384
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A Novel Scaffold to Fight Pseudomonas Aeruginosa Pyocyanin Production: Early Steps to Novel Antivirulence Drugs

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 1489-1503 | Received 06 Dec 2019, Accepted 12 May 2020, Published online: 10 Aug 2020

References

  • Acess to Medicine Foundation . Antimicrobial resistance benchmark 2018. (2018). https://accesstomedicinefoundation.org/media/uploads/downloads/5bc5edd8367eb_Antimicrobial-Resistance-Benchmark-2018.pdf
  • Centers for Disease Control and Prevention . Antibiotic use in the United States, 2017: progress and opportunities. (2017). https://www.cdc.gov/antibiotic-use/stewardship-report/pdf/stewardship-report.pdf
  • O'Neill J . Securing new drugs for future generations: the pipeline of antibiotics – the review on antimicrobial resistance. (2016). https://amr-review.org/sites/default/files/160525_Final paper_with cover.pdf
  • Ventola CL . The antibiotic resistance crisis: part 1: causes and threats. P&T40(4), 277–283 (2015).
  • Aslam B , WangW , ArshadMIet al. Antibiotic resistance: a rundown of a global crisis. Infect. Drug Resist.11, 1645–1658 (2018).
  • World Health Organization . Global action plan on antimicrobial resistance. (2015). https://apps.who.int/iris/bitstream/handle/10665/193736/9789241509763_eng.pdf?sequence=1
  • Gould IM , BalAM. New antibiotic agents in the pipeline and how hey can help overcome microbial resistance. Virulence4(2), 185–191 (2013).
  • Ali J , RafiqQA , RatcliffeE. Antimicrobial resistance mechanisms and potential synthetic treatments. Future Sci. OA4(4), FSO290 (2018).
  • Heras B , ScanlonMJ , MartinJL. Targeting virulence not viability in the search for future antibacterials. Br. J. Clin. Pharmacol.79(2), 208–215 (2015).
  • Clatworthy AE , PiersonE , HungDT. Targeting virulence: a new paradigm for antimicrobial therapy. Nat. Chem. Biol.3(9), 541–548 (2007).
  • Rasko DA , SperandioV. Anti-virulence strategies to combat bacteria-mediated disease. Nat. Rev. Drug Discov.9(2), 117–128 (2010).
  • Shoham M , GreenbergM. Preventing the spread of infectious diseases: antivirulents versus antibiotics. Future Microbiol.12(5), 365–368 (2017).
  • Moradali MF , GhodsS , RehmBHA. Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front. Cell. Infect. Microbiol.7(39), 1–29 (2017).
  • European Centre for Disease Prevention and Control . Antimicrobial resistance surveillance in Europe 2015. Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). (2017). https://www.ecdc.europa.eu/sites/default/files/media/en/publications/Publications/antimicrobial-resistance-europe-2015.pdf
  • European Centre for Disease Prevention and Control . Surveillance of antimicrobial resistance in Europe – annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net) 2017. (2018). https://www.ecdc.europa.eu/sites/default/files/documents/EARS-Net-report-2017-update-jan-2019.pdf
  • Boucher HW , TalbotGH , BenjaminDKet al. 10 × ′20 Progress – development of new drugs active against Gram-negative bacilli: an update from the Infectious Diseases Society of America. Clin. Infect. Dis.56(12), 1685–1694 (2013).
  • Müh U , SchusterM , HeimR , SinghA , OlsonER , GreenbergEP. Novel Pseudomonas aeruginosa quorum-sensing inhibitors identified in an ultra-high-throughput screen. Antimicrob. Agents Chemother.50(11), 3674–3679 (2006).
  • Paczkowski JE , MukherjeeS , McCreadyARet al. Flavonoids suppress Pseudomonas aeruginosa virulence through allosteric inhibition of quorum-sensing receptors. J. Biol. Chem.292(10), 4064–4076 (2017).
  • Defoirdt T . Quorum-sensing systems as targets for antivirulence therapy. Trends Microbiol.26(4), 313–328 (2018).
  • Fong J , MortensenKT , NørskovAet al. Itaconimides as novel quorum sensing inhibitors of Pseudomonas aeruginosa. Front. Cell. Infect. Microbiol.8(443), 1–11 (2019).
