408
Views
0
CrossRef citations to date
0
Altmetric
Review

Current Advances in Idiopathic Pulmonary Fibrosis: The pathogenesis, Therapeutic Strategies and Candidate Molecules

, , &
Pages 2595-2620 | Received 08 Apr 2019, Accepted 24 Jul 2019, Published online: 21 Oct 2019

References

  • Nalysnyk L , Cid-RuzafaJ, RotellaPet al. Incidence and prevalence of idiopathic pulmonary fibrosis: review of the literature. Eur. Respir. Rev.21(126), 355–361 (2012).
  • Hutchinson J , FogartyA, HubbardRet al. Global incidence and mortality of idiopathic pulmonary fibrosis: a systematic review. Eur. Respir. J.46(3), 795–806 (2015).
  • Olson AL , GiffordAH, InaseNet al. The epidemiology of idiopathic pulmonary fibrosis and interstitial lung diseases at risk of a progressive-fibrosing phenotype. Eur. Respir. Rev.27(150), 180077 (2018).
  • Ley B , CollardHR, KingTEJr. Clinical course and prediction of survival in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med.183(4), 431–440 (2011).
  • De Vries J , KesselsBL, DrentM. Quality of life of idiopathic pulmonary fibrosis patients. Eur. Respir. J.17(5), 954–961 (2001).
  • Song JW , HongSB, LimCMet al. Acute exacerbation of idiopathic pulmonary fibrosis: incidence, risk factors and outcome. Eur. Respir. J.37(2), 356–363 (2011).
  • Collard HR , RyersonCJ, CorteTJet al. Acute exacerbation of idiopathic pulmonary fibrosis. An International Working Group Report. Am. J. Respir. Crit. Care Med.194(3), 265–275 (2016).
  • Society AT . American Thoracic Society. Idiopathic pulmonary fibrosis: diagnosis and treatment. International consensus statement. American Thoracic Society (ATS), and the European Respiratory Society (ERS). Am. J. Respir. Crit. Care Med.161(2 Pt 1), 646–664 (2000).
  • Johnson MA , KwanS, SnellNJet al. Randomised controlled trial comparing prednisolone alone with cyclophosphamide and low dose prednisolone in combination in cryptogenic fibrosing alveolitis. Thorax44(4), 280–288 (1989).
  • Raghu G , DepasoWJ, CainKet al. Azathioprine combined with prednisone in the treatment of idiopathic pulmonary fibrosis: a prospective double-blind, randomized, placebo-controlled clinical trial. Am. Rev. Respir. Dis.144(2), 291–296 (1991).
  • van Oortegem K , WallaertB, MarquetteCHet al. Determinants of response to immunosuppressive therapy in idiopathic pulmonary fibrosis. Eur. Respir. J.7(11), 1950–1957 (1994).
  • Selman M , CarrilloG, SalasJet al. Colchicine, D-penicillamine, and prednisone in the treatment of idiopathic pulmonary fibrosis: a controlled clinical trial. Chest114(2), 507–512 (1998).
  • Flaherty KR , ToewsGB, LynchJP3rdet al. Steroids in idiopathic pulmonary fibrosis: a prospective assessment of adverse reactions, response to therapy, and survival. Am. J. Med.110(4), 278–282 (2001).
  • Selman M , KingTE, PardoA. Idiopathic pulmonary fibrosis: prevailing and evolving hypotheses about its pathogenesis and implications for therapy. Ann. Intern. Med.134(2), 136–151 (2001).
  • Mura M , BelmonteG, FantiSet al. Inflammatory activity is still present in the advanced stages of idiopathic pulmonary fibrosis. Respirology10(5), 609 (2005).
  • Desai O , WinklerJ, MinasyanMet al. The role of immune and inflammatory cells in idiopathic pulmonary fibrosis. Front. Med. (Lausanne)5, 43 (2018).
  • Heukels P , MoorCC, vonder Thusen JHet al. Inflammation and immunity in IPF pathogenesis and treatment. Respir. Med.147, 79–91 (2019).
  • Mayadas TN , CullereX, LowellCA. The multifaceted functions of neutrophils. Annu. Rev. Pathol.9, 181–218 (2014).
  • Duru N , WolfsonB, ZhouQ. Mechanisms of the alternative activation of macrophages and non-coding RNAs in the development of radiation-induced lung fibrosis. World J. Biol. Chem.7(4), 231–239 (2016).
  • Vassilakis DA , SourvinosG, SpandidosDAet al. Frequent genetic alterations at the microsatellite level in cytologic sputum samples of patients with idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med.162(3 Pt 1), 1115 (2000).
  • Demopoulos K , ArvanitisDA, VassilakisDAet al. MYCL1, FHIT, SPARC, p16INK4 and TP53 genes associated to lung cancer in idiopathic pulmonary fibrosis. J. Cell. Mol. Med.6(2), 215–222 (2002).
  • Armanios MY , ChenJJ-L, CoganJDet al. Telomerase mutations in families with idiopathic pulmonary fibrosis. N. Engl. J. Med.356(13), 1317–1326 (2007).
  • Alder JK , ChenJJ, LancasterLet al. Short telomeres are a risk factor for idiopathic pulmonary fibrosis. Proc. Natl Acad. Sci. USA105(35), 13051–13056 (2008).
  • Kuwano K , HagimotoN, MaeyamaTet al. Mitochondria-mediated apoptosis of lung epithelial cells in idiopathic interstitial pneumonias. Lab. Invest.82(12), 1695–1706 (2002).
