887
Views
0
CrossRef citations to date
0
Altmetric
Review

GLUT1 Biological Function and Inhibition: Research Advances

ORCID Icon, , , ORCID Icon &
Pages 1227-1243 | Received 10 Mar 2021, Accepted 29 Apr 2021, Published online: 21 May 2021

References

  • Ferreira LM . Cancer metabolism: the Warburg effect today. Exp. Mol. Pathol.89(3), 372–380 (2010).
  • Abdou AG , EldienMM , ElsakkaD. GLUT-1 expression in cutaneous basal and squamous cell carcinomas. Int. J. Surg. Pathol.23(6), 447–453 (2015).
  • Ancey PB , ContatC , MeylanE. Glucose transporters in cancer – from tumor cells to the tumor microenvironment. FEBS. J.285(16), 2926–2943 (2018).
  • Ma X , HuiY , LinLet al. Clinical significance of COX-2, GLUT-1 and VEGF expressions in endometrial cancer tissues. Pak. J. Med. Sci.31(2), 280–284 (2015).
  • Qamar S , FatimaS , RehmanAet al. Glucose transporter 1 overexpression in oral squamous cell carcinoma. J. Coll. Physicians Surg. Pak.29(8), 724–727 (2019).
  • Mueckler M , ThorensB. The SLC2 (GLUT) family of membrane transporters. Mol. Aspects Med.34(2–3), 121–138 (2013).
  • Carruthers A , DezutterJ , GangulyA , DevaskarSU. Will the original glucose transporter isoform please stand up. Am. J. Physiol. Endocrinol. Metab.297(4), E836–848 (2009).
  • Uldry M , IbbersonM , HosokawaM , ThorensB. GLUT2 is a high affinity glucosamine transporter. FEBS Lett.524(1–3), 199–203 (2002).
  • Reckzeh ES , WaldmannH. Development of glucose transporter (GLUT) inhibitors. Eur. J. Org. Chem.2020(16), 2321–2329 (2020).
  • Uldry M , ThorensB. The SLC2 family of facilitated hexose and polyol transporters. Pflugers. Arch.447(5), 480–489 (2004).
  • Joost HG , ThorensB. The extended GLUT-family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members (review). Mol. Membr. Biol.18(4), 247–256 (2001).
  • Caulfield MJ , MunroePB , O'NeillDet al. SLC2A9 is a high-capacity urate transporter in humans. PLoS Med.5(10), e197 (2008).
  • Deng D , XuC , SunPet al. Crystal structure of the human glucose transporter GLUT1. Nature510(7503), 121–125 (2014).
  • Graybill C , Van HoekAN , DesaiDet al. Ultrastructure of human erythrocyte GLUT1. Biochemistry45(26), 8096–8107 (2006).
  • Zottola RJ , ClohertyEK , CoderrePEet al. Glucose transporter function is controlled by transporter oligomeric structure. A single, intramolecular disulfide promotes GLUT1 tetramerization. Biochemistry34(30), 9734–9747 (1995).
  • De Zutter JK , LevineKB , DengD , CarruthersA. Sequence determinants of GLUT1 oligomerization: analysis by homology-scanning mutagenesis. J. Biol. Chem.288(28), 20734–20744 (2013).
  • Lloyd KP , OjelabiOA , DeZutter JK , CarruthersA. Reconciling contradictory findings: glucose transporter 1 (GLUT1) functions as an oligomer of allosteric, alternating access transporters. J. Biol. Chem.292(51), 21035–21046 (2017).
  • Hamill S , ClohertyEK , CarruthersA. The human erythrocyte sugar transporter presents two sugar import sites. Biochemistry38(51), 16974–16983 (1999).
  • Baker GF , NaftalinRJ. Evidence of multiple operational affinities for D-glucose inside the human erythrocyte membrane. Biochim. Biophys. Acta.550(3), 474–484 (1979).
  • Naftalin RJ . Reassessment of models of facilitated transport and cotransport. J. Membr. Biol.234(2), 75–112 (2010).
  • Tian Y , ShenS , GuLet al. Computer-aided design of glucoside brain-targeted molecules based on 4PYP. J. Mol. Graph. Model103, 107819 (2020).
  • Simpson IA , DwyerD , MalideDet al. The facilitative glucose transporter GLUT3: 20 years of distinction. Am. J. Physiol-Endoc. M.295(2), E242–E253 (2008).
  • Huang S , CzechMP. The GLUT4 glucose transporter. Cell Metab.5(4), 237–252 (2007).
  • Chen C , PoreN , BehroozAet al. Regulation of glut1 mRNA by hypoxia-inducible factor-1. Interaction between H-ras and hypoxia. J. Biol. Chem.276(12), 9519–9525 (2001).
  • Weinstein SP , HaberRS. Glucose transport stimulation by thyroid hormone in ARL 15 cells: partial role of increased GLUT1 glucose transporter gene transcription. Thyroid3(2), 135–142 (1993).
