450
Views
1
CrossRef citations to date
0
Altmetric
Review

N-Heterocyclic Carbene-Metal Complexes as Bio-Organometallic Antimicrobial and Anticancer Drugs, an Update (2015–2020)

ORCID Icon, , ORCID Icon & ORCID Icon
Pages 2239-2275 | Received 28 May 2020, Accepted 28 Sep 2020, Published online: 24 Nov 2020

References

  • Ho GY , WoodwardN , CowardJI. Cisplatin versus carboplatin: comparative review of therapeutic management in solid malignancies. Crit. Rev. Oncol. Hematol.102, 37–46 (2016).
  • Lokich J , AndersonN. Carboplatin versus cisplatin in solid tumors: an analysis of the literature. Ann Oncol.9(1), 13–21 (1998).
  • Lebwohl D , CanettaR. Clinical development of platinum complexes in cancer therapy: an historical perspective and an update. Eur. J. Cancer.34(10), 1522–1534 (1998).
  • Dasari S , TchounwouPB. Cisplatin in cancer therapy: molecular mechanisms of action. Eur. J. Pharmacol.740, 364–378 (2014).
  • Walker EM Jr , WalkerSM. Evolution of chemotherapy with platinum compounds. Ann Clin. Lab. Sci.29(4), 263–274 (1999).
  • Drews J . Drug discovery: a historical perspective. Science287(5460), 1960–1964 (2000).
  • Ratti E , TristD. Continuing evolution of the drug discovery process in the pharmaceutical industry. Pure Appl. Chem.73, 67–75 (2001).
  • Subapriya R , NaginiS. Medicinal properties of neem leaves: a review. Curr. Med. Chem.: Anti-Cancer Agents5(2), 149–156 (2005).
  • Zhu JS , HalpernGM , JonesK. The scientific rediscovery of an ancient Chinese herbal medicine: Cordyceps sinensis: part I. J. Altern. Complement. Med.4(3), 289–303 (1998).
  • Venita J . Paul Ehrlich. Arch. Pathol. Lab. Med.125, 725–725 (2001).
  • Fleming A . On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. Influenzae. Brit. J. Exp. Pathol.10, 226–236 (1929).
  • Walsh C , WrightG. Introduction: antibiotic resistance. Chem. Rev.105, 391–394 (2005).
  • Gould IM . Coping with antibiotic resistance: the impending crisis. Int. J. Antimicrob. Agents36, S1–S2 (2010).
  • Piddock LJ . The crisis of no new antibiotics – what is the way forward?Lancet Infect. Dis.12, 249–253 (2012).
  • Padiyara P , InoueH , SprengerM. Global governance mechanisms to address antimicrobial resistance. Infect. Dis. Res. Treat.11, 1–4 (2018).
  • Chattopadhyay MK , ChakrabortyR , GrossartHPet al. Antibiotic resistance of bacteria. Biomed. Res. Int.2015, 501658 (2015).
  • Infectious Diseases Society of America . The 10 x 20 initiative: pursuing a global commitment to develop 10 new antibacterial drugs by 2020. Clin. Infect. Dis.50(8), 1081–1083 (2010).
  • Sekhon BS . Metalloantibiotics and antibiotic mimics-an overview. J. Pharm. Educ. Res.1, 1–20 (2010).
  • Johnstone TC , SuntharalingamK , LippardSJ. The next generation of platinum drugs: targeted Pt(II) agents, nanoparticle delivery, and Pt (IV) prodrugs. Chem. Rev.116, 3436–3486 (2016).
  • Basu U , BanikB , WenRet al. The Platin-X series: activation, targeting, and delivery. Dalton Trans.45, 12992–13004 (2016).
  • Bray F , FerlayJ , SoerjomataramIet al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin.68(6), 394–424 (2018).
  • Ferlay J , ColombetM , SoerjomataramIet al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer.44(8), 1941–1953 (2019).
  • Bailon-Moscoso N , Romero-BenavidesJC , Ostrosky-WegmanP. Development of anticancer drugs based on the hallmarks of tumor cells. Tumor Biol.35, 3981–3995 (2014).
  • Brown C . Targeted therapy: an elusive cancer target. Nature537, S106–S108 (2016).