  • Zou Y , NairSK. Molecular basis for the recognition of structurally distinct autoinducer mimics by the Pseudomonas aeruginosa LasR quorum-sensing signaling receptor. Chem. Biol.16(9), 961–970 (2009).
  • Kitao T , LepineF , BabloudiSet al. Molecular insights into function and competitive inhibition of Pseudomonas aeruginosa multiple virulence factor regulator. MBio9(1), e02158–17 (2018).
  • Eibergen Nora R , MooreJoseph D , MattamannM.E , BlackwellHE. Potent and selective modulation of the RhlR quorum sensing receptor using non-native ligands – an emerging target for virulence control in Pseudomonas aeruginosa. Chembiochem16(16), 2348–2356 (2016).
  • Cornelis P . Putting an end to the Pseudomonas aeruginosa IQS controversy. Microbiol. Open9(2), 1–2 (2020).
  • Lee J , WuJ , DengYet al. A cell–cell communication signal integrates quorum sensing and stress response. Nat. Chem. Biol.9(5), 339–343 (2013).
  • Das MC , SandhuP , GuptaP , RudrapaulP , DeUC. Attenuation of Pseudomonas aeruginosa biofilm formation by vitexin: a combinatorial study with azithromycin and gentamicin. Nat. Publ. Gr.6(23347), 1–13 (2016).
  • Mavrodi D V , BonsallRF , DelaneySM , SouleMJ , PhillipsG , ThomashowLS. Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1 functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J. Bacteriol.183(21), 6454–6465 (2001).
  • Denning GM , IyerSS , ReszkaKJ , O'MalleyY , RasmussenGT , BritiganBE. Phenazine-1-carboxylic acid, a secondary metabolite of Pseudomonas aeruginosa, alters expression of immunomodulatory proteins by human airway epithelial cells. Am. J. Physiol. Lung Cell. Mol. Physiol.285(3), L584–L592 (2003).
  • Hall S , McdermottC , Anoopkumar-DukieSet al. Cellular effects of pyocyanin, a secreted virulence factor of Pseudomonas aeruginosa. Toxins8(8), 1–14 (2016).
  • Winstanley C , FothergillJL. The role of quorum sensing in chronic cystic fibrosis Pseudomonas aeruginosa infections. FEMS Microbiol. Lett.290(1), 1–9 (2009).
  • Lee J , ZhangL. The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein Cell.6(1), 26–41 (2015).
  • Froes TQ , BaldiniRL , CastilhoMS. Structure-based druggability assessment of anti-virulence targets from Pseudomonas aeruginosa. Curr. Protein Pept. Sci.20(12), 1189–1203 (2019).
  • Lau GW , RanH , KongF , HassettDJ , MavrodiD. Pseudomonas aeruginosa pyocyanin is critical for lung infection in mice. Infect. Immun.72(7), 4275–4278 (2004).
  • Kipnis E , SawaT , Wiener-KronishJ. Targeting mechanisms of Pseudomonas aeruginosa pathogenesis. Médecine Mal. Infect.36(2), 78–91 (2006).
  • Sandri A , OrtombinaA , BoschiFet al. Inhibition of Pseudomonas aeruginosa secreted virulence factors reduces lung inflammation in CF mice. Virulence9(1), 1008–1018 (2018).
  • Greenhagen BT , ShiK , RobinsonHet al. Crystal structure of the pyocyanin biosynthetic protein PhzS. Biochemistry47(19), 5281–5289 (2008).
  • Postigo MP , GuidoRVC , OlivaGet al. Discovery of new inhibitors of schistosoma mansoni PNP by pharmacophore-based virtual screening. J. Chem. Inf. Model50(9), 1693–1705 (2010).
  • Leite FHA , SantiagoPBGDSet al. Structure-guided discovery of thiazolidine-2, 4-dione derivatives as a novel class of Leishmania major pteridine reductase 1 inhibitors. Eur. J. Med. Chem.123, 639–648 (2016).
  • Metwally K , PratsinisH , KletsasD. Novel 2,4-thiazolidinediones: synthesis, in vitro cytotoxic activity, and mechanistic investigation. Eur. J. Med. Chem.133, 340–350 (2017).