  • Araya J , KojimaJ, TakasakaNet al. Insufficient autophagy in idiopathic pulmonary fibrosis. Am. J. Physiol. Lung Cell Mol. Physiol.304(1), L56–69 (2013).
  • Su X . Leading neutrophils to the alveoli: who is the guider?Am. J. Respir. Crit. Care Med.186(6), 472–473 (2012).
  • Noth I , ZhangY, MaS-Fet al. Genetic variants associated with idiopathic pulmonary fibrosis susceptibility and mortality: a genome-wide association study. Lancet Respir. Med.1(4), 309–317 (2013).
  • Fingerlin TE , MurphyE, ZhangWet al. Genome-wide association study identifies multiple susceptibility loci for pulmonary fibrosis. Nat. Genet.45(6), 613–620 (2013).
  • Selman M , PardoA. Role of epithelial cells in idiopathic pulmonary fibrosis: from innocent targets to serial killers. Proc. Am. Thorac. Soc.3(4), 364–372 (2006).
  • Willis BC , LieblerJM, LubyphelpsKet al. Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-β1: potential role in idiopathic pulmonary fibrosis. Am. J. Pathol.166(5), 1321–1332 (2005).
  • Willis BC . Epithelial origin of myofibroblasts during fibrosis in the lung. Proc. Am.Thorac. Soc.3(4), 377–382 (2006).
  • Moore MW , HerzogEL. Regulation and relevance of myofibroblast responses in idiopathic pulmonary fibrosis. Curr. Pathobiol. Rep.1(3), 199–208 (2013).
  • Kapanci Y , DesmouliereA, PacheJCet al. Cytoskeletal protein modulation in pulmonary alveolar myofibroblasts during idiopathic pulmonary fibrosis. Possible role of transforming growth factor beta and tumor necrosis factor α. Am. J. Respir. Crit. Care Med.152(1), 2163–2169 (1995).
  • Giaid A , MichelRP, StewartDJet al. Expression of endothelin-1 in lungs of patients with cryptogenic fibrosing alveolitis. Lancet341(8860), 1550–1554 (1993).
  • Antoniades HN , BravoMA, AvilaREet al. Platelet-derived growth factor in idiopathic pulmonary fibrosis. J. Clin. Invest.86(4), 1055 (1990).
  • Pan LH , YamauchiK, UzukiMet al. Type II alveolar epithelial cells and interstitial fibroblasts express connective tissue growth factor in IPF. Eur. Respir. J.17(6), 1220–1227 (2001).
  • Willis BC , LieblerJM, Luby-PhelpsKet al. Induction of epithelial-mesenchymal transition in alveolar epithelial cells by transforming growth factor-β1 : potential role in idiopathic pulmonary fibrosis. Am. J. Pathol.166(5), 1321–1332 (2005).
  • Peyser R , MacDonnellS, GaoYet al. Defining the activated fibroblast population in lung fibrosis using single-cell sequencing. Am. J. Respir. Cell Mol. Biol.61(1), 74–85 (2019).
  • Im J , LawrenceJ, SeeligDet al. FoxM1-dependent RAD51 and BRCA2 signaling protects idiopathic pulmonary fibrosis fibroblasts from radiation-induced cell death. Cell Death Dis.9(6), 584 (2018).
  • Sontake V , KasamRK, SinnerDet al. Wilms’ tumor 1 drives fibroproliferation and myofibroblast transformation in severe fibrotic lung disease. JCI Insight3(16), e121252 (2018).
  • Kinnula VL , FattmanCL, TanRJet al. Oxidative stress in pulmonary fibrosis: a possible role for redox modulatory therapy. Am. J. Respir. Crit. Care Med.172(4), 417–422 (2005).
  • Kliment CR , OuryTD. Oxidative stress, extracellular matrix targets, and idiopathic pulmonary fibrosis. Free Radic. Biol. Med.49(5), 707–717 (2010).
  • Matsuzawa Y , KawashimaT, KuwabaraRet al. Change in serum marker of oxidative stress in the progression of idiopathic pulmonary fibrosis. Pulm. Pharmacol. Ther.32, 1–6 (2015).
  • Hecker L , VittalR, JonesTet al. NADPH oxidase-4 mediates myofibroblast activation and fibrogenic responses to lung injury. Nat. Med.15(9), 1077–1081 (2009).
  • Bernard K , LogsdonNJ, MiguelVet al. NADPH oxidase 4 (Nox4) suppresses mitochondrial biogenesis and bioenergetics in lung fibroblasts via a nuclear factor erythroid-derived 2-like 2 (Nrf2)-dependent pathway. J. Biol. Chem.292(7), 3029–3038 (2017).
  • Cross CE , Vander Vliet A, O’NeillCAet al. Oxidants, antioxidants, and respiratory tract lining fluids. Environ. Health Perspect.102(Suppl. 10), 185–191 (1995).
  • Shukla A , Ramos-NinoM, MossmanB. Cell signaling and transcription factor activation by asbestos in lung injury and disease. Int. J. Biochem. Cell Biol.35(35), 1198–1209 (2003).
  • Murrell GA , FrancisMJ, BromleyL. Modulation of fibroblast proliferation by oxygen free radicals. Biochem. J.265(3), 659–665 (1990).
