Y , TangAJ , CastorenoABet al. Gossypol and an HMT G9a inhibitor act in synergy to induce cell death in pancreatic cancer cells. Cell Death Dis.4(6), e690 (2013).
  • Shi X , KachirskaiaI , YamaguchiHet al. Modulation of p53 function by SET8-mediated methylation at lysine 382. Mol. Cell27(4), 636–646 (2007).
  • Huang J , Perez-BurgosL , PlacekBJet al. Repression of p53 activity by Smyd2-mediated methylation. Nature444(7119), 629–632 (2006).
  • Chuikov S , KurashJK , WilsonJRet al. Regulation of p53 activity through lysine methylation. Nature432(7015), 353–360 (2004).
  • Huang J , DorseyJ , ChuikovSet al. G9a and GLP methylate lysine 373 in the tumor suppressor p53. J. Biol. Chem.285(13), 9636–9641 (2010).
  • Levine B , KroemerG. Autophagy in the pathogenesis of disease. Cell132(1), 27–42 (2008).
  • Mizushima N , LevineB , CuervoAM , KlionskyDJ. Autophagy fights disease through cellular self-digestion. Nature451(7182), 1069–1075 (2008).
  • de Narvajas AA , GomezTS , ZhangJS et al. Epigenetic regulation of autophagy by the methyltransferase G9a. Molecular and Cell. Biol.33(20), 3983–3993 (2013).
  • Scheer S , ZaphC. The lysine methyltransferase G9a in immune cell differentiation and function. Front. Immunol.8, 429 (2017).
  • Katoh K , YamazakiR , OnishiA , SanukiR , FurukawaT. G9a histone methyltransferase activity in retinal progenitors is essential for proper differentiation and survival of mouse retinal cells. J. Neurosci.32(49), 17658–17670 (2012).
  • Lyons DB , MagklaraA , GohTet al. Heterochromatin-mediated gene silencing facilitates the diversification of olfactory neurons. Cell Rep.9(3), 884–892 (2014).
  • Ebbers L , RungeK , NothwangHG. Differential patterns of histone methylase EHMT2 and its catalyzed histone modifications H3K9me1 and H3K9me2 during maturation of central auditory system. Cell Tissue Res.365(2), 247– 264 (2016).
  • Harris JA , HardieNA , Bermingham-McDonoghO , RubelEW. Gene expression differences over a critical period of afferent-dependent neuron survival in the mouse auditory brainstem. J. Comp. Neurol.493(3), 460–474 (2005).
  • Casciello F , WindlochK , GannonF , LeeJS. Functional role of G9a histone methyltransferase in cancer. Front. Immunol.6487 (2015).
  • Laumet G , GarrigaJ , ChenS-Ret al. G9a is essential for epigenetic silencing of K+ channel genes in acute-to-chronic pain transition. Nat. Neurosci.18(12), 1746–1755 (2015).
  • Benevento M , vande Molengraft M , van WestenR , van BokhovenH , KasriNN. The role of chromatin repressive marks in cognition and disease: A focus on the repressive complex GLP/G9a. Neurobiol. Learn. Mem.124, 88–96 (2015).
  • Gupta S , KimSY , ArtisSet al. Histone methylation regulates memory formation. J. Neurosci.30(10), 3589–3599 (2010).
  • Gupta-Agarwal S , FranklinA V , DeramusTet al. G9a/GLP histone lysine dimethyltransferase complex activity in the hippocampus and the entorhinal cortex is required for gene activation and silencing during memory consolidation. J. Neurosci.32(16), 5440–5453 (2012).
  • Schaefer A , SampathSC , IntratorAet al. Control of cognition and adaptive behavior by the GLP/G9a epigenetic suppressor complex. Neuron64(5), 678–691 (2009).
  • Heller EA , CatesHM , PeñaCJet al. Locus-specific epigenetic remodeling controls addiction- and depression-related behaviors. Nat. Neurosci.17(12), 1720–1727 (2014).
  • Maze I , CovingtonHE , DietzDMet al. Essential role of the histone methyltransferase G9a in cocaine-induced plasticity. Science327(5962), 213–216 (2010).
  • Rothman RB . High affinity dopamine reuptake inhibitors as potential cocaine antagonists: a strategy for drug development. Life Sci.46(20), PL17–PL21 (1990).
