2,324
Views
1
CrossRef citations to date
0
Altmetric
Review

Inhibiting DosRST As a New Approach to Tuberculosis Therapy

& ORCID Icon
Pages 457-467 | Received 08 Sep 2019, Accepted 13 Dec 2019, Published online: 13 Feb 2020

References

  • Russell DG . Who puts the tubercle in tuberculosis?Nat. Rev. Microbiol.5(1), 39–47 (2007).
  • Russell DG . Mycobacterium tuberculosis and the intimate discourse of a chronic infection. Immunol. Rev.240(1), 252–268 (2011).
  • Rohde K , YatesRM , PurdyGE , RussellDG. Mycobacterium tuberculosis and the environment within the phagosome. Immunol. Rev.219(1) 37–54 (2007).
  • Bretl DJ , DemetriadouC , ZahrtTC. Adaptation to environmental stimuli within the host: two-component signal transduction systems of Mycobacterium tuberculosis.Microbiol. Mol. Biol. Rev.75(4), 566–582 (2011).
  • Gao R , StockAM. Biological insights from structures of two-component proteins. Annu. Rev. Microbiol.63, 133–154 (2009).
  • Zahrt TC , DereticV. An essential two-component signal transduction system in Mycobacterium tuberculosis. J. Bacteriol.182(13), 3832–3838 (2000).
  • Haydel SE , MalhotraV , CornelisonGL , Clark-CurtissJE. The prrAB two-component system is essential for Mycobacterium tuberculosis viability and is induced under nitrogen-limiting conditions. J. Bacteriol.194(2), 354–361 (2012).
  • Dejesus MA , GerrickER , XuWet al. Comprehensive essentiality analysis of the Mycobacterium tuberculosis genome via saturating transposon mutagenesis. mBio8(1), e02133 (2017).
  • Rasko DA , SperandioV. Anti-virulence strategies to combat bacteria-mediated disease. Nat. Rev. Drug Discov.9(2), 117–128 (2010).
  • Johnson BK , AbramovitchRB. Small molecules that sabotage bacterial virulence. Trends Pharmacol. Scis.38(4), 339–362 (2017).
  • Parish T . Two-component regulatory systems of mycobacteria. Microbiol. Spectr.1, MGM2-0010-2013 (2014).
  • Perez E , SamperS , BordasY , GuilhotC , GicquelB , MartinC. An essential role for phoP in Mycobacterium tuberculosis virulence. Mol. Microbiol.41(1), 179–187 (2001).
  • Mehra S , ForemanTW , DidierPJet al. The DosR regulon modulates adaptive immunity and is essential for Mycobacterium tuberculosis persistence. Am. J. Respir. Crit. Care Med.191(10), 1185–1196 (2015).
  • Gautam US , McgillivrayA , MehraSet al. DosS Is required for the complete virulence of Mycobacterium tuberculosis in mice with classical granulomatous lesions. Am. J. Respir. Cell Mol. Biol.52(6), 708–716 (2015).
  • Zahrt TC , DereticV . Mycobacterium tuberculosis signal transduction system required for persistent infections. Proc. Natl Acad. Sci. USA98(22), 12706–12711 (2001).
  • Ewann F , JacksonM , PetheKet al. Transient requirement of the PrrA-PrrB two-component system for early intracellular multiplication of Mycobacterium tuberculosis. Infect Immun.70(5), 2256–2263 (2002).
  • Parish T , SmithDA , RobertsG , BettsJ , StokerNG. The senX3-regX3 two-component regulatory system of Mycobacterium tuberculosis is required for virulence. Microbiology149(Pt 6), 1423–1435 (2003).
  • Boon C , DickT. Mycobacterium bovis BCG response regulator essential for hypoxic dormancy. J. Bacteriol.184(24), 6760–6767 (2002).
  • Dasgupta N , KapurV , SinghKKet al. Characterization of a two-component system, devR-devS, of Mycobacterium tuberculosis. Tuber Lung Dis.80(3), 141–159 (2000).
  • Bagchi G , Mayuri , TyagiJS. Hypoxia-responsive expression of Mycobacterium tuberculosis Rv3134c and devR promoters in Mycobacterium smegmatis.Microbiology149(Pt 9), 2303–2305 (2003).