  • Widmer N , BardinC , ChatelutEet al. Review of therapeutic drug monitoring of anticancer drugs part two-targeted therapies. Eur. J. Cancer50, 2020–2036 (2014).
  • Longley DB , JohnstonPG. Molecular mechanisms of drug resistance. J. Pathol.205, 275–292 (2005).
  • Mansoori B , MohammadiA , DavudianSet al. The different mechanisms of cancer drug resistance: a brief review. Adv. Pharm. Bull.7(3), 339–348 (2017).
  • Zahreddine H , BordenKL. Mechanisms and insights into drug resistance in cancer. Front Pharmacol.4, 28 (2013).
  • Patil SA , PatilSA , PatilRet al. N-heterocyclic carbene metal complexes as bioorganometallic antimicrobial and anticancer drugs. Future Med. Chem.7(10), 1305–1333 (2015).
  • Wanzlick HW , KleinerHJ. Nucleophile carben-chemiedarstellung des bis-[1.3-diphenyl-imidazolidinyliden-(2)]. Angew. Chem.73(14), 493 (1961).
  • Wanzlick HW . Aspects of nucleophilic carbine chemistry. Angew. Chem. Int. Ed. Engl.1(2), 75–80 (1962).
  • Wanzlick HW , EsserF , KleinerHJ. Nucleophile carbenchemie, III. neueverbindungenvomtyp des bis-[1.3-diphenyl-imidazolidinylidens-(2)]. Chem. Ber.96(5), 1208–1212 (1963).
  • Öfele K . 1,3-Dimethyl-4-imidazolinyliden-(2)-pentacarbonyl chromeinneuerüberga- ngsmetall-carbenkomplex. J. Organomet. Chem.12(3), P42–P43 (1968).
  • Wanzlick HW , SchönherrHJ. Direct synthesis of a mercury salt-carbene complex. Angew. Chem. Int. Ed. Engl.7(2), 141–142 (1968).
  • Arduengo AJ , HarlowRL , KlineMJ. A stable crystalline carbine. J. Am. Chem. Soc.113(1), 361–363 (1991).
  • Michalak M , KośnikW. Chiral N-heterocyclic carbene gold complexes: synthesis and applications in catalysis. Catalysts9(11), 890 (2019).
  • Velazquez HD , VerpoortF. N-heterocyclic carbene transition metal complexes for catalysis in aqueous media. Chem. Soc. Rev.41(21), 7032–60 (2012).
  • Bourissou D , GuerretO , GabbaiFPet al. Stable carbenes. Chem. Rev.100(1), 39–92 (2000).
  • Oehninger L , RubbianiR , OttI. N-heterocyclic carbene metal complexes in medicinal chemistry. Dalton Trans.42, 3269–3284 (2013).
  • Smith CA , NarouzMR , LummisPAet al. CM, N-heterocyclic carbenes in materials chemistry. Chem. Rev.119(8), 4986–5056 (2019).
  • Diez-Gonzalez S , MarionN , NolanSP. N-heterocyclic carbenes in late transition metal catalysis. Chem. Rev.109(8), 3612–3676 (2009).
  • Poyatos M , McNamaraW , IncarvitoCet al. A weak donor, planar chelating bitriazole N-heterocyclic carbene ligand for ruthenium(II), palladium(II), and rhodium. Organometallics27(9), 2128–2136 (2008).
  • Poyatos M , McNamaraW , IncarvitoCet al. A planar chelating bitriazole N-heterocyclic carbeneligand and its rhodium(III) and dirhodium(II) complexes. Chem. Commun.22, 2267–2269 (2007).
  • Gnanamgari D , MooresA , RajaseelanEet al. Transfer hydrogenation of imines and alkenes and direct reductive amination of aldehydes catalyzed by triazole-derived iridium(I) carbene complexes. Organometallics26, 1226–1230 (2007).
  • Crabtree RH . Abnormal, mesoionic and remote N-heterocyclic carbene complexes. Coord. Chem. Rev.257(3–4), 755–766 (2013).
  • Wang W , WangF , ShiM. Bis(NHC)-palladium(II) complex-catalyzed dioxygenation of alkenes. Organometallics29(4), 928–933 (2010).
  • Alcarazo M , StorkT , AnoopAet al. Steering the surprisingly modular π-acceptor properties of N-heterocyclic carbenes: implications for gold catalysis. Angew. Chem. Int. Ed.49(14), 2542–2546 (2010).