  • Waghray M , CuiZ, HorowitzJCet al. Hydrogen peroxide is a diffusible paracrine signal for the induction of epithelial cell death by activated myofibroblasts. FASEB J.19(7), 854 (2005).
  • Lv M , ChenZ, HuGet al. Therapeutic strategies of diabetic nephropathy: recent progress and future perspectives. Drug Discov. Today20(3), 332–346 (2015).
  • Rantapaa-Dahlqvist S , BomanK, TarkowskiAet al. Up regulation of monocyte chemoattractant protein-1 expression in anti-citrulline antibody and immunoglobulin M rheumatoid factor positive subjects precedes onset of inflammatory response and development of overt rheumatoid arthritis. Ann. Rheum. Dis.66(1), 121–123 (2007).
  • Ip WK , WongCK, LamCW. Interleukin (IL)-4 and IL-13 up-regulate monocyte chemoattractant protein-1 expression in human bronchial epithelial cells: involvement of p38 mitogen-activated protein kinase, extracellular signal-regulated kinase 1/2 and Janus kinase-2 but not c-Jun NH2-terminal kinase 1/2 signalling pathways. Clin. Exp. Immunol.145(1), 162–172 (2006).
  • Suga M , IyonagaK, IchiyasuHet al. Clinical significance of MCP-1 levels in BALF and serum in patients with interstitial lung diseases. Eur. Respir. J.14(2), 376 (1999).
  • Moore BB , KolodsickJE, ThannickalVJet al. CCR2-mediated recruitment of fibrocytes to the alveolar space after fibrotic injury. Am. J. Pathol.166(3), 675–684 (2005).
  • Moore BB , MurrayL, DasAet al. The role of CCL12 in the recruitment of fibrocytes and lung fibrosis. Am. J. Respir. Cell Mol. Biol.35(2), 175–181 (2006).
  • Raghu G , MartinezFJ, BrownKKet al. CC-chemokine ligand 2 inhibition in idiopathic pulmonary fibrosis: a Phase II trial of carlumab. Eur. Respir. J.46(6), 1740–1750 (2015).
  • Horton M , SantopietroV, MathewLet al. Thalidomide for the treatment of cough in idiopathic pulmonary fibrosis: a randomized trial. Ann. Intern. Med.157(6), 398–406 (2012).
  • Raghu G , vanden Blink B, HamblinMJet al. Effect of recombinant human pentraxin 2 vs placebo on change in forced vital capacity in patients with idiopathic pulmonary fibrosis: a randomized clinical trial. JAMA319(22), 2299–2307 (2018).
  • Raghu G , vanden Blink B, HamblinMJet al. Long-term treatment with recombinant human pentraxin 2 protein in patients with idiopathic pulmonary fibrosis: an open-label extension study. Lancet Respir. Med.7(8), 657–664 (2019)
  • Parker JM , GlaspoleIN, LancasterLHet al. A Phase II randomized controlled study of tralokinumab in subjects with idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med.197(1), 94–103 (2018).
  • Raghu G , RicheldiL, CrestaniBet al. SAR156597 in idiopathic pulmonary fibrosis: a Phase II placebo-controlled study (DRI11772). Eur. Respir. J.52(6), 1801130 (2018).
  • Demedts M , BehrJ, BuhlRet al. High-dose acetylcysteine in idiopathic pulmonary fibrosis. N. Engl. J. Med.353(21), 2229–2242 (2005).
  • Behr J , DemedtsM, BuhlRet al. Lung function in idiopathic pulmonary fibrosis--extended analyses of the IFIGENIA trial. Respir. Res.10, 101 (2009).
  • Raghu G , AnstromKJ, KingTEJret al. Prednisone, azathioprine, and N-acetylcysteine for pulmonary fibrosis. N. Engl. J. Med.366(21), 1968–1977 (2012).
  • Martinez FJ , de AndradeJA, AnstromKJet al. Randomized trial of acetylcysteine in idiopathic pulmonary fibrosis. N. Engl. J. Med.370(22), 2093–2101 (2014).
  • Raghu G , BrownKK, BradfordWZet al. A placebo-controlled trial of interferon gamma-1b in patients with idiopathic pulmonary fibrosis. N. Engl. J. Med.350(2), 125–133 (2004).
  • King TE Jr , AlberaC, BradfordWZet al. Effect of interferon γ-1b on survival in patients with idiopathic pulmonary fibrosis (INSPIRE): a multicentre, randomised, placebo-controlled trial. Lancet374(9685), 222–228 (2009).
  • Maher TM , vander Aar EM, Vande Steen Oet al. Safety, tolerability, pharmacokinetics, and pharmacodynamics of GLPG1690, a novel autotaxin inhibitor, to treat idiopathic pulmonary fibrosis (FLORA): a Phase IIa randomised placebo-controlled trial. Lancet Respir. Med.6(8), 627–635 (2018).
  • Palmer SM , SnyderL, ToddJLet al. Randomized, double-blind, placebo-controlled, Phase II Trial of BMS-986020, a lysophosphatidic acid receptor antagonist for the treatment of idiopathic pulmonary fibrosis. Chest154(5), 1061–1069 (2018).
  • Averill F , AlbertsonTE, BaratzDMet al. A Phase IItrial of KD025 to assess efficacy, safety and tolerability in patients with idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med.197, A5927 (2018).
  • Raghu G , ScholandMB, de AndradeJet al. FG-3019 anti-connective tissue growth factor monoclonal antibody: results of an open-label clinical trial in idiopathic pulmonary fibrosis. Eur. Respir. J.47(5), 1481–1491 (2016).