  • Roberts DM , LiaoRP , WisedchaisriG , HolWG , ShermanDR. Two sensor kinases contribute to the hypoxic response of Mycobacterium tuberculosis. J. Biol. Chem.279(22), 23082–23087 (2004).
  • Saini DK , MalhotraV , DeyD , PantN , DasTK , TyagiJS. DevR-DevS is a bona fide two-component system of Mycobacterium tuberculosis that is hypoxia-responsive in the absence of the DNA-binding domain of DevR. Microbiology150(Pt 4), 865–875 (2004).
  • Kumar A , ToledoJC , PatelRP , LancasterJR , Jr , SteynAJ. Mycobacterium tuberculosis DosS is a redox sensor and DosT is a hypoxia sensor. Proc. Natl Acad. Sci. USA104(28), 11568–11573 (2007).
  • Singh A , MaiD , KumarA , SteynAJ. Dissecting virulence pathways of Mycobacterium tuberculosis through protein–protein association. Proc. Natl Acad. Sci. USA103(30), 11346–11351 (2006).
  • Saini DK , MalhotraV , TyagiJS. Cross talk between DevS sensor kinase homologue, Rv2027c, and DevR response regulator of Mycobacterium tuberculosis. FEBS Lett.565(1–3), 75–80 (2004).
  • Agrawal R , PandeyA , RajankarMP , DixitNM , SainiDK. The two-component signalling networks of Mycobacterium tuberculosis display extensive cross-talk in vitro. Biochem. J.469(1), 121–134 (2015).
  • Taneja NK , DhingraS , MittalA , NareshM , TyagiJS. Mycobacterium tuberculosis transcriptional adaptation, growth arrest and dormancy phenotype development is triggered by vitamin C. PLoS ONE5(5), e10860 (2010).
  • Shiloh MU , ManzanilloP , CoxJS. Mycobacterium tuberculosis senses host-derived carbon monoxide during macrophage infection. Cell Host Microbe.3(5), 323–330 (2008).
  • Kumar A , DeshaneJS , CrossmanDKet al. Heme oxygenase-1-derived carbon monoxide induces the Mycobacterium tuberculosis dormancy regulon. J. Biol. Chem.283(26), 18032–18039 (2008).
  • Sousa EHS , GonzalezG , Gilles-GonzalezMA. Target DNA stabilizes Mycobacterium tuberculosis DevR/DosR phosphorylation by the full-length oxygen sensors DevS/DosS and DosT. FEBS J.284(22), 3954–3967 (2017).
  • Park HD , GuinnKM , HarrellMIet al. Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis. Mol Microbiol.48(3), 833–843 (2003).
  • Galagan JE , MinchK , PetersonMet al. The Mycobacterium tuberculosis regulatory network and hypoxia. Nature499(7457), 178–183 (2013).
  • Minch KJ , RustadTR , PetersonEJet al. The DNA-binding network of Mycobacterium tuberculosis. Nat. Commun.6, 5829 (2015).
  • Kaur K , KumariP , SharmaS , SehgalS , TyagiJS. DevS/DosS sensor is bifunctional and its phosphatase activity precludes aerobic DevR/DosR regulon expression in Mycobacterium tuberculosis. FEBS J.283(15), 2949–2962 (2016).
  • Sardiwal S , KendallSL , MovahedzadehF , RisonSC , StokerNG , DjordjevicS. A GAF domain in the hypoxia/NO-inducible Mycobacterium tuberculosis DosS protein binds haem. J. Mol. Biol.353(5), 929–936 (2005).
  • Sivaramakrishnan S , DeMontellano PR. The DosS-DosT/DosR mycobacterial sensor system. Biosensors3(3), 259–282 (2013).
  • Cho HY , ChoHJ , KimMH , KangBS. Blockage of the channel to heme by the E87 side chain in the GAF domain of Mycobacterium tuberculosis DosS confers the unique sensitivity of DosS to oxygen. FEBS Lett.585(12), 1873–1878 (2011).
  • Cho HY , ChoHJ , KimYM , OhJI , KangBS. Structural insight into the heme-based redox sensing by DosS from Mycobacterium tuberculosis. J. Biol. Chem.284(19), 13057–13067 (2009).