  • Buscemi G , BasatoM , BiffisAet al. C. Electronic properties of chelating dicarbene palladium complexes: a combined electrochemical, NMR and XPS investigation. J. Organomet. Chem.695(21), 2359–2365 (2010).
  • Frémont P , MarionN , NolanSP. Carbenes: synthesis, properties, and organometallic chemistry. Coord. Chem. Rev.253(7–8), 862–892 (2009).
  • Wang Z , JiangL , MohamedDKBet al. N-heterocyclic carbene complexes of group 6 metals. Coord. Chem. Rev.93–294, 292–326 (2015).
  • Schuster O , YangLR , RaubenheimerHGet al. Beyond conventional N-heterocyclic carbenes: abnormal, remote, and other classes of NHC ligands with reduced heteroatom stabilization. Chem. Rev.109(8), 3445–3475 (2009).
  • Poyatos M , MataJA , PerisE. Complexes with poly(N-heterocyclic carbene) ligands: structural features and catalytic applications. Chem. Rev.109(8), 3677–3707 (2009).
  • Enders D , NiemeierO , HenselerA. Organocatalysis by N-heterocyclic carbenes. Chem. Rev.107(12), 5606–5655 (2007).
  • Hurst EC , WilsonK , FairlambIJS , ChechikV. N-heterocyclic carbene coated metal nanoparticles. New J. Chem.33, 1837–1840 (2009).
  • Lara P , Rivada-WheelaghanO , ConejeroSet al. Ruthenium nanoparticles stabilized by N-heterocyclic carbenes: ligand location and influence on reactivity. Angew. Chem. Int. Ed.50(50), 12080–12084 (2011).
  • Vignolle J , TilleyTD. N-Heterocyclic carbene-stabilized gold nanoparticles and their assembly into 3D superlattices. Chem. Commun.46, 7230–7232 (2009).
  • Hopkinson MN , RichterC , SchedlerM , GloriusF. An overview of N-heterocyclic carbenes. Nature510, 485–496 (2014).
  • Lee KM , LeeCK , LinIJB. A facile synthesis of unusual liquid-crystalline gold(I) dicarbene compounds. Angew. Chem., Int. Ed. Engl.36, 1850–1852 (1997).
  • Hsu SJ , HsuKM , LeongMKet al. Au(I)-benzimidazole/imidazole complexes. liquid crystals and nanomaterials. Dalton Trans.1924–1931 (2008).
  • Fujihara T , OboraY , TokunagaMet al. Dendrimer N-heterocyclic carbene complexes with rhodium(I) at the core. Chem. Commun.4526–4528 (2005).
  • Boydston AJ , RiceJD , SandersonMDet al. Synthesis and study of bidentate benzimidazolylidene-group 10 metal complexes and related main-chain organometallic polymers. Organometallics25(26), 6087–6098 (2006).
  • Herrmann WA , KöcherC. N-heterocyclic carbenes. Angew. Chem. Int. Ed.36(20), 2162–2187 (1997).
  • Herrmann WA . N-heterocyclic carbenes: a new concept in organometallic catalysis. Angew. Chem. Int. Ed.41(8), 1290–1309 (2002).
  • Herrmann WA , ElisonM , FischerJet al. Metal complexes of N-heterocyclic carbenes-a new structural principle for catalysts in homogeneous catalysis. Angew. Chem. Int. Ed. Engl.34(21), 2371–2374 (1995).
  • Weskamp T , SchattenmannWC , SpieglerM , HerrmannWA. A novel class of ruthenium catalysts for olefin metathesis. Angew. Chem. Int. Ed.37(18), 2490–2493 (1998).
  • Melaiye A , SimonsRS , MilstedAet al. Formation of water-soluble pincer silver(I)-carbene complexes: a novel antimicrobial agent. J. Med. Chem.47(4), 973–977 (2004).
  • Melaiye A , SunZ , HindiKet al. Silver(I)-imidazole cyclophane gem-diol complexes encapsulated by electrospun tecophilic nanofibers: formation of nanosilver particles and antimicrobial activity. J. Am. Chem. Soc.127(7), 2285–2291 (2005).