  • Jl VDV , YeY, NolinJDet al. JNK inhibition reduces lung remodeling and pulmonary fibrotic systemic markers. Clin. Trans. Med.5(1), 36 (2016).
  • Hirani N , NicolL, MackinnonACet al. TD139, A novel inhaled galectin-3 inhibitor for the treatment of idiopathic pulmonary fibrosis (IPF). Results from the first in (IPF) patients study. QJM Monthly J. Assoc. Phys.109(Suppl. 1), S16–S16 (2016).
  • Lukey PT , HarrisonSA, YangSet al. A randomised, placebo-controlled study of omipalisib (PI3K/mTOR) in idiopathic pulmonary fibrosis. Eur. Respir. J.53(3), 1801992 (2019).
  • Malouf MA , HopkinsP, SnellGet al. An investigator-driven study of everolimus in surgical lung biopsy confirmed idiopathic pulmonary fibrosis. Respirology16(5), 776–783 (2011).
  • Noth I , AnstromKJ, CalvertSBet al. A placebo-controlled randomized trial of warfarin in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med.186(1), 88–95 (2012).
  • Justice JN , NambiarAM, TchkoniaTet al. Senolytics in idiopathic pulmonary fibrosis: results from a first-in-human, open-label, pilot study. EBioMedicine40, 554–563 (2019).
  • Raghu G , Million-RousseauR, MorgantiAet al. Macitentan for the treatment of idiopathic pulmonary fibrosis: the randomised controlled MUSIC trial. Eur. Respir. J.42(6), 1622–1632 (2013).
  • King TE , BehrJ, BrownKKet al. BUILD-1: a randomized placebo-controlled trial of bosentan in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med.177(1), 75–81 (2008).
  • King TE Jr , BrownKK, RaghuGet al. BUILD-3: a randomized, controlled trial of bosentan in idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med.184(1), 92–99 (2011).
  • Khalil N , ManganasH, RyersonCJet al. Phase II clinical trial of PBI-4050 in patients with idiopathic pulmonary fibrosis. Eur. Respir. J.53(3), 1800663–1800672 (2019).
  • Sime PJ , O’ReillyKM. Fibrosis of the lung and other tissues: new concepts in pathogenesis and treatment. Clin. Immunol.99(3), 308–319 (2001).
  • Franks ME , MacphersonGR, FiggWD. Thalidomide. Lancet363(9423), 1802–1811 (2004).
  • Singhal S , MehtaJ, DesikanRet al. Antitumor activity of thalidomide in refractory multiple myeloma. N. Engl. J. Med.341(21), 1565–1571 (1999).
  • Eisen T , BoshoffC, MakIet al. Continuous low dose Thalidomide: a Phase II study in advanced melanoma, renal cell, ovarian and breast cancer. Br. J. Cancer82(4), 812–817 (2000).
  • Figg WD , DahutW, DurayPet al. A randomized Phase II trial of thalidomide, an angiogenesis inhibitor, in patients with androgen-independent prostate cancer. Clin. Cancer Res.7(7), 1888–1893 (2001).
  • Ye Q , ChenB, TongZet al. Thalidomide reduces IL-18, IL-8 and TNF-α release from alveolar macrophages in interstitial lung disease. Eur. Respir. J.28(4), 824–831 (2006).
  • Horton MR , DanoffSK, LechtzinN. Thalidomide inhibits the intractable cough of idiopathic pulmonary fibrosis. Thorax63(8), 749 (2008).
  • Cox N , PillingD, GomerRH. Serum amyloid P: a systemic regulator of the innate immune response. J. Leukoc. Biol.96(5), 739–743 (2014).
  • Pilling D , RoifeD, WangMet al. Reduction of bleomycin-induced pulmonary fibrosis by serum amyloid P. J. Immunol.179(6), 4035–4044 (2007).
  • Pilling D , BuckleyCD, SalmonMet al. Inhibition of fibrocyte differentiation by serum amyloid P. J. Immunol.171(10), 5537 (2003).
  • Moreira AP , CavassaniKA, HullingerRet al. Serum amyloid P attenuates M2 macrophage activation and protects against fungal spore-induced allergic airway disease. J. Allergy Clin. Immunol.126(4), 712e7–721e7 (2010).
  • Murray LA , ChenQ, KramerMSet al. TGF-beta driven lung fibrosis is macrophage dependent and blocked by Serum amyloid P. Int. J. Biochem. Cell Biol.43(1), 154–162 (2011).
  • van den Blink B , DillinghMR, GinnsLCet al. Recombinant human pentraxin-2 therapy in patients with idiopathic pulmonary fibrosis: safety, pharmacokinetics and exploratory efficacy. Eur. Respir. J.47(3), 889–897 (2016).
  • Jakubzick C , ChoiES, JoshiBHet al. Therapeutic attenuation of pulmonary fibrosis via targeting of IL-4- and IL-13-responsive cells. J. Immunol.171(5), 2684–2693 (2003).
  • Rahman I , SkwarskaE, HenryMet al. Systemic and pulmonary oxidative stress in idiopathic pulmonary fibrosis. Free Radic. Biol. Med.27(1–2), 60–68 (1999).
  • Zafarullah M , LiWQ, SylvesterJet al. Molecular mechanisms of N -acetylcysteine actions. Cell. Mol. Life Sci.60(1), 6 (2003).
