279
Views
0
CrossRef citations to date
0
Altmetric
Review

Pyrrolo[2,1-a]isoquinoline Scaffold in Drug Discovery: Advances in Synthesis and Medicinal Chemistry

, , &
Pages 2735-2755 | Received 30 Apr 2019, Accepted 08 Aug 2019, Published online: 26 Sep 2019

References

  • Pässler U , KnölkerHJ. The pyrrolo[2,1-a]isoquinoline alkaloids. In: Alkaloids (Volume 70).KnölkerHJ ( Ed.). Academic Press, London, UK, 79–151 (2011).
  • Zhang Q , TuG, ZhaoY, ChengT. Novel bioactive isoquinoline alkaloids from Carduus crispus. Tetrahedron58(34), 6795–6798 (2002).
  • Wang RF , YangXW, MaCM, CaiSQ, LiJN, ShoyamaY. A bioactive alkaloid from the flowers of Trollius chinens. Heterocycles63(6), 1443–1448 (2004).
  • Yang Z , LiuC, XiangL, ZhengY. Phenolic alkaloids as a new class of antioxidants in Portulaca oleracea. Phyther. Res.23(7), 1032–1035 (2009).
  • Fukuda T , IshibashiF, IwaoM. Synthesis and biological activity of lamellarin alkaloids: an overview. Heterocycles83(3), 491–529 (2011).
  • Marco E , LaineW, TardyCet al. Molecular determinants of topoisomerase I poisoning by lamellarins: comparison with camptothecin and structure–activity relationships. J. Med. Chem.48(11), 3796–3807 (2005).
  • Ohta T , FukudaT, IshibashiF, IwaoM. Design and synthesis of lamellarin D analogues targeting topoisomerase I. J. Org. Chem.74(21), 8143–8153 (2009).
  • Bailly C . Anticancer properties of lamellarins. Mar. Drugs.13(3), 1105–1123 (2015).
  • Colligs V , HansenSP, ImbriDet al. Synthesis and biological evaluation of a D-ring-contracted analogue of lamellarin D. Bioorganic Med. Chem.25(22), 6137–6148 (2017).
  • Yoshida K , ItoyamaR, YamahiraMet al. Synthesis, resolution, and biological evaluation of atropisomeric (aR)- and (aS)-16-methyllamellarins N: unique effects of the axial chirality on the selectivity of protein kinases inhibition. J. Med. Chem.56(18), 7289–7301 (2013).
  • Fukuda T , UmekiT, TokushimaKet al. Design, synthesis, and evaluation of A-ring-modified lamellarin N analogues as noncovalent inhibitors of the EGFR T790M/L858R mutant. Bioorganic Med. Chem.25(24), 6563–6580 (2017).
  • Ballot C , KluzaJ, MartoriatiAet al. Essential role of mitochondria in apoptosis of cancer cells induced by the marine alkaloid lamellarin D. Mol. Cancer Ther.8(12), 3307–3317 (2009).
  • Reddy MVR , RaoMR, RhodesDet al. Lamellarin α 20-sulfate, an inhibitor of HIV-1 integrase active against HIV-1 virus in cell culture. J. Med. Chem.42(11), 1901–1907 (1999).
  • Quesada AR , GarcíaGrávalos MD, FernándezPuentes JL. Polyaromatic alkaloids from marine invertebrates as cytotoxic compounds and inhibitors of multidrug resistance caused by P-glycoprotein. Br. J. Cancer74(5), 677–682 (1996).
  • Fukuda T , AnzaiM, IwaoM. Regioselective synthesis of 2,4-differentially arylated pyrroles and its application to the synthesis of lamellarins. Heterocycles93, 593–612 (2016).
  • Colligs VC , DialerC, OpatzT. Synthesis of lamellarin G trimethyl ether by von Miller–Plöchl-type cyclocondensation. Eur. J. Org. Chem.2018(30), 4064–4070 (2018).
  • Shirley HJ , KoyioniM, MuncanF, DonohoeTJ. Synthesis of lamellarin alkaloids using orthoester-masked α-keto acids. Chem. Sci.10(15), 4334–4338 (2019).