  • Barnard PJ , BakerMV , Berners-PriceSJet al. Mitochondrial permeability transition induced by dinuclear gold(I)-carbene complexes: potential new antimitochondrial antitumour agents. J. Inorg. Biochem.98(10), 1642–1647 (2004).
  • Barnard PJ , BakerMV , Berners-PriceSJet al. Dinuclear gold(I) complexes of bridging bidentate carbene ligands: synthesis, structure and spectroscopic characterization. Dalton Trans.1038–1047 (2004).
  • Baker MV , BarnardPJ , Berners-PriceSJet al. Synthesis and structural characterisation of linear Au(I) N-heterocyclic carbene complexes: new analogues of the Au(I) phosphine drug Auranofin. J. Organomet. Chem.690(24–25), 5625–5635 (2005).
  • Özdemir I , DenizciA , ÖzturkHTet al. Synthetic and antimicrobial studies on new gold(I) complexes of imidazolidin-2-ylidenes. Appl. Organometal. Chem.18(7), 318–322 (2004).
  • Russel AD , PathFR , HugoWB. Antimicrobial activity and action of silver. Prog. Med. Chem.31, 351–370 (1994).
  • Lansdown ABG . A review of the use of silver in wound dressings: facts and fallacies. Br. J. Nurs.13, S6–S19 (2004).
  • Von Naegelli V . Silver nitrate: a very effective antimicrobial agent. Deut. Schr. Schweiz. Naturforsch. Ges.33, 174–182 (1893.
  • Dunn PM . Dr Carl Credé (1819–1892) and the prevention of ophthalmia neonatorum. Arch. Dis. Child. Fetal Neonatal Ed.83(2), F158–F159 (2000).
  • Lansdown ABG . Metallothioneins: potential therapeutic aids for wound healing in the skin. Wound Repair Reagen.10(3), 130–132 (2002).
  • Moyer CA . Treatment of large human burns with 0.5 per cent silver nitrate solution. Arch. Surg.90, 812–867 (1965).
  • National Institute of Standards and Technology . CRC Handbook of Chemistry and Physics (81st Edition). LideDR ( Ed.). CRC Press, FL, USA, 2556 (2000).
  • Hoffman RK , SurkiewiczBF , ChambersLAet al. Bactericidal action of movidyn. Ind. Eng. Chem.45(11), 2571–2573 (1953).
  • Davies O . They Didn't Listen, They Didn't Know How. Author House, IN, USA, 805 (2013).
  • Fox CL Jr . Silver sulfadiazine—a new topical therapy for Pseudomonas in burns. Therapy of Pseudomonas infection in burns. Arch. Surg.96(2), 184–188 (1968).
  • Fakhry SM , AlexanderJ , SmithDet al. Regional and institutional variation in burn care. J. Burn Care Rehabil.16(1), 86–90 (1995).
  • Kascatan-Nebioglu A , MelaiyeA , HindiKMet al. Synthesis from caffeine of a mixed N-heterocyclic carbine-silver acetate complex active against resistant respiratory pathogens. J. Med. Chem.49(23), 6811–6818 (2006).
  • Asekunowo PO , HaqueRA , RazaliMR. Sterically modulated silver(I) complexes of N-benzyl-substituted N-heterocyclic carbenes: synthesis, crystal structures and bioactivity. Transit. Met. Chem.40(1), 79–88 (2015).
  • Gök Y , AkkoçS , ÇelikalÖÖet al. In vitro antimicrobial studies of naphthalen-1-ylmethyl substituted silver N-heterocyclic carbene complexes. Arab. J. Chem.12(8), 2513–2518 (2019).
  • Gök Y , AkkoçS , ErdoğanH , AlbayrakS. In vitro antimicrobial studies of new benzimidazolium salts and silver N-heterocyclic carbene complexes. J. Enzyme Inhib. Med. Chem.31(6), 1322–1327 (2016).
  • Sakamoto R , MorozumiS , YanagawaYet al. Synthesis, characterization, and structure–activity relationship of the antimicrobial activities of dinuclear N-heterocyclic carbene (NHC)-silver(I) complexes. J. Inorg. Biochem.163, 110–117 (2016).
  • Aher S , DasA , MuskawarPet al. Synthesis, sharacterization and antimicrobial properties of methylbenzyl and nitrobenzyl containing imidazolium-based silver N-heterocyclic carbenes. J. Mol. Liq.233, 270–277 (2017).