  • Madrona Y , WaddlingCA , OrtizDe Montellano PR. Crystal structures of the CO- and NO-bound DosS GAF-A domain and implications for DosS signaling in Mycobacterium tuberculosis. Arch. Biochem. Biophys.612, 1–8 (2016).
  • Podust LM , IoanoviciuA , OrtizDe Montellano PR. 2.3 A x-ray structure of the heme-bound GAF domain of sensory histidine kinase DosT of Mycobacterium tuberculosis. Biochemistry47(47), 12523–12531 (2008).
  • Lobao J , GondimACS , GuimaraesWG , Gilles-GonzalezMA , LopesLGF , SousaEHS. Oxygen triggers signal transduction in the DevS (DosS) sensor of Mycobacterium tuberculosis by modulating the quaternary structure. FEBS J.286(3), 479–494 (2019).
  • Barreto GA , CarepoMSP , GondimACSet al. A spectroelectrochemical investigation of the heme-based sensor DevS from Mycobacterium tuberculosis: a redox versus oxygen sensor. FEBS J.286(21), 4278–4293 (2019).
  • Ioanoviciu A , YuklET , Moenne-LoccozP , DeMontellano PR. DevS, a heme-containing two-component oxygen sensor of Mycobacterium tuberculosis. Biochemistry46(14), 4250–4260 (2007).
  • Sousa EH , TuckermanJR , GonzalezG , Gilles-GonzalezMA. DosT and DevS are oxygen-switched kinases in Mycobacterium tuberculosis. Protein Sci.16(8), 1708–1719 (2007).
  • Johnson BK , ColvinCJ , NeedleDB , MbaMedie F , ChampionPA , AbramovitchRB. The carbonic anhydrase inhibitor ethoxzolamide inhibits the Mycobacterium tuberculosis PhoPR regulon and Esx-1 secretion and attenuates virulence. Antimicrob. Agents Chemother.59(8), 4436–4445 (2015).
  • Vashist A , MalhotraV , SharmaG , TyagiJS , Clark-CurtissJE. Interplay of PhoP and DevR response regulators defines expression of the dormancy regulon in virulent Mycobacterium tuberculosis. J. Biol. Chem.293(42), 16413–16425 (2018).
  • Abramovitch RB , RohdeKH , HsuFF , RussellDG. aprABC: a Mycobacterium tuberculosis complex-specific locus that modulates pH-driven adaptation to the macrophage phagosome. Mol. Microbiol.80(3), 678–694 (2011).
  • Baker JJ , JohnsonBK , AbramovitchRB. Slow growth of Mycobacterium tuberculosis at acidic pH is regulated by phoPR and host-associated carbon sources. Mol. Microbiol.94(1), 56–69 (2014).
  • Baker JJ , DechowSJ , AbramovitchRB. Acid fasting: modulation of Mycobacterium tuberculosis metabolism at acidic pH. Trends Microbiol.27(11), 942–953 (2019).
  • Reichlen MJ , LeistikowRL , ScobeyMS , BornSEM , VoskuilMI. Anaerobic Mycobacterium tuberculosis cell death stems from intracellular acidification mitigated by the DosR regulon. J. Bacteriol.199(23), e00320–17 (2017).
  • Malhotra V , AgrawalR , DuncanTR , SainiDK , Clark-CurtissJE. Mycobacterium tuberculosis response regulators, DevR and NarL, interact in vivo and co-regulate gene expression during aerobic nitrate metabolism. J. Biol. Chem.290(13), 8294–8309 (2015).
  • Chao JD , PapavinasasundaramKG , ZhengXet al. Convergence of Ser/Thr and two-component signaling to coordinate expression of the dormancy regulon in Mycobacterium tuberculosis. J. Biol. Chem.285(38), 29239–29246 (2010).
  • Sharma S , KumariP , VashistA , KumarC , NandiM , TyagiJS. Cognate sensor kinase-independent activation of Mycobacterium tuberculosis response regulator DevR (DosR) by acetyl phosphate: implications in anti-mycobacterial drug design. Mol Microbiol.111(5), 1182–1194 (2019).
  • Yang H , ShaW , LiuZet al. Lysine acetylation of DosR regulates the hypoxia response of Mycobacterium tuberculosis. Emerg Microbes Infect.7(1), 34 (2018).