  • Ates B , AbrahamL, ErcalN. Antioxidant and free radical scavenging properties of N-acetylcysteine amide (NACA) and comparison with N-acetylcysteine (NAC). Free Radic. Res.42(4), 372–327 (2008).
  • Tomioka H , KuwataY, ImanakaKet al. A pilot study of aerosolized N‐acetylcysteine for idiopathic pulmonary fibrosis. Respirology10(4), 449–455 (2005).
  • Raghu G , RochwergB, ZhangYet al. An Official ATS/ERS/JRS/ALAT Clinical Practice Guideline: treatment of idiopathic pulmonary fibrosis. An Update of the 2011 Clinical Practice Guideline. Am. J. Respir. Crit. Care Med.192(2), e3–e19 (2015).
  • Spagnolo P , BonellaF, MaherTM. New guideline on treatment of idiopathic pulmonary fibrosis. Lancet Respir. Med.3(9), e31–e32 (2015).
  • Amara N , GovenD, ProstFet al. NOX4/NADPH oxidase expression is increased in pulmonary fibroblasts from patients with idiopathic pulmonary fibrosis and mediates TGF 1-induced fibroblast differentiation into myofibroblasts. Thorax65(8), 733–738 (2010).
  • Carnesecchi S , DeffertC, DonatiYet al. A key role for NOX4 in epithelial cell death during development of lung fibrosis. Antioxid. Redox Signal15(3), 607–619 (2011).
  • Laleu B , GagginiF, OrchardMet al. First in class, potent, and orally bioavailable NADPH oxidase isoform 4 (Nox4) inhibitors for the treatment of idiopathic pulmonary fibrosis. J. Med. Chem.53(21), 7715–7730 (2010).
  • Aoyama T , PaikYH, WatanabeSet al. Nicotinamide adenine dinucleotide phosphate oxidase in experimental liver fibrosis: GKT137831 as a novel potential therapeutic agent. Hepatology56(6), 2316–2327 (2012).
  • Hecker L , ChengJ, ThannickalVJ. Targeting NOX enzymes in pulmonary fibrosis. Cell. Mol. Life Sci.69(14), 2365–2371 (2012).
  • Altenhofer S , RadermacherKA, KleikersPWet al. Evolution of NADPH oxidase inhibitors: selectivity and mechanisms for target engagement. Antioxid. Redox Signal23(5), 406–427 (2015).
  • Jarman ER , KhambataVS, CopeCet al. An inhibitor of NADPH oxidase-4 attenuates established pulmonary fibrosis in a rodent disease model. Am. J. Respir. Cell Mol. Biol.50(1), 158–169 (2014).
  • Farkas L , GauldieJ, VoelkelNFet al. Pulmonary hypertension and idiopathic pulmonary fibrosis: a tale of angiogenesis, apoptosis, and growth factors. Am. J. Respir. Cell Mol. Biol.45(1), 1–15 (2011).
  • Green DE , MurphyTC, KangBYet al. The Nox4 inhibitor GKT137831 attenuates hypoxia-induced pulmonary vascular cell proliferation. Am. J. Respir. Cell Mol. Biol.47(5), 718–726 (2012).
  • Hengsawas Surasarang S , FlorovaG, KomissarovAAet al. Formulation for a novel inhaled peptide therapeutic for idiopathic pulmonary fibrosis. Drug Dev. Ind. Pharm.44(2), 184–198 (2017).
  • El Agha E , MoiseenkoA, KheirollahiVet al. Two-way conversion between lipogenic and myogenic fibroblastic phenotypes marks the progression and resolution of lung fibrosis. Cell Stem Cell20(2), 261e3–273e3 (2017).
  • Kheirollahi V , WasnickRM, BiasinVet al. Metformin induces lipogenic differentiation in myofibroblasts to reverse lung fibrosis. Nat. Commun.10(1), 2987 (2019).
  • Sato N , TakasakaN, YoshidaMet al. Metformin attenuates lung fibrosis development via NOX4 suppression. Respir. Res.17(1), 107 (2016).
  • Bogatkevich GS , Ludwicka-BradleyA, SilverRM. Dabigatran, a direct thrombin inhibitor, demonstrates antifibrotic effects on lung fibroblasts. Arthritis Rheum.60(11), 3455–3464 (2009).
  • Bogatkevich GS , Ludwicka-BradleyA, NietertPJet al. Antiinflammatory and antifibrotic effects of the oral direct thrombin inhibitor dabigatran etexilate in a murine model of interstitial lung disease. Arthritis Rheum.63(5), 1416–1425 (2011).
  • Chaudhary NI , RothGJ, HilbergFet al. Inhibition of PDGF, VEGF and FGF signalling attenuates fibrosis. Eur. Respir. J.29(5), 976–985 (2007).
  • Meng J , ZouY, HuCet al. Fluorofenidone attenuates bleomycin-induced pulmonary inflammation and fibrosis in mice via restoring caveolin 1 expression and inhibiting mitogen-activated protein kinase signaling pathway. Shock38(5), 567–573 (2012).
  • Chen J , LuMM, LiuBet al. Synthesis and structure-activity relationship of 5-substituent-2(1H)-pyridone derivatives as anti-fibrosis agents. Bioorg. Med. Chem. Lett.22(6), 2300–2302 (2012).
  • Wu L , LiuB, LiQet al. Design, synthesis and anti-fibrosis activity study of N(1)-substituted phenylhydroquinolinone derivatives. Molecules17(2), 1373–1387 (2012).