  • Olsen CA , PareraN, AlbericioF, ÁlvarezM. 5,6-Dihydropyrrolo[2,1-b]isoquinolines as scaffolds for synthesis of lamellarin analogues. Tetrahedron Lett.46(12), 2041–2044 (2005).
  • Reyes-Gutiérrez PE , CamachoJR, Ramírez-ApanMT, OsornioYM, MartínezR. Synthesis of 5,6-dihydropyrrolo[2,1-a]isoquinolines featuring an intramolecular radical-oxidative cyclization of polysubstituted pyrroles, and evaluation of their cytotoxic activity. Org. Biomol. Chem.8(19), 4374–4382 (2010).
  • Bayer Corporation . WO03051877 A1 (2003). https://patents.google.com/patent/WO2003051877A1.
  • Bayer Aktiengesellschaft . WO0248144 A1 (2002).https://patents.google.com/patent/WO2002048144A1.
  • Sun LL , LiaoZY, TangRY, DengCL, ZhangXG. Palladium and copper cocatalyzed tandem N-H/C-H bond functionalization: synthesis of CF3-containing indolo- and pyrrolo[2,1-a]isoquinolines. J. Org. Chem.77(6), 2850–2856 (2012).
  • Wiest JM , PöthigA, BachT. Pyrrole as a directing group: regioselective Pd(II)-catalyzed alkylation and benzylation at the benzene core of 2-phenylpyrroles. Org. Lett.18(4), 852–855 (2016).
  • Leonardi M , VillacampaM, MenéndezJC. Mild and general synthesis of pyrrolo[2,1-a]isoquinolines and related polyheterocyclic frameworks from pyrrole precursors derived from a mechanochemical multicomponent reaction. J. Org. Chem.82(5), 2570–2578 (2017).
  • Coya E , SotomayorN, LeteE. Intramolecular direct arylation and heck reactions in the formation of medium-sized rings: selective synthesis of fused indolizine, pyrroloazepine and pyrroloazocine systems. Adv. Synth. Catal.356(8), 1853–1865 (2014).
  • Poelma SO , BurnettGL, DiscekiciEHet al. Chemoselective radical dehalogenation and C-C bond formation on aryl halide substrates using organic photoredox catalysts. J. Org. Chem.81(16), 7155–7160 (2016).
  • Othman RB , AffaniR, TranchantMJ, AntoniottiS, DallaV, DuñachE. N-acyliminium ion chemistry: highly efficient and versatile carbon-carbon bond formation by nucleophilic substitution of hydroxy groups catalyzed by Sn(NTf2)4. Angew. Chem. Int. Ed.49(4), 776–780 (2010).
  • Jebali K , PlanchatA, AmriH, Mathé-AllainmatM, LebretonJ. A short and efficient approach to pyrrolo[2,1-a]isoquinoline and pyrrolo[2,1-a]benzazepine derivatives. Synthesis48(10), 1502–1517 (2016).
  • Selvakumar J , MangalarajS, AchariKMM, MukundK, RamanathanCR. Triflic acid mediated cyclization of unsymmetrical N-phenethyl- and N-(3-indolylethyl)succinimides: regio- and diastereoselective synthesis of substituted pyrroloisoquinolinones and indolizino-indolones. Synthesis49(5), 1053–1064 (2017).
  • Basavaiah D , LingaiahB, ReddyGC, SahuBC. Baylis–Hillman acetates in synthesis: copper(I)/tert-butyl hydroperoxide promoted one-pot oxidative intramolecular cyclization protocol for the preparation of pyrrole-fused compounds and the formal synthesis of (±)-crispine A. Eur. J. Org. Chem.2016(14), 2398–2403 (2016).
  • Deb I , SeidelD. Retro–Claisen condensation versus pyrrole formation in reactions of amines and 1,3-diketones. Tetrahedron Lett.51(22), 2945–2947 (2010).
  • Tan WW , YoshikaiN. Copper-catalyzed condensation of imines and α-diazo-β-dicarbonyl compounds: modular and regiocontrolled synthesis of multisubstituted pyrroles. Chem. Sci.6(11), 6448–6455 (2015).
  • Imbri D , TauberJ, OpatzT. A high-yielding modular access to the lamellarins: synthesis of lamellarin G trimethyl ether, lamellarin η and dihydrolamellarin η. Chem. A Eur. J.19(45), 15080–15083 (2013).