  • Schwartzenberg-Bar-Yoseph F , ArmoniM , KarnieliE. The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res.64(7), 2627–2633 (2004).
  • Cifuentes M , GarciaMA , ArrabalPMet al. Insulin regulates GLUT1-mediated glucose transport in MG-63 human osteosarcoma cells. J. Cell Physiol.226(6), 1425–1432 (2011).
  • Tan VP , MiyamotoS. HK2/hexokinase-II integrates glycolysis and autophagy to confer cellular protection. Autophagy11(6), 963–964 (2015).
  • Angira D , NatarajanN , DedaniaSRet al. Characterization of P. aeruginosa glucose 6-phosphate isomerase: a functional insight via in-vitro activity study. Curr. Top. Med. Chem.20(29), 2651–2661 (2020).
  • Webb BA , ForouharF , SzuFEet al. Structures of human phosphofructokinase-1 and atomic basis of cancer-associated mutations. Nature523(7558), 111–114 (2015).
  • White MR , GarcinED. D-glyceraldehyde-3-phosphate dehydrogenase structure and function. Sub-Cell. Biochem.83, 413–453 (2017).
  • Fu Q , YuZ. Phosphoglycerate kinase 1 (PGK1) in cancer: a promising target for diagnosis and therapy. Life Sci.256, 117863 (2020).
  • Sharif F , RasulA , AshrafAet al. Phosphoglycerate mutase 1 in cancer: a promising target for diagnosis and therapy. IUBMB Life71(10), 1418–1427 (2019).
  • Counihan JL , GrossmanEA , NomuraDK. Cancer metabolism: current understanding and therapies. Chem. Rev.118(14), 6893–6923 (2018).
  • Ashton TM , McKennaWG , Kunz-SchughartLA , HigginsGS. Oxidative phosphorylation as an emerging target in cancer therapy. Clin. Cancer Res.24(11), 2482–2490 (2018).
  • Reckzeh ES , WaldmannH. Small-molecule inhibition of glucose transporters GLUT-1–4. Chembiochem21(1), 45–52 (2020).
  • Yin C , GaoB , YangJ , WuJ. Glucose transporter-1 (GLUT-1) expression is associated with tumor size and poor prognosis in locally advanced gastric cancer. Med. Sci. Monit. Basic Res.26, e920778 (2020).
  • Zhao M , ZhangZ. Glucose transporter regulation in cancer: a profile and the loops. Crit. Rev. Eukaryot Gene. Expr.26(3), 223–238 (2016).
  • Zhou JC , ZhangJJ , ZhangWet al. Expression of GLUT-1 in nasopharyngeal carcinoma and its clinical significance. Eur. Rev. Med. Pharmacol. Sci.21(21), 4891–4895 (2017).
  • Zhou L , LiS , LiuLet al. Recombinant methioninase regulates PI3K/Akt/Glut-1 pathway and inhibits aerobic glycolysis to promote apoptosis of gastric cancer cells. Nan Fang Yi Ke Da Xue Xue Bao40(1), 27–33 (2020).
  • National Cancer Institute . Cancer Stat Facts 2019. (2020). https://seer.cancer.gov/statfacts/html/corp.html
  • Rudlowski C , MoserM , BeckerAJet al. GLUT1 mRNA and protein expression in ovarian borderline tumors and cancer. Oncology66(5), 404–410 (2004).
  • Xintaropoulou C , WardC , WiseAet al. Expression of glycolytic enzymes in ovarian cancers and evaluation of the glycolytic pathway as a strategy for ovarian cancer treatment. BMC Cancer18(1), 636 (2018).
  • Ozcan A , ShenSS , ZhaiQJ , TruongLD. Expression of GLUT1 in primary renal tumors: morphologic and biologic implications. Am. J. Clin. Pathol.128(2), 245–254 (2007).
  • Stower H . Tracing clear cell renal carcinoma evolution. Nat. Med.24(6), 702 (2018).
  • Almeida L , SilvaR , CavadasBet al. GLUT1, MCT1/4 and CD147 overexpression supports the metabolic reprogramming in papillary renal cell carcinoma. Histol Histopathol32(10), 1029–1040 (2017).
  • Amann T , MaegdefrauU , HartmannAet al. GLUT1 expression is increased in hepatocellular carcinoma and promotes tumorigenesis. Am. J. Pathol.174(4), 1544–1552 (2009).
  • Sun HW , YuXJ , WuWCet al. GLUT1 and ASCT2 as predictors for prognosis of hepatocellular carcinoma. PLoS ONE11(12), e0168907 (2016).
  • Nishioka T , OdaY , SeinoYet al. Distribution of the glucose transporters in human brain tumors. Cancer Res.52(14), 3972–3979 (1992).
  • Brown RS , WahlRL. Overexpression of Glut-1 glucose transporter in human breast cancer. An immunohistochemical study. Cancer72(10), 2979–2985 (1993).
  • Shen YM , ArbmanG , OlssonB , SunXF. Overexpression of GLUT1 in colorectal cancer is independently associated with poor prognosis. Int. J. Biol. Markers26(3), 166–172 (2011).