  • Peña CJ , BagotRC , LabontéB , NestlerEJ. Epigenetic signaling in psychiatric disorders. J. Mol. Biol.426(20), 3389–3412 (2014).
  • Walker MP , LaFerlaFM , OddoSS , BrewerGJ. Reversible epigenetic histone modifications and BDNF expression in neurons with aging and from a mouse model of Alzheimer’s disease. AGE35(3), 519–531 (2013).
  • Gardian G , BrowneSE , ChoiD-Ket al. Neuroprotective effects of phenylbutyrate in the N171-82Q transgenic mouse model of Huntington’s disease. J. Biol. Chem.280(1), 556–563 (2005).
  • Ferrante RJ , RyuH , KubilusJKet al. Chemotherapy for the brain: the antitumor antibiotic mithramycin prolongs survival in a mouse model of Huntington’s disease. J. Neurosci.24(46), 10335–10342 (2004).
  • Li M , LiuC , YangLet al. G9a-mediated histone methylation regulates cadmium-induced male fertility damage in pubertal mice. Toxicol. Lett.252, 11–21 (2016).
  • Chen MW , HuaKT , KaoHJet al. H3K9 histone methyltransferase G9a promotes lung cancer invasion and metastasis by silencing the cell adhesion molecule Ep-CAM. Cancer Res.70(20), 7830–7840 (2010).
  • Cho H-S , KellyJD , HayamiSet al. Enhanced expression of EHMT2 is involved in the proliferation of cancer cells through negative regulation of SIAH1. Neoplasia13(8), 676–684 (2011).
  • Qin J , LiQ , ZengZet al. Increased expression of G9A contributes to carcinogenesis and indicates poor prognosis in hepatocellular carcinoma. Oncol. Lett.15(6), 9757–9765 (2018).
  • Sandoval J , EstellerM. Cancer epigenomics: beyond genomics. Curr. Opin. Genet. Dev.22(1), 50–55 (2012).
  • Greer EL , ShiY. Histone methylation: a dynamic mark in health, disease and inheritance. Nat. Rev. Genet.13(5), 343–57 (2012).
  • Gao J , AksoyBA , DogrusozUet al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal.6(269), pl1 (2013).
  • Hua K-TK , WangM-Y , ChenMM-Wet al. The H3K9 methyltransferase G9a is a marker of aggressive ovarian cancer that promotes peritoneal metastasis. Mol. Cancer13(1), 189 (2014).
  • Kang J , ShinS-H , YoonHet al. FIH Is an oxygen sensor in ovarian cancer for G9a/GLP-driven epigenetic regulation of metastasis-related genes. Cancer Res.78(5), 1184–1199 (2018).
  • Lee JS , KimY , BhinJet al. Hypoxia-induced methylation of a pontin chromatin remodeling factor. Proc. Natl Acad. Sci. USA108(33), 13510–13515 (2011).
  • Wozniak RJ , KlimeckiWT , LauSS , FeinsteinY , FutscherBW. 5-Aza-2′-deoxycytidine-mediated reductions in G9A histone methyltransferase and histone H3 K9 di-methylation levels are linked to tumor suppressor gene reactivation. Oncogene26(1), 77–90 (2007).
  • Zhong X , ChenX , GuanXet al. Overexpression of G9a and MCM7 in oesophageal squamous cell carcinoma is associated with poor prognosis. Histopathology66(2), 192–200 (2015).
  • Chen W-L , SunH-P , LiD-D , WangZ-H , YouQ-D , GuoX-K. G9a: an appealing antineoplastic target. Curr. Cancer Drug Targets17(6), 555–568 (2017).
  • Rhodes DR , YuJ , ShankerKet al. ONCOMINE: a cancer microarray database and integrated data-mining platform. Neoplasia6(1), 1–6 (2004).
  • Lin X , HuangY , ZouY , ChenX , MaX. Depletion of G9a gene induces cell apoptosis in human gastric carcinoma. Oncol. Rep.35(5), 3041–3049 (2016).
  • Lee SH , KimJ , KimWH , LeeYM. Hypoxic silencing of tumor suppressor RUNX3 by histone modification in gastric cancer cells. Oncogene28(2), 184–194 (2009).