  • Yang Z , LuN, WeiZet al. Base-promoted intermolecular cyclization of substituted 3-aryl(heteroaryl)-3-chloroacrylaldehydes and tetrahydroisoquinolines: an approach to access pyrrolo[2,1- a]isoquinolines. J. Org. Chem.81(23), 11950–11955 (2016).
  • Punirun T , SoorukramD, KuhakarnC, ReutrakulV, PohmakotrM. Oxidative difluoromethylation of tetrahydroisoquinolines using TMSCF2SPh: synthesis of fluorinated pyrrolo[2,1-a]isoquinolines and benzo[a]quinolizidines. J. Org. Chem.83(2), 765–782 (2018).
  • Voskressensky LG , ListratovaAV, BolshovAV, BizhkoOV, BorisovaTN, VarlamovAV. A new approach towards the synthesis of pyrrolo [2,1-a] isoquinolines. Tetrahedron Lett.51(5), 840–842 (2010).
  • Voskressensky LG , BorisovaTN, MatveevaMDet al. A novel multi-component approach to the synthesis of pyrrolo[2,1-a] isoquinoline derivatives. RSC Adv.6(78), 74068–74071 (2016).
  • Voskressensky LG , BorisovaTN, MatveevaMDet al. A facile synthesis of 1-oxo-pyrrolo[2,1-a]isoquinolines. Tetrahedron Lett.58(9), 877–879 (2017).
  • Matveeva MD , BorisovaTN, TitovAAet al. Domino reactions of 1-aroyl-3,4-dihydroisoquinolines with α,β-unsaturated aldehydes. Synthesis49(23), 5251–5257 (2017).
  • Matveeva MD , GolovanovA, BorisovaTN, TitovA. Domino reactions of vinyl ethynyl ketones with 1-aryl-3, 4-dihydroisoquinolines – search for selectivity. Mol. Catal.461, 67–72 (2018).
  • Knölker HJ , AgarwalS. Total synthesis of the antitumor active pyrrolo[2,1-a]isoquinoline alkaloid (±)-crispine a. Tetrahedron Lett.46(7), 1173–1175 (2005).
  • Agarwal S , KataevaO, SchmidtU, KnölkerHJ. Silver(i)-promoted oxidative cyclisation to pyrrolo[2,1-a]isoquinolines and application to the synthesis of (±)-crispine A. RSC Adv.3(4), 1089–1096 (2013).
  • Chen J , XuQ, LiaoW. Metal-free intramolecular carbocyanation of alkenes: catalytic stereoselective construction of pyrrolo[2,1-a]isoquinolines with multiple substituents. Chemistry20(43), 13876–13880 (2014).
  • Qin TY , ChengL, Ho-CholJ, ZhangSXA, LiaoWW. Facile synthesis of multifunctional pyrrolo[2,1-a]isoquinolin-3(2 H)-ones via sulfa-Michael-triggered one-pot reactions. Synthesis48(3), 357–364 (2016).
  • Liu W , DuST, WangSY, LiaoWW. Controllable diastereodivergent synthesis of pyrrolo[2,1-a]isoquinolines via catalytic intramolecular acylsulfenylation of activated alkenes. J. Org. Chem.82(9), 4829–4839 (2017).
  • Caira MR , PopaMM, DraghiciC, BarbuL, DumitrescuD, DumitrascuF. 7,8,9,10-Tetrahydropyrrolo[2,1-a]isoquinolines in the search for new indolizine derivatives. Tetrahedron Lett.55(41), 5635–5638 (2014).
  • Dumitrascu F , GeorgescuE, GeorgescuF, PopaMM, DumitrescuD. Synthesis of pyrrolo[2,1-a]isoquinolines by multicomponent 1,3-dipolar cycloaddition. Molecules18(3), 2635–2645 (2013).
  • Hashemi SA , KhaliliG. Regioselective synthesis of indolizines, pyrrolo[2,1-a]isoquinolines, and quinolines. Synth. Commun.45(21), 2491–2497 (2015).