  • Schroder K , HertzogPJ, RavasiTet al. Interferon-γ: an overview of signals, mechanisms and functions. J. Leukoc. Biol.75(2), 163–189 (2004).
  • Horan GS , WoodS, OnaVet al. Partial inhibition of integrin α(v)β6 prevents pulmonary fibrosis without exacerbating inflammation. Am. J. Respir. Crit. Care Med.177(1), 56–65 (2008).
  • Anderson NA , CampbellIB, FallonBJet al. Synthesis and determination of absolute configuration of a non-peptidic α v β 6 integrin antagonist for the treatment of idiopathic pulmonary fibrosis. Org. Biomol. Chem.14(25), 5992–6009 (2016).
  • Tager AM , LaCameraP, SheaBSet al. The lysophosphatidic acid receptor LPA1 links pulmonary fibrosis to lung injury by mediating fibroblast recruitment and vascular leak. Nat. Med.14(1), 45–54 (2008).
  • Oikonomou N , MouratisMA, TzouvelekisAet al. Pulmonary autotaxin expression contributes to the pathogenesis of pulmonary fibrosis. Am. J. Respir. Cell Mol. Biol.47(5), 566–574 (2012).
  • Desroy N , HoussemanC, BockXet al. Discovery of 2-[[2-Ethyl-6-[4-[2-(3-hydroxyazetidin-1-yl)-2-oxoethyl]piperazin-1-yl]-8-methyli midazo[1,2-a]pyridin-3-yl]methylamino]-4-(4-fluorophenyl)thiazole-5-carbonitrile (GLPG1690), a first-in-class autotaxin inhibitor undergoing clinical evaluation for the treatment of idiopathic pulmonary fibrosis. J. Med. Chem.60(9), 3580–3590 (2017).
  • Swaney JS , ChapmanC, CorreaLDet al. A novel, orally active LPA(1) receptor antagonist inhibits lung fibrosis in the mouse bleomycin model. Br. J. Pharmacol.160(7), 1699–1713 (2010).
  • Knipe RS , TagerAM, LiaoJK. The Rho kinases: critical mediators of multiple profibrotic processes and rational targets for new therapies for pulmonary fibrosis. Pharmacol. Rev.67(1), 103–117 (2015).
  • Boerma M , FuQ, WangJet al. Comparative gene expression profiling in three primary human cell lines after treatment with a novel inhibitor of Rho kinase or atorvastatin. Blood Coagul. Fibrinolysis19(7), 709–718 (2008).
  • Mageto Y , FlahertyK, BrownKet al. Safety and tolerability of human monoclonal antibody FG-3019, anti-connective tissue growth factor, in patients with idiopathic pulmonary fibrosis. Chest126(4), 773Sa (2004).
  • Rothberg KG , HeuserJE, DonzellWCet al. Caveolin, a protein component of caveolae membrane coats. Cell68(4), 673–682 (1992).
  • Mineo C , JamesGL, SmartEJet al. Localization of epidermal growth factor-stimulated Ras/Raf-1 interaction to caveolae membrane. J. Biol. Chem.271(20), 11930–11935 (1996).
  • Liu P , YingY, KoYGet al. Localization of platelet-derived growth factor-stimulated phosphorylation cascade to caveolae. J. Biol. Chem.271(17), 10299–10303 (1996).
  • Wang XM , ZhangY, KimHPet al. Caveolin-1: a critical regulator of lung fibrosis in idiopathic pulmonary fibrosis. J. Exp. Med.203(13), 2895–2906 (2006).
  • Okamoto T , SchlegelA, SchererPEet al. Caveolins, a family of scaffolding proteins for organizing ‘preassembled signaling complexes’ at the plasma membrane. J. Biol. Chem.273(10), 5419–5422 (1998).
  • Cohen AW , HnaskoR, SchubertWet al. Role of caveolae and caveolins in health and disease. Physiol. Rev.84(4), 1341–1379 (2004).
  • Tourkina E , RichardM, GöözPet al. Antifibrotic properties of caveolin-1 scaffolding domain in vitro and in vivo. Am. J. Physiol. Lung Cell Mol. Physiol.294(5), 843–861 (2008).
  • Yoshida K , KuwanoK, HagimotoNet al. MAP kinase activation and apoptosis in lung tissues from patients with idiopathic pulmonary fibrosis. J. Pathol.198(3), 388–396 (2002).
  • Plantevin KV , NadolnyL, DelgadoMet al. Discovery of CC-930, an orally active anti-fibrotic JNK inhibitor. Bioorg. Med. Chem. Lett.22(3), 1433–1438 (2012).
  • Ye Y , KongL, AssafMet al. Safety, tolerability, and pharmacokinetics of ascending single oral doses of CC-930, a novel JNK inhibitor in healthy subjects. Clin. Pharmacol. Ther.89 (2011).
  • Nishi Y , SanoH, KawashimaTet al. Role of galectin-3 in human pulmonary fibrosis. Allergol. Int.56(1), 57–65 (2007).
  • Mackinnon AC , GibbonsMA, FarnworthSLet al. Regulation of transforming growth factor-β1-driven lung fibrosis by galectin-3. Am. J. Respir. Crit. Care Med.185(5), 537–546 (2012).
  • Hsieh TJ , LinHY, TuZet al. Dual thio-digalactoside-binding modes of human galectins as the structural basis for the design of potent and selective inhibitors. Sci. Rep.6, 29457 (2016).