  • Cho HS , KellyJD , HayamiSet al. Enhanced expression of EHMT2 is involved in the proliferation of cancer cells through negative regulation of SIAH1. Neoplasia13(8), 676–684 (2011).
  • Cui J , SunW , HaoXet al. EHMT2 inhibitor BIX-01294 induces apoptosis through PMAIP1-USP9X-MCL1 axis in human bladder cancer cells. Cancer Cell Int.15(1), 4 (2015).
  • Li F , ZengJ , GaoYet al. G9a inhibition induces autophagic cell death via AMPK/mTOR pathway in bladder transitional cell carcinoma. PLoS ONE10(9), e0138390 (2015).
  • Pappano WN , GuoJ , HeYet al. The histone methyltransferase inhibitor A-366 uncovers a role for G9a/GLP in the epigenetics of leukemia. PLoS ONE10(7), e0131716 (2015).
  • Lehnertz B , PabstC , SuLet al. The methyltransferase G9a regulates HoxA9-dependent transcription in AML. Genes Dev.28(4), 317–327 (2014).
  • Penas C , NavarroX. Epigenetic modifications associated to neuroinflammation and neuropathic pain after neural trauma. Front. Cell. Neurosci.12, 158 (2018).
  • Deimling SJ , OlsenJB , TropepeV. The expanding role of the Ehmt2/G9a complex in neurodevelopment. Neurogenesis4(1), e1316888 (2017).
  • Brown SE , CampbellRD , SandersonCM. Novel NG36/G9a gene products encoded within the human and mouse MHC class III regions. Mamm. Genome12(12), 916–924 (2001).
  • Fiszbein A , GionoLE , QuaglinoAet al. Alternative splicing of G9a regulates neuronal differentiation. Cell Rep.2797–2808 (2016).
  • Kleefstra T , KramerJM , NevelingKet al. Disruption of an EHMT1-associated chromatin-modification module causes intellectual disability. Am. J. Hum. Genet.91(1), 73–82 (2012).
  • Pasillas MP , ShahM , KampsMP. NSD1 PHD domains bind methylated H3K4 and H3K9 using interactions disrupted by point mutations in human Sotos syndrome. Hum. Mutat.32(3), 292–8 (2011).
  • Maas NMC , Van BuggenhoutG , HannesFet al. Genotype-phenotype correlation in 21 patients with Wolf–Hirschhorn syndrome using high resolution array comparative genome hybridisation (CGH). J. Med. Genet.45(2), 71–80 (2008).
  • Miyake N , MizunoS , OkamotoNet al. KDM6A point mutations cause Kabuki syndrome. Hum. Mutat.34(1), 108–110 (2013).
  • Gibson WT , HoodRL , ZhanSHet al. Mutations in EZH2 cause Weaver syndrome. Am. J. Hum. Genet.90(1), 110–118 (2012).
  • Iwase S , LanF , BaylissPet al. The X-linked mental retardation gene SMCX/JARID1C defines a family of histone H3 lysine 4 demethylases. Cell128(6), 1077–1088 (2007).
  • Armanet N , MetayC , BrissetSet al. Double Xp11.22 deletion including SHROOM4 and CLCN5 associated with severe psychomotor retardation and Dent disease. Mol. Cytogenet.8, 8 (2015).
  • Barco A . Neuroepigenetic disorders: progress, promises and challenges. Neuropharmacology80, 1–2 (2014).
  • Kleefstra T , SchenckA , KramerJM , van BokhovenH. The genetics of cognitive epigenetics. Neuropharmacology80, 83–94 (2014).
  • Bagot RC , LabontéB , PeñaCJ , NestlerEJ. Epigenetic signaling in psychiatric disorders: stress and depression. Dialogues Clin. Neurosci.16(3), 281–295 (2014).
  • Portela A , EstellerM. Epigenetic modifications and human disease. Nat. Biotechnol.28(10), 1057–1068 (2010).
  • Traynor BJ , RentonAE , JCLet al. Exploring the epigenetics of Alzheimer disease. JAMA Neurol.72(1), 8 (2015).
  • Gräff J , ReiD , GuanJ-Set al. An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature483(7388), 222–226 (2012).
  • Wood JG , HillenmeyerS , LawrenceCet al. Chromatin remodeling in the aging genome of Drosophila. Aging Cell9(6), 971–978 (2010).