  • Metwally K , PratsinisH , KletsasD , QuattriniL , CovielloV. Novel quinazolinone-based 2,4-thiazolidinedione-3-acetic acid derivatives as potent aldose reductase inhibitors. Fut. Med. Chem.9(18), 2147–2166 (2017).
  • Jain AN . Ligand-based structural hypotheses for virtual screening. J. Med. Chem.47, 947–961 (2004).
  • Forneris F , OrruR , BoniventoD , ChiarelliLR , MatteviA. ThermoFAD, a thermofluor-adapted flavin ad hoc detection system for protein folding and ligand binding. FEBS J.276(10), 2833–2840 (2009).
  • Niesen FH , BerglundH , VedadiM. The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat. Protoc.2(9), 2212–2221 (2007).
  • Lea WA , SimeonovA. Differential scanning fluorometry signatures as indicators of enzyme inhibitor mode of action: case study of glutathione S-transferase. PLoS One7(4), e36219 (2012).
  • Bai N , RoderH , DicksonA , KaranicolasJ. Isothermal analysis of ThermoFluor data can readily provide quantitative binding affinities. Sci. Rep.9(1), 1–15 (2019).
  • The TH , FeltkampTEW. Conjugation of fluorescein isothiocyanate to antibodies I. Immunology18(6), 865–873 (1970).
  • Das T , ManefieldM. Pyocyanin promotes extracellular DNA release in Pseudomonas aeruginosa. PLoS One7(10), e46718 (2012).
  • Rowan S , SandersK. Enzyme models: design and selection. Model Syst.14(2), 483–490 (2003).
  • van Haren MJ , MarechalN , Troffer-CharlierNet al. Transition state mimics are valuable mechanistic probes for structural studies with the arginine methyltransferase CARM1. Proc. Natl Acad. Sci. USA114(14), 3625–3630 (2017).
  • Metaferia BB , RayS , SmithJA , BewleyCA. Design and synthesis of substrate-mimic inhibitors of mycothiol-S-conjugate amidase from Mycobacterium tuberculosis. Bioorganic Med. Chem. Lett.17(2), 444–447 (2007).
  • Petrelli R , ShamYY , ChenLet al. Selective inhibition of nicotinamide adenine dinucleotide kinases by dinucleoside disulfide mimics of nicotinamide adenine dinucleotide analogues. Bioorg. Med. Chem.17(15), 5656–5664 (2009).
  • Martín del Campo JS , Eckshtain-LeviM , SobradoP. Identification of eukaryotic UDP-galactopyranose mutase inhibitors using the ThermoFAD assay. Biochem. Biophys. Res. Commun.493(1), 58–63 (2017).
  • Mezzasalma TM , KranzJK , ChanWet al. Enhancing recombinant protein quality and yield by protein stability profiling. J. Biomol. Screen.12(3), 418–428 (2007).
  • Jasial S , HuY. How frequently are pan-assay interference compounds active? Large-Scale analysis of screening data reveals diverse activity profiles, low global hit frequency, and many consistently inactive compounds. J. Med. Chem.60, 3879–3886 (2017).
  • Dahlin JL , WaltersMA , ScientistM , ProgramT. How to triage PAINS-full research. Assay Drug Dev. Technol.14(3), 168–174 (2016).
  • Redhead M , SatchellR , SwiftDet al. A combinatorial biophysical approach; FTSA and SPR for identifying small molecule ligands and PAINs. Anal. Biochem.479, 63–73 (2015).
  • Matulis D , KranzJK , SalemmeFRet al. Thermodynamic stability of carbonic anhydrase: measurements of binding affinity and stoichiometry using ThermoFluor. Biochemistry44, 5258–5266 (2005).
  • Baell J , WaltersMA. Chemical con artists foil drug discovery. Nature513, 481–483 (2014).
  • Jerabek-Willemsen M , AndréT , WannerRet al. MicroScale thermophoresis: interaction analysis and beyond q. J. Mol. Struct.1077, 101–113 (2014).
  • Welsh MA , BlackwellHE. Chemical probes of quorum sensing: from compound development to biological discovery. FEMS Microbiol. Rev.40(5), 774–794 (2016).
  • Xie L , XieL. Pathway-centric structure-based multi-target compound screening for anti-virulence drug repurposing. Int. J. Mol. Sci.20(14), 1–11 (2019).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.