  • Shi F , ZhangY, LuZet al. Transition-metal-free synthesis of indolizines from electron-deficient alkenes via one-pot reaction using TEMPO as an oxidant. Synthesis48(3), 413–420 (2016).
  • Nelina-Nemtseva JI , GulevskayaAV, PozharskiiAF, NguyenHTL, FilatovaEA. 1,3-dipolar cycloaddition of azinium ylides to alkynyl hetarenes: a synthetic route to indolizine and pyrrolo[2,1-a]isoquinoline based heterobiaryls. Tetrahedron72(18), 2327–2335 (2016).
  • Muthusaravanan S , PerumalS, YogeeswariP, SriramD. Facile three-component domino reactions in the regioselective synthesis and antimycobacterial evaluation of novel indolizines and pyrrolo[2,1-a] isoquinolines. Tetrahedron Lett.51(49), 6439–6443 (2010).
  • Han Y , HouH, FuQ, YanCG. One-pot two-step tandem reactions for selective synthesis of pyrrolo[2,1-a]isoquinolines and dihydro-, tetrahydro-derivatives. Tetrahedron67(12), 2313–2322 (2011).
  • An J , YangQQ, WangQ, XiaoWJ. Direct synthesis of pyrrolo[2,1-a]isoquinolines by 1,3-dipolar cycloaddition of stabilized isoquinolinium N-ylides with vinyl sulfonium salts. Tetrahedron Lett.54(29), 3834–3837 (2013).
  • Dawood KM , ElaminMB, FaragAM. Microwave-assisted synthesis of arylated pyrrolo[2,1-a]isoquinoline derivatives via sequential [3+2] cycloadditions and Suzuky-Miyaura cross-couplings in aqueous medium. J. Heterocycl. Chem.53(6), 1928–1934 (2016).
  • Yavari I , GhafouriK, NaeimabadiM, HalvagarMR A synthesis of functionalized 2-indolizin-3-yl-1,3-benzothiazoles from 1-(1,3-benzothiazol-2-ylmethyl)pyridinium iodide and acetylenic esters. Synlett.29(2), 243–245 (2018).
  • Yavari I , NaeimabadiM. Synthesis of 3-(quinolin-2-yl)indolizines through iodine-mediated sp3 C–H functionalization of azaarenes. Synth. Commun.48(6), 632–637 (2018).
  • Mondal S , MaityA, PairaRet al. Efficient synthesis of novel tetrahydropyrrolo[30,40:3,4]pyrrolo[2,1-a] isoquinoline derivatives via a simple and convenient MCR in aqueous micellar system. Tetrahedron Lett.53(46), 6288–6291 (2012).
  • Yu C , ZhangY, ZhangS, LiH, WangW. Cu(ii) catalyzed oxidation-[3+2] cycloaddition-aromatization cascade: efficient synthesis of pyrrolo [2,1-a] isoquinolines. Chem. Commun.47(3), 1036–1038 (2011).
  • Ram C , SivamaniS, MichaPremkumar T, HariramV. Computational study of leading edge jet impingement cooling with a conical converging hole for blade cooling. ARPN J. Eng. Appl. Sci.12(22), 6397–6406 (2017).
  • Huang HM , LiYJ, YeQet al. Iodine-catalyzed 1,3-dipolar cycloaddition/oxidation/aromatization cascade with hydrogen peroxide as the terminal oxidant: general route to pyrrolo[2,1- a]isoquinolines. J. Org. Chem.79(3), 1084–1092 (2014).
  • Huang HM , HuangF, LiYJet al. A general, simple and green process to access pyrrolo[2,1-a]isoquinolines using a KI/TBHP catalytic system. RSC Adv.4(52), 27250–27258 (2014).
  • Nekkanti S , KumarNP, SharmaPet al. TBAI/TBHP-catalyzed [3 + 2]cycloaddition/oxidation/aromatization cascade and online ESI-MS mechanistic studies: synthesis of pyrrolo[2,1-a]isoquinolines and indolizino[8,7-b]indoles. RSC Adv.6(4), 2671–2677 (2016).
  • Zou YQ , LuLQ, FuLet al. Visible-light-induced oxidation/[3+2] cycloaddition/oxidative aromatization sequence: a photocatalytic strategy to construct pyrrolo[2,1-a]isoquinolines. Angew. Chem. Int. Ed.50(31), 7171–7175 (2011).