  • Subramanya Prasad TV , ShahiniCR , PatilSAet al. Non-symmetrically p-nitrobenzyl- and p-cyanobenzyl-substituted N-heterocyclic carbene-silver(I) complexes: synthesis, characterization and antibacterial studies. J. Coord. Chem.70(4), 600–614 (2017).
  • O'Beirne C , AlhamadNF , MaQet al. Synthesis, structures and antimicrobial activity of novel NHC* and Ph3P-Ag(I)-benzoate derivatives. Inorganica Chim. Acta486, 294–303 (2019).
  • Shahini CR , AcharG , BudagumpiSet al. Synthesis, structural investigation and antibacterial studies of non-symmetrically p–nitrobenzyl substituted benzimidazole N-heterocyclic carbene-silver(I) complexes. Inorganica Chim. Acta466, 432–441 (2017).
  • Shahini CR , AcharG , BudagumpiSet al. Non-symmetrically p-nitrobenzyl-substituted N-heterocyclic carbine-silver(I) complexes as metallopharmaceutical agents. Appl. Organomet. Chem.31(12), e3819 (2017).
  • Kaloğlu N , Özdemirİ , GünalS , Özdemirİ. Synthesis and antimicrobial activity of bulky 3,5-di-tert-butyl substituent-containing silver–N-heterocyclic carbene complexes. Appl. Organomet. Chem.31(11), e3803 (2017).
  • Haque RA , HazizUFM , AbdullahAAAet al. New non-functionalized and nitrile-functionalized benzimidazolium salts and their silver(I) complexes: Synthesis, crystal structures and antibacterial studies. Polyhedron109, 208–217 (2016).
  • Haque RA , IqbalMA , MohamadF , RazaliMR. Antibacterial and DNA cleavage activity of carbonyl functionalized N-heterocyclic carbene-silver(I) and selenium compounds. J. Mol. Struct.1155, 362–370 (2018).
  • Asekunowo PO , HaqueRA , RazaliMohd Ret al. Synthesis and characterization of nitrile functionalized silver(I)-N-heterocyclic carbene complexes: DNA binding, cleavage studies, antibacterial properties and mosquitocidal activity against the dengue vector, aedes albopictus. Eur. J. Med. Chem.150, 601–615 (2018).
  • Karataş MO , OlgundenizB , GünalSet al. Synthesis, characterization and antimicrobial activities of novel silver(I) complexes with coumarin substituted N-heterocyclic carbene ligands. Bioorg. Med. Chem.24(4), 643–650 (2016).
  • Achar G , ShahiniCR , PatilSAet al. Coumarin-substituted 1,2,4-triazole-derived silver(I) and gold(I) complexes: Synthesis, characterization and anticancer studies. New J. Chem.43(3), 1216–1229 (2019).
  • Achar G , UppendranathK , RamyaVCet al. Synthesis, characterization, crystal structure and biological studies of silver(I) complexes derived from coumarin-tethered N-heterocyclic carbene ligands. Polyhedron123, 470–479 (2017).
  • Achar G , ShahiniCR , PatilSA , BudagumpiS. Synthesis, structural characterization, crystal structures and antibacterial potentials of coumarin-tethered N-heterocyclic carbene silver(I) complexes. J. Organomet. Chem.833, 28–42 (2017).
  • Streciwilk W , TerenziA , LoNardo Fet al. Synthesis and biological evaluation of organometallic complexes bearing bis-1,8-naphthalimide ligands. Eur. J. Inorg. Chem.2018(26), 3104–3112 (2018).
  • Achar G , ShahiniCR , PatilSAet al. Sterically modulated silver(I) complexes of coumarin substituted benzimidazol-2-ylidenes: synthesis, crystal structures and evaluation of their antimicrobial and antilung cancer potentials. J. Inorg. Biochem.183, 43–57 (2018).
  • Shahini CR , AcharG , BudagumpiSet al. Benzoxazole and dioxolane substituted benzimidazole-based N-heterocyclic carbine-silver(I) complexes: synthesis, structural characterization and in vitro antimicrobial activity. J. Organomet. Chem.868, 1–13 (2018).
  • Yıldırım I , AktaşA , CelepciDBet al. Synthesis, characterization, crystal structure, and antimicrobial studies of 2-morpholinoethyl-substituted benzimidazolium salts and their silver(I)-N-heterocyclic carbene complexes. Res. Chem. Intermed.43(11), 6379–6393 (2017).