  • Garcia-Sancho Figueroa MC , CarrilloG, Perez-PadillaRet al. Risk factors for idiopathic pulmonary fibrosis in a Mexican population. A case-control study. Respir. Med.104(2), 305–309 (2010).
  • Genovese T , CuzzocreaS, DiPaola Ret al. Effect of rosiglitazone and 15-deoxy-Delta12,14-prostaglandin J2 on bleomycin-induced lung injury. Eur. Respir. J.25(2), 225–234 (2005).
  • Burgess HA , DaughertyLE, ThatcherTHet al. PPAR-γ agonists inhibit TGF-β induced pulmonary myofibroblast differentiation and collagen production: implications for therapy of lung fibrosis. Am. J. Physiol. Lung Cell Mol. Physiol.288(6), L1146–L1153 (2005).
  • Ballester B , MilaraJ, CortijoJ. Idiopathic pulmonary fibrosis and lung cancer: mechanisms and molecular targets. Int.J. Mol. Sci.20(3), 593 (2019).
  • Mayer IA , ArteagaCL. The PI3K/AKT pathway as a target for cancer treatment. Annu. Rev. Med.67(1), 11 (2015).
  • White ES , AtraszRG, HuBet al. Negative regulation of myofibroblast differentiation by PTEN (phosphatase and tensin homolog deleted on chromosome 10). Am. J. Respir. Crit. Care Med.173(1), 112 (2006).
  • Xia H , KhalilW, KahmJet al. Pathologic caveolin-1 regulation of PTEN in idiopathic pulmonary fibrosis. Am. J. Pathol.176(6), 2626–2637 (2010).
  • Lu Y , AzadN, WangLet al. Phosphatidylinositol-3-kinase/akt regulates bleomycin-induced fibroblast proliferation and collagen production. Am. J. Respir. Cell Mol. Biol.42(4), 432–441 (2010).
  • Conte E , FrucianoM, FagoneEet al. Inhibition of PI3K prevents the proliferation and differentiation of human lung fibroblasts into myofibroblasts: the role of class I P110 isoforms. PLoS ONE6(10), e24663 (2011).
  • Conte E , GiliE, FrucianoMet al. PI3K p110gamma overexpression in idiopathic pulmonary fibrosis lung tissue and fibroblast cells: in vitro effects of its inhibition. Lab. Invest.93(5), 566–576 (2013).
  • Hardie WD. Conditional expression of transforming growth factor-alpha in adult mouse lung causes pulmonary fibrosis. Am. J. Physiol. Lung Cell Mol. Physiol.286(4), 741–749 (2003).
  • Le Cras TD , KorfhagenTR, DavidsonCet al. Inhibition of PI3K by PX-866 prevents transforming growth factor-alpha-induced pulmonary fibrosis. Am. J. Pathol.176(2), 679–686 (2010).
  • Knight SD , AdamsND, BurgessJLet al. Discovery of GSK2126458, a highly potent inhibitor of PI3K and the mammalian target of rapamycin. ACS Med. Chem. Lett.1(1), 39–43 (2010).
  • Mercer PF , WoodcockHV, EleyJDet al. Exploration of a potent PI3 kinase/mTOR inhibitor as a novel anti-fibrotic agent in IPF. Thorax71(8), 701–711 (2016).
  • Hubbard RB , SmithC, LeJeune Iet al. The association between idiopathic pulmonary fibrosis and vascular disease: a population-based study. Am. J. Respir. Crit. Care Med.178(12), 1257–1261 (2008).
  • Sode BF , DahlM, NielsenSFet al. Venous thromboembolism and risk of idiopathic interstitial pneumonia. Am. J. Respir. Crit. Care Med.181(10), 1085–1092 (2010).
  • Sprunger DB , OlsonAL, HuieTJet al. Pulmonary fibrosis is associated with an elevated risk of thromboembolic disease. Eur. Respir. J.39(1), 125–132 (2012).
  • Kotani I , SatoA, HayakawaHet al. Increased procoagulant and antifibrinolytic activities in the lungs with idiopathic pulmonary fibrosis. Thromb. Res.77(6), 493 (1995).
  • Fujii M , HayakawaH, UranoT. Relevance of tissue factor and tissue factor pathway inhibitor for hypercoagulable state in the lungs of patients with idiopathic pulmonary fibrosis. Thromb. Res.99(2), 111–117 (2000).
  • Navaratnam V , FogartyAW, McKeeverTet al. Presence of a prothrombotic state in people with idiopathic pulmonary fibrosis: a population-based case-control study. Thorax69(3), 207–215 (2014).
  • Holbrook AM , PereiraJA, LabirisRet al. Systematic overview of warfarin and its drug and food interactions. Arch. Intern. Med.165(10), 1095–1106 (2005).
  • Kubo H , NakayamaK, YanaiMet al. Anticoagulant therapy for idiopathic pulmonary fibrosis. Chest128(3), 1475–1482 (2005).
  • Kreuter M , WijsenbeekMS, VasakovaMet al. Unfavourable effects of medically indicated oral anticoagulants on survival in idiopathic pulmonary fibrosis. Eur. Respir. J.47(6), 1776–1784 (2016).
  • Bogatkevich GS , TourkinaE, SilverRMet al. Thrombin differentiates normal lung fibroblasts to a myofibroblast phenotype via the proteolytically activated receptor-1 and a protein kinase C-dependent pathway. J. Biol. Chem.276(48), 45184–45192 (2001).