  • Tan S , SukumarN , AbramovitchRB , ParishT , RussellDG. Mycobacterium tuberculosis responds to chloride and pH as synergistic cues to the immune status of its host cell. PLoS Pathog.9(4), e1003282 (2013).
  • Huang L , NazarovaEV , TanS , LiuY , RussellDG. Growth of Mycobacterium tuberculosis in vivo segregates with host macrophage metabolism and ontogeny. J. Exp. Med.215(4), 1135–1152 (2018).
  • Harper J , SkerryC , DavisSLet al. Mouse model of necrotic tuberculosis granulomas develops hypoxic lesions. J. Infect. Dis.205(4), 595–602 (2012).
  • Gautam US , MehraS , KaushalD. In-vivo gene signatures of Mycobacterium tuberculosis in C3HeB/FeJ Mice. PLoS ONE10(8), e0135208 (2015).
  • Hudock TA , ForemanTW , BandyopadhyayNet al. Hypoxia sensing and persistence genes are expressed during the intragranulomatous survival of Mycobacterium tuberculosis. Am. J. Respir. Cell Mol. Biol.56(5), 637–647 (2017).
  • Garton NJ , WaddellSJ , SherrattALet al. Cytological and transcript analyses reveal fat and lazy persister-like bacilli in tuberculous sputum. PLoS Med.5(4), 634–645 (2008).
  • Gengenbacher M , KaufmannSH. Mycobacterium tuberculosis: success through dormancy. FEMS Microbiol. Rev.36(3), 514–532 (2012).
  • Gengenbacher M , RaoSP , PetheK , DickT. Nutrient-starved, non-replicating Mycobacterium tuberculosis requires respiration, ATP synthase and isocitrate lyase for maintenance of ATP homeostasis and viability. Microbiology156(Pt 1), 81–87 (2010).
  • Leistikow RL , MortonRA , BartekIL , FrimpongI , WagnerK , VoskuilMI. The Mycobacterium tuberculosis DosR regulon assists in metabolic homeostasis and enables rapid recovery from nonrespiring dormancy. J Bacteriol.192(6), 1662–1670 (2010).
  • Zheng H , WilliamsJT , AleweiB , EllsworthE , AbramovitchRB. Inhibiting Mycobacterium tuberculosis DosRST signaling by targeting response regulator DNA binding and sensor kinase heme. ACS Chem. Biol.15(1), 52–62 (2019).
  • Zheng H , ColvinCJ , JohnsonBKet al. Inhibitors of Mycobacterium tuberculosis DosRST signaling and persistence. Nat. Chem. Biol.13(2), 218–225 (2017).
  • Honaker RW , LeistikowRL , BartekIL , VoskuilMI. Unique roles of DosT and DosS in DosR regulon induction and Mycobacterium tuberculosis dormancy. Infect. Immun.77(8), 3258–3263 (2009).
  • Bartek IL , RutherfordR , GruppoVet al. The DosR regulon of M. tuberculosis and antibacterial tolerance. Tuberculosis (Edinb.).89(4), 310–316 (2009).
  • Baek SH , LiAH , SassettiCM. Metabolic regulation of mycobacterial growth and antibiotic sensitivity. PLoS Biol.9(5), e1001065 (2011).
  • Daniel J , MaamarH , DebC , SirakovaTD , KolattukudyPE. Mycobacterium tuberculosis uses host triacylglycerol to accumulate lipid droplets and acquires a dormancy-like phenotype in lipid-loaded macrophages. PLoS Pathog.7(6), e1002093 (2011).
  • Rustad TR , HarrellMI , LiaoR , ShermanDR. The enduring hypoxic response of Mycobacterium tuberculosis. PLoS ONE.3(1), e1502 (2008).
  • Converse PJ , KarakousisPC , KlinkenbergLGet al. Role of the dosR-dosS two-component regulatory system in Mycobacterium tuberculosis virulence in three animal models. Infect. Immun.77(3), 1230–1237 (2009).
  • Cegelski L , MarshallGR , EldridgeGR , HultgrenSJ. The biology and future prospects of antivirulence therapies. Nat. Rev. Microbiol.6(1), 17–27 (2008).