  • Haziz UFM , HaqueRA , AmirulAAet al. Synthesis, structures and antibacterial studies of non-functionalized and nitrile-functionalized bis-benzimidazolium salts and respective dinuclear silver(I)-N-heterocyclic carbene complexes. Polyhedron117, 628–636 (2016).
  • Haziz UFM , HaqueRA , AmirulAAet al. New class of non-symmetrical homo-dibenzimidazolium salts and their dinuclear silver(I) di-NHC complexes. J. Organomet. Chem.899(30), 120914 (2019).
  • Loh YL , HazizUFM , HaqueRAet al. The effect of short alkane bridges in stability of bisbenzimidazole-2-ylidene silver(I) complexes: Synthesis, crystal structure and antibacterial activity. J. Coord. Chem.72(5–7), 894–907 (2019).
  • Haque RA , GhdhayebMZ , BudagumpiSet al. Synthesis, crystal structures, and in vitro anticancer properties of new N-heterocyclic carbene (NHC) silver(I)- and gold(I)/(III)-complexes: a rare example of silver(I)-NHC complex involved in redox transmetallation. RSC Adv.6(65), 60407–60421 (2016).
  • Ghdhayeb MZ , HaqueRA , BudagumpiSet al. Mono-and bis-N-heterocyclic carbene silver(I) and palladium(II) complexes: synthesis, characterization, crystal structure and in vitro anticancer studies. Polyhedron121, 222–230 (2017).
  • Atif M , BhattiHN , HaqueRAet al. Synthesis, structure, and anticancer activity of symmetrical and non-symmetrical silver(I)-N-heterocyclic carbene complexes. Appl. Biochem. Biotechnol.https://doi.org/10.1007/s12010-019-03186-9 (2020).
  • Hussaini SY , HaqueRA , FatimaTet al. Nitrile functionalized silver(I) N-heterocyclic carbene complexes: DFT calculations and antitumor studies. Transit. Met. Chem.43(4), 301–312 (2018).
  • Fatima T , HaqueRA , RazaliMRet al. Effect of lipophilicity of wingtip groups on the anticancer potential of mono N-heterocyclic carbene silver(I) complexes: synthesis, crystal structures and in vitro anticancer study. Appl. Organomet. Chem.31(10), e3735 (2017).
  • Asif M , IqbalMA , HusseinMAet al. Human colon cancer targeted pro-apoptotic, anti-metastatic and cytostatic effects of binuclear silver(I)-N-heterocyclic carbene (NHC) complexes. Eur. J. Med. Chem.108, 177–187 (2016).
  • Fatima T , HaqueRA , RazaliMRet al. Synthesis, crystal structure, in vitro anticancer and in vivo acute oral toxicity studies of tetramethylene linked bis-benzimidazolium salts and their respective dinuclear Ag(I)-NHC complexes. J. Coord. Chem.69(22), 3367–3383 (2016).
  • Haque RA , HasanudinN , HusseinMAet al. Bis-N-heterocyclic carbene silver(I) and palladium(II) complexes: efficient antiproliferative agents against breast cancer cells. Inorg. Nano-Met. Chem.47(1), 131–137 (2017).
  • Hussaini SY , HaquRA , AsekunowoPOet al. Synthesis, characterization and anti-proliferative activity of propylene linked bis-benzimidazolium salts and their respective dinuclear silver(I)-N-heterocyclic carbene complexes. J. Organomet. Chem.840, 56–62 (2017).
  • Salman AW , HaqueRA. Pd(II) and trinuclear Ag(I) Bis-N-heterocyclic carbene complexes: synthesis, structural and in vitro anticancer activity. Eur. J. Chem.7(1), 115–120 (2016).
  • Fatima T , HaqueRA , IqbalMAet al. Tetra N-heterocyclic carbene dinuclear silver(I) complexes as potential anticancer agents: synthesis and in vitro anticancer studies. J. Organomet. Chem.853, 122–135 (2017).
  • Higby GJ . Gold in medicine: a review of its use in the West before 1900. Gold Bull.15(4), 130–140 (1982).
  • Parish RV . Gold in medicine—chrysotherapy. Interdisc. Sci. Rev.17(3), 221–228 (1992).