  • Howell DC , LaurentGJ, ChambersRC. Role of thrombin and its major cellular receptor, protease-activated receptor-1, in pulmonary fibrosis. Biochem. Soc. Trans.30(2), 211 (2002).
  • Shea BS , ProbstCK, BrazeePLet al. Uncoupling of the profibrotic and hemostatic effects of thrombin in lung fibrosis. JCI Insight2(9), 86608 (2017).
  • Sorbera LA , BozzoJ, CastañerJ. Dabigatran/Dabigatran etexilate. Drugs of the Future30(9), 877 (2005).
  • van Ryn J , StangierJ, HaertterSet al. Dabigatran etexilate--a novel, reversible, oral direct thrombin inhibitor: interpretation of coagulation assays and reversal of anticoagulant activity. Thromb. Haemost.103(6), 1116–1127 (2010).
  • Blommel ML , BlommelAL. Dabigatran etexilate: A novel oral direct thrombin inhibitor. Am. J. Health Syst. Pharm.68(16), 1506–1519 (2011).
  • Scotton CJ , KrupiczojcMA, KönigshoffMet al. Increased local expression of coagulation factor X contributes to the fibrotic response in human and murine lung injury. J. Clin. Invest.119(9), 2550–2563 (2009).
  • Blanc-Brude OP , ChambersRC, LeoniPet al. Factor Xa is a fibroblast mitogen via binding to effector-cell protease receptor-1 and autocrine release of PDGF. Am. J. Physiol. Cell Physiol.281(2), C681–C689 (2001).
  • Blanc-Brude OP , ArcherF, LeoniPet al. Factor Xa stimulates fibroblast procollagen production, proliferation, and calcium signaling via PAR1 activation. Exp. Cell Res.304(1), 16–27 (2005).
  • Hong IS , CoeHV, CatanzaroLM. Macitentan for the treatment of pulmonary arterial hypertension. Ann. Pharmacother.48(4), 538–547 (2014).
  • Gagnon L , LeducM, ThibodeauJFet al. A Newly Discovered Antifibrotic Pathway Regulated by Two Fatty Acid Receptors: GPR40 and GPR84. Am. J. Pathol.188(5), 1132–1148 (2018).
  • Coward WR , SainiG, JenkinsG. The pathogenesis of idiopathic pulmonary fibrosis. Ther. Adv. Respir. Dis.4(6), 367–388 (2010).
  • Allen JT , SpiteriMA. Growth factors in idiopathic pulmonary fibrosis: relative roles. Respir. Res.3, 13 (2002).
  • Roth GJ , BinderR, ColbatzkyFet al. Nintedanib: from discovery to the clinic. J. Med. Chem.58(3), 1053–1063 (2015).
  • Richeldi L , CostabelU, SelmanMet al. Efficacy of a tyrosine kinase inhibitor in idiopathic pulmonary fibrosis. N. Engl. J. Med.365(12), 1079–1087 (2011).
  • Richeldi L , du BoisRM, RaghuGet al. Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N. Engl. J. Med.370(22), 2071–2082 (2014).
  • Richeldi L , CottinV, FlahertyKRet al. Design of the INPULSIS trials: two Phase III trials of nintedanib in patients with idiopathic pulmonary fibrosis. Respir. Med.108(7), 1023–1030 (2014).
  • Corte T , BonellaF, CrestaniBet al. Safety, tolerability and appropriate use of nintedanib in idiopathic pulmonary fibrosis. Respir. Res.16(1), 116 (2015).
  • Misra HP , RabideauC. Pirfenidone inhibits NADPH-dependent microsomal lipid peroxidation and scavenges hydroxyl radicals. Mol. Cell. Biochem.204(1/2), 119–126 (2000).
  • Iyer SN , HydeDM, GiriSN. Anti-inflammatory effect of pirfenidone in the bleomycin-hamster model of lung inflammation. Inflammation24(5), 477–491 (2000).
  • Nakazato H , OkuH, YamaneSet al. A novel anti-fibrotic agent pirfenidone suppresses tumor necrosis factor-α at the translational level. Eur. J. Pharmacol.446(1–3), 177–185 (2002).
  • Hostettler K , ZhongJ, TammMet al. Effect of pirfenidone on TGF-β-induced pro-fibrotic effects in primary human lung cells derived from patients with idiopathic pulmonary fibrosis. Eur. Respir. J.44(Suppl. 58), 763 (2014).
  • Azuma A , NukiwaT, TsuboiEet al. Double-blind, placebo-controlled trial of pirfenidone in patients with idiopathic pulmonary fibrosis. Am. J. Respir. Crit. Care Med.171(9), 1040–1047 (2005).
  • Taniguchi H , EbinaM, KondohYet al. Pirfenidone in idiopathic pulmonary fibrosis. Eur. Respir. J.35(4), 821–829 (2010).
  • Noble PW , AlberaC, BradfordWZet al. Pirfenidone in patients with idiopathic pulmonary fibrosis (CAPACITY): two randomised trials. Lancet377(9779), 1760–1769 (2011).
  • King TE , BradfordWZ, CastrobernardiniSet al. A Phase III trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N. Engl. J. Med.370(22), 2083–2092 (2014).
  • Liu J , SongC, XiaoQet al. Fluorofenidone attenuates TGF-β1-induced lung fibroblast activation via restoring the expression of caveolin-1. Shock43(2), 201–207 (2015).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.