  • Huang L , ZhaoJ. C60-Bodipy dyad triplet photosensitizers as organic photocatalysts for photocatalytic tandem oxidation/[3+2] cycloaddition reactions to prepare pyrrolo[2,1-a]isoquinoline. Chem. Commun.49(36), 3751–3753 (2013).
  • Guo S , TaoR, ZhaoJ. Photoredox catalytic organic reactions promoted with broadband visible light-absorbing bodipy-iodo-aza-bodipy triad photocatalyst. RSC Adv.4(68), 36131–36139 (2014).
  • Vila C , LauJ, RuepingM. Visible-light photoredox catalyzed synthesis of pyrroloisoquinolines via organocatalytic oxidation/[3+2] cycloaddition/oxidative aromatization reaction cascade with Rose Bengal. Beilstein J. Org. Chem.10, 1233–1238 (2014).
  • Fujiya A , TanakaM, YamaguchiE, TadaN, ItohA. Sequential photo-oxidative [3+2] cycloaddition/oxidative aromatization reactions for the synthesis of pyrrolo[2,1-a]isoquinolines using molecular oxygen as the terminal oxidant. J. Org. Chem.81(16), 7262–7270 (2016).
  • Quan Y , LiQY, ZhangQet al. A diiodo-BODIPY postmodified metal-organic framework for efficient heterogeneous organo-photocatalysis. RSC Adv.6(29), 23995–23999 (2016).
  • Kakhki S , ShahosseiniS, ZarghiA. Design, synthesis and cytotoxicity evaluation of new 2-aryl-5, 6-dihydropyrrolo[2,1-a]isoquinoline derivatives as topoisomerase inhibitors. Iran. J. Pharm. Res.13(Suppl.), 71–77 (2014).
  • Chávez-Santos RM , Reyes-GutiérrezPE, Torres-OchoaRO, Ramírez-ApanMT, MartínezR. 5,6-Dihydropyrrolo[2,1-a]isoquinolines as alternative of new drugs with cytotoxic activity. Chem. Pharm. Bull.65(10), 973–981 (2017).
  • Nevskaya AA , MatveevaMD, BorisovaTNet al. A new class of 1-aryl-5,6-dihydropyrrolo[2,1-a]isoquinoline derivatives as reversers of P-glycoprotein-mediated multidrug resistance in tumor cells. ChemMedChem13(15), 1588–1596 (2018).
  • Kakhki S , ShahosseiniS, ZarghiA. Design and synthesis of pyrrolo [2,1-a] isoquinoline-based derivatives as new cytotoxic agents. Iran J. Pharm. Res.15, 743–751 (2016).
  • Su TL , LeeTC, KakadiyaR. The development of bis(hydroxymethyl)pyrrole analogs as bifunctional DNA cross-linking agents and their chemotherapeutic potential. Eur. J. Med. Chem.69, 609–621 (2013).
  • Moreno L , PárragaJ, GalánA, CabedoN, PrimoJ, CortesD. Synthesis of new antimicrobial pyrrolo[2,1-a]isoquinolin-3-ones. Bioorganic Med. Chem.20(22), 6589–6597 (2012).
  • Wu CC , WangWY, KuoRY, ChangFR, WuYC. Antiplatelet effects of KW-7, a new inhibitor of cyclic nucleotide phosphodiesterases. Eur. J. Pharmacol.483(2–3), 187–194 (2004).
  • Hwang TL , WuYC, YehSH, KuoRY. Suppression of respiratory burst in human neutrophils by new synthetic pyrrolo-benzylisoquinolines. Biochem. Pharmacol.69(1), 65–71 (2005).
  • Maryanoff BE , VaughtJL, ShankRP, McComseyDF, CostanzoMJ, NorteySO. Pyrroloisoquinoline antidepressants. 3. A focus on serotonin. J. Med. Chem.33(10), 2793–2797 (1990).
  • Hesse S , BrustP, MädingPet al. Imaging of the brain serotonin transporters (SERT) with18F-labelled fluoromethyl-McN5652 and PET in humans. Eur. J. Nucl. Med. Mol. Imaging39(6), 1001–1011 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.