  • Champion GD , GrahamGG , ZieglerJB. Chrysotherapy, treatment with gold-based drugs. Ballieres Clin. Rheumatol.4, 491–534 (1990).
  • Shaw CF III . Gold-based therapeutic agents. Chem. Rev.99(9), 2589–2600 (1999).
  • Jones WD . Diverse chemical applications of N-heterocyclic carbenes. J. Am. Chem. Soc.131(42), 15075–15077 (2009).
  • Mercsa L , AlbrechtM. Beyond catalysis: N-heterocyclic carbene complexes as components for medicinal, luminescent, and functional materials applications. Chem. Soc. Rev.39, 1903–1912 (2010).
  • Fung SK , ZouT , CaoBet al. Cyclometalated gold(III) complexes containing N-heterocyclic carbene ligands engage multiple anti-cancer molecular targets. Angew. Chem. Int. Ed.56(14), 3892–3896 (2017).
  • Streciwilk W , TerenziA , NardoFLet al. Synthesis and biological evaluation of organometallic complexes bearing bis-1,8-naphthalimide ligands. Eur. J. Inorg. Chem.2018(26), 3104–3112 (2018).
  • Vellé A , MaguireR , KavanaghKet al. Steroid-AuI-NHC complexes: synthesis and antibacterial activity. Chem. Med. Chem.12(11), 841–844 (2017).
  • Walthera W , DadaQ , CillianO'Beirne Cet al. In vitro and in vivo investigations into the carbene gold chloride and thioglucoside anticancer drug candidates NHC–AuCl and NHC–AuSR. Lett. Drug Des. Discov.14, 125–134 (2017).
  • Dada O , CurranD , O’BeirneCet al. Synthesis and cytotoxicity studies of novel NHC–Gold(I) pseudohalides and thiolates. J. Organomet. Chem.840, 30–37 (2017).
  • Dada O , Sánchez-SanzG , MatthiasTacke Met al. Synthesis and anticancer activity of novel NHC–gold(I)-sugar complexes. Tetrahedron Lett.59, 2904–2908 (2018).
  • Curran D , DadaO , Müller-BunzHet al. Synthesis and cytotoxicity studies of novel NHC*-gold(I) complexes derived from Lepidiline A. Molecules23(8), E2031 (2018).
  • Kapdi AR , FairlambIJS. Anti-cancer palladium complexes: a focus on PdX2L2, palladacycles and related complexes. Chem. Soc. Rev.43(13), 4751–4777 (2014).
  • Coskun MD , AriF , OralAYet al. Promising anti-growth effects of palladium(II) saccharinate complex of terpyridine by inducing apoptosis on transformed fibroblasts in vitro. Bioorg, Med. Chem.21(5), 4698–4705 (2013).
  • Choo KB , MahWL , LeeSUet al. Palladium complexes of bidentate pyridine N-heterocyclic carbenes: optical resolution, antimicrobial and cytotoxicity studies. Appl. Organometal. Chem.32(8), e4377 (2018).
  • Akkoç S , KayserV , İlhanİÖet al. New compounds based on a benzimidazole nucleus: synthesis, characterization and cytotoxic activity against breast and colon cancer cell lines. J. Organomet. Chem.839, 98–107 (2017).
  • Haque RA , HazizUFM , AmirulAAet al. Synthesis of a palladium(II) complex of a N-heterocylic carbene via transmetalation: crystal structure and antibacterial studies. Transit. Met. Chem.41, 775–781 (2016).
  • Hussaini SY , HaqueRA , FatimaTet al. Palladium(II) N-heterocyclic carbene complexes: synthesis, structures and cytotoxicity potential studies against breast cancer cell line. J. Coord. Chem.71(16–18), 2787–2799 (2018).
  • Hussaini SY , HaqueRA , TalebAghac Met al. Synthesis, structures and anticancer studies of symmetrically and nonsymmetrically aliphatic nitrile functionalized silver(I)-N-heterocyclic carbene and palladium(II)-N-heterocyclic carbene complexes. Inorg. Nano-met. Chem.48(4–5), 247–256 (2018).
  • Ghdhayeb MZ , HaqueRA , BudagumpiSet al. Synthesis, characterization, crystal structure and in vitro anticancer potentials of mono and bimetallic palladium(II)–N–heterocyclic carbene complexes. Inorg. Chem. Commun.75, 41–45 (2017).