  • Rasko DA , MoreiraCG , LiDe Ret al. Targeting QseC signaling and virulence for antibiotic development. Science321(5892), 1078–1080 (2008).
  • Goswami M , EspinasseA , CarlsonEE. Disarming the virulence arsenal of Pseudomonas aeruginosa by blocking two-component system signaling. Chem. Sci.9(37), 7332–7337 (2018).
  • Chase OM , EspinasseA , WilkeKE , CarlsonEE. Exploration of the effects of gamma-phosphate-modified ATP analogues on histidine kinase autophosphorylation. Biochemistry57(29), 4368–4373 (2018).
  • Wilke KE , FihnCA , CarlsonEE. Screening serine/threonine and tyrosine kinase inhibitors for histidine kinase inhibition. Bioorg. Med. Chem.26(19), 5322–5326 (2018).
  • Bem AE , VelikovaN , PellicerMT , BaarlenP , MarinaA , WellsJM. Bacterial histidine kinases as novel antibacterial drug targets. ACS Chem. Biol.10(1), 213–224 (2015).
  • Kaur K , TanejaNK , DhingraS , TyagiJS. DevR (DosR) mimetic peptides impair transcriptional regulation and survival of Mycobacterium tuberculosis under hypoxia by inhibiting the autokinase activity of DevS sensor kinase. BMC Microbiology14, 195 (2014).
  • Dhingra S , KaurK , TanejaNK , TyagiJS. DevR (DosR) binding peptide inhibits adaptation of Mycobacterium tuberculosis under hypoxia. FEMS Microbiol. Lett.330(1), 66–71 (2012).
  • Banerjee SK , KumarM , AlokamRet al. Targeting multiple response regulators of Mycobacterium tuberculosis augments the host immune response to infection. Sci. Rep.6, 25851 (2016).
  • Gupta RK , ThakurTS , DesirajuGR , TyagiJS. Structure-based design of DevR inhibitor active against nonreplicating Mycobacterium tuberculosis. J. Med. Chem.52(20), 6324–6334 (2009).
  • Mak PA , RaoSP , PingTan Met al. A high-throughput screen to identify inhibitors of ATP homeostasis in non-replicating Mycobacterium tuberculosis. ACS Chem. Biol.7(7), 1190–1197 (2012).
  • Deb C , LeeCM , DubeyVSet al. A novel in vitro multiple-stress dormancy model for Mycobacterium tuberculosis generates a lipid-loaded, drug-tolerant, dormant pathogen. PLoS ONE4(6), e6077 (2009).
  • Hung DT , ShakhnovichEA , PiersonE , MekalanosJJ. Small-molecule inhibitor of Vibrio cholerae virulence and intestinal colonization. Science310(5748), 670–674 (2005).
  • Shakhnovich EA , HungDT , PiersonE , LeeK , MekalanosJJ. Virstatin inhibits dimerization of the transcriptional activator ToxT. Proc. Natl Acad. Sci. USA104(7), 2372–2377 (2007).
  • Domenech P , ZouJ , AverbackAet al. Unique regulation of the DosR regulon in the beijing lineage of Mycobacterium tuberculosis. J. Bacteriol.199(2), e00696 (2017).
  • Rock JM , HopkinsFF , ChavezAet al. Programmable transcriptional repression in mycobacteria using an orthogonal CRISPR interference platform. Nat. Microbiol.2, 16274 (2017).
  • Schnappinger D , EhrtS. Regulated expression systems for mycobacteria and their applications. Microbiol. Spectrum2(1), MGM2-0018-2013 (2014).
  • Via LE , EnglandK , WeinerDMet al. A sterilizing tuberculosis treatment regimen is associated with faster clearance of bacteria in cavitary lesions in marmosets. Antimicrob. Agents Chemother.59(7), 4181–4189 (2015).
  • Lin PL , MaielloP , GideonHPet al. PET CT identifies reactivation risk in cynomolgus macaques with latent M. tuberculosis. PLoS Pathog.12(7), e1005739 (2016).
  • Malherbe ST , ShenaiS , RonacherKet al. Persisting positron emission tomography lesion activity and Mycobacterium tuberculosis mRNA after tuberculosis cure. Nat. Med.22(10), 1094–1100 (2016).