  • Ryu H , LeeJ , HagertySWet al. ESET/SETDB1 gene expression and histone H3 (K9) trimethylation in Huntington’s disease. Proc. Natl Acad. Sci. USA103(50), 19176–19181 (2006).
  • Shankar SR , BahirvaniAG , RaoVK , BharathyN , OwJR , TanejaR. G9a, a multipotent regulator of gene expression. Epigenetics8(1), 16–22 (2013).
  • Wu H , MinJ , LuninV Vet al. Structural biology of human H3K9 methyltransferases. PLoS ONE5(1), e8570 (2010).
  • Liu F , ChenX , Allali-HassaniAet al. Protein lysine methyltransferase g9a inhibitors: design, synthesis, and structure activity relationships of 2,4-diamino-7-aminoalkoxy-quinazolines. J. Med. Chem.53(15), 5844–5857 (2010).
  • Liu F , ChenX , Allali-HassaniAet al. Discovery of a 2,4-diamino-7-aminoalkoxyquinazoline as a potent and selective inhibitor of histone lysine methyltransferase G9a. J. Med. Chem.52(24), 7950–7953 (2009).
  • Liu F , Barsyte-LovejoyD. Optimization of cellular activity of G9a inhibitors 7-aminoalkoxy-quinazolines. J. Med. Chem.54(17), 6139–6150 (2011).
  • Liu F , Barsyte-LovejoyD , LiFet al. Discovery of an in vivo chemical probe of the lysine methyltransferases G9a and GLP. J. Med. Chem.56(21), 8931–8942 (2013).
  • Chang Y , GaneshT , HortonJRet al. Adding a lysine mimic in the design of potent inhibitors of histone lysine methyltransferases. J. Mol. Biol.400(1), 1–7 (2010).
  • Xiong Y , LiF , BabaultNet al. Discovery of potent and selective inhibitors for G9a-like protein (GLP) lysine methyltransferase. J. Med. Chem.60(5), 1876–1891 (2017).
  • Bárcena-Varela M , CarusoS , LlerenaSet al. Dual targeting of histone methyltransferase G9a and DNA-methyltransferase 1 for the treatment of experimental hepatocellular carcinoma. Hepatology69(2), 587–603 (2018).
  • Rotili D , TarantinoD , MarroccoBet al. Properly substituted analogues of BIX-01294 lose inhibition of G9a histone methyltransferase and gain selective anti-DNA methyltransferase 3A activity. PLoS ONE9(5), e96941 (2014).
  • Rabal O , José-EnérizES , AgirreXet al. Discovery of reversible dna methyltransferase and lysine methyltransferase G9a Inhibitors with antitumoral in vivo efficacy. J. Med. Chem.61(15), 6518–6545 (2018).
  • Srimongkolpithak N , SundriyalS , LiF , VedadiM , FuchterMJ. Identification of 2,4-diamino-6,7-dimethoxyquinoline derivatives as G9a inhibitors. Med. Chem. Commun.5(12), 1821–1828 (2014).
  • José-Enériz ES , AgirreX , RabalOet al. Discovery of first-in-class reversible dual small molecule inhibitors against G9a and DNMTs in hematological malignancies. Nat. Commun.8, 15424 (2017).
  • Sweis RF , PliushchevM , BrownPJet al. Discovery and development of potent and selective inhibitors of histone methyltransferase G9a. ACS Med. Chem. Lett.5(2), 205–209 (2014).
  • Chen WL , WangZH , FengTTet al. Discovery, design and synthesis of 6H-anthra[1,9-cd]isoxazol-6-one scaffold as G9a inhibitor through a combination of shape-based virtual screening and structure-based molecular modification. Bioorg. Med. Chem.24(22), 6102–6108 (2016).
  • M RCC , HsiehH-P , CoumarMS. Delineating the active site architecture of G9a lysine methyltransferase through substrate and inhibitor binding mode analysis: a molecular dynamics study. J. Biomol. Styruct. Dyn.37(10), 2581 –2592 (2018).
  • Rowbotham SP , LiF , DostAFMet al. H3K9 methyltransferases and demethylases control lung tumor-propagating cells and lung cancer progression. Nat. Commun.9(1), 4559 (2018).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.