  • Geldmacher Y , OleszakM , SheldrickWS. Rhodium(III) and iridium(III) complexes as anticancer agents. Inorg. Chim. Acta393, 84–102 (2012).
  • Oehninger L , SpreckelmeyerS , HolenyaPet al. Rhodium(I) N-heterocyclic carbene bioorganometallics as in vitro antiproliferative agents with Ddstinct effects on cellular signaling. J. Med. Chem.58(24), 9591–9600 (2015).
  • Zhang JJ , MuenznerJK , Abuel Maaty MAet al. A multi-target caffeine derived rhodium(I) N-heterocyclic carbene complex: evaluation of the mechanism of action. Dalton Trans.45, 13161–13168 (2016).
  • Fan R , BianM , HuLet al. A new rhodium(I) NHC complex inhibits TrxR: In vitro cytotoxicity and in vivo hepatocellular carcinoma suppression. Eur. J. Med. Chem.183, 111721 (2019).
  • Antonarakis ES , EmadiA. Ruthenium-based chemotherapeutics: are they ready for prime time?Cancer Chemoth. Pharm.66(1), 1–9 (2010).
  • Rademaker-Lakhai JM , vanden Bongard D , PluimDet al. A phase I and pharmacological study with imidazolium-trans-DMSO-imidazole-tetrachlororuthenate, a novel ruthenium anticancer agent. Clin. Cancer Res.10(11), 3717–3727 (2004).
  • Tabrizi L , OlasunkanmiLO , FadareOA. Experimental and theoretical investigations of cyclometalated ruthenium(II) complex containing CCC-pincer and anti-inflammatory drugs as ligands: synthesis, characterization, inhibition of cyclooxygenase and in vitro cytotoxicity activities in various cancer cell lines. Dalton Trans.48, 728–740 (2019).
  • Yang Y , GuoL , GeXet al. Novel lysosome-targeted cyclometalated iridium(III) anticancer complexes containing imine-N-heterocyclic carbene ligands: synthesis, spectroscopic properties and biological activity. Dyes Pigm.161, 119–129 (2019).
  • Li Y , LiuB , LuXet al. Cyclometalated iridium(III) N-heterocyclic carbene complexes as potential mitochondrial anticancer and photodynamic agents. Dalton Trans.46, 11363–11371 (2017).
  • Gothe Y , MarzoT , MessoriLet al. Iridium(I) compounds as prospective anticancer agents: solution chemistry, antiproliferative profiles and protein interactions for a series of iridium(I) N-heterocyclic carbene complexes. Chem. Eur. J.22(35), 12487–12494 (2016).
  • Daubit IM , Metzler-NolteN. On the interaction of N-heterocyclic carbene Ir+I complexes with His and Cys containing peptides. Dalton Trans.48, 13662–13673 (2019).
  • Sánchez-Mora A , ValdésH , Ramírez-ApanMTet al. NHC–Ir(I) complexes derived from 5,6-dinitrobenzimidazole. Synthesis, characterization and preliminary evaluation of their in vitro anticancer activity. Inorganica Chim. Acta496, 119061 (2019).
  • Eslava-Gonzalez I , ValdésH , Ramírez-ApanMTet al. Synthesis of theophylline-based iridium(I) N-heterocyclic carbene complexes including fluorinated-thiophenolate ligands. Preliminary evaluation of their in vitro anticancer activity. Inorganica Chim. Acta507, 119588 (2020).
  • Rosenberg B , van CampL , TroskoJE , MansourVH. Platinum compounds: a new class of potent antitumour agents. Nature222(5191), 385–386 (1969).
  • Kaim W , SchwederskiB. Bioanorganische Chemie (3rd Edition). Teubner, Stuttgart, Germany, 370 (2004).
  • Umapathy P . The chemical and biochemical consequences of the binding of the antitumour drug cisplatin and other platinum group metal complexes to DNA. Coordin. Chem. Rev.95(2), 129–181 (1989).
  • Harlepp S , ChardonE , BouchéMet al. N-Heterocyclic carbene-platinum complexes featuring an anthracenyl moiety: anti-cancer activity and DNA interaction. Int. J. Mol. Sci.20(17), E4198 (2019).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.