  • Sasaki H , ShitaraM , YokotaKet al. Overexpression of GLUT1 correlates with Kras mutations in lung carcinomas. Mol. Med. Rep.5(3), 599–602 (2012).
  • Reinicke K , SotomayorP , CisternaP , DelgadoC , NualartF , GodoyA. Cellular distribution of Glut-1 and Glut-5 in benign and malignant human prostate tissue. J. Cell Biochem.113(2), 553–562 (2012).
  • Kapoor K , Finer-MooreJS , PedersenBPet al. Mechanism of inhibition of human glucose transporter GLUT1 is conserved between cytochalasin B and phenylalanine amides. Proc. Natl. Acad. Sci. USA113(17), 4711–4716 (2016).
  • Moreira L , AraujoI , CostaTet al. Quercetin and epigallocatechin gallate inhibit glucose uptake and metabolism by breast cancer cells by an estrogen receptor-independent mechanism. Exp. Cell. Res.319(12), 1784–1795 (2013).
  • Brito AF , RibeiroM , AbrantesAMet al. New approach for treatment of primary liver tumors: the role of quercetin. Nutr. Cancer68(2), 250–266 (2016).
  • Azevedo C , Correia-BrancoA , AraujoJR , GuimaraesJT , KeatingE , MartelF. The chemopreventive effect of the dietary compound kaempferol on the MCF-7 human breast cancer cell line is dependent on inhibition of glucose cellular uptake. Nutr. Cancer67(3), 504–513 (2015).
  • Salas M , ObandoP , OjedaLet al. Resolution of the direct interaction with and inhibition of the human GLUT1 hexose transporter by resveratrol from its effect on glucose accumulation. Am. J. Physiol. Cell Physiol.305(1), C90–99 (2013).
  • Wu H , HeL , ShiJet al. Resveratrol inhibits VEGF-induced angiogenesis in human endothelial cells associated with suppression of aerobic glycolysis via modulation of PKM2 nuclear translocation. Clin. Exp. Pharmacol. Physiol.45(12), 1265–1273 (2018).
  • Jung KH , LeeJH , ThienQuach CHet al. Resveratrol suppresses cancer cell glucose uptake by targeting reactive oxygen species-mediated hypoxia-inducible factor-1alpha activation. J. Nucl. Med.54(12), 2161–2167 (2013).
  • Gunnink LK , AlabiOD , KuiperBDet al. Curcumin directly inhibits the transport activity of GLUT1. Biochimie125, 179–185 (2016).
  • Hu Y , LouX , WangRet al. Aspirin, a potential GLUT1 inhibitor in a vascular endothelial cell line. Open Med.14, 552–560 (2019).
  • Schimmer AD , ThomasMP , HurrenRet al. Identification of Small Molecules that Sensitize Resistant Tumor Cells to Tumor Necrosis Factor-Family Death Receptors. Cancer Res.66(4), 2367–2375 (2006).
  • Wood TE , DaliliS , SimpsonCDet al. A novel inhibitor of glucose uptake sensitizes cells to FAS-induced cell death. Mol. Cancer Ther.7(11), 3546–3555 (2008).
  • Chan DA , SutphinPD , NguyenPet al. Targeting GLUT1 and the Warburg effect in renal cell carcinoma by chemical synthetic lethality. Sci. Transl. Med.3(94), 94ra70 (2011).
  • Kraus D , ReckenbeilJ , VeitNet al. Targeting glucose transport and the NAD pathway in tumor cells with STF-31: a re-evaluation. Cell. Oncol.41(5), 485–494 (2018).
  • Liu Y , CaoY , ZhangWet al. A small-molecule inhibitor of glucose transporter 1 downregulates glycolysis, induces cell-cycle arrest, and inhibits cancer cell growth in vitro and in vivo. Mol. Cancer Ther.11(8), 1672–1682 (2012).
  • Zhang W , LiuY , ChenX , BergmeierSC. Novel inhibitors of basal glucose transport as potential anticancer agents. Bioorg. Med. Chem. Lett.20(7), 2191–2194 (2010).
  • Ojelabi OA , LloydKP , SimonAHet al. WZB117 (2-fluoro-6-(m-hydroxybenzoyloxy) phenyl m-hydroxybenzoate) inhibits GLUT1-mediated sugar transport by binding reversibly at the exofacial sugar binding site. J. Biol. Chem.291(52), 26762–26772 (2016).
  • Siebeneicher H , CleveA , RehwinkelHet al. Identification and optimization of the first highly selective GLUT1 inhibitor BAY-876. ChemMedChem11(20), 2261–2271 (2016).
  • Siebeneicher H , BauserM , BuchmannBet al. Identification of novel GLUT inhibitors. Bioorg. Med. Chem. Lett.26(7), 1732–1737 (2016).
  • Ung PM , SongW , ChengLet al. Inhibitor discovery for the human GLUT1 from homology modeling and virtual screening. ACS Chem. Biol.11(7), 1908–1916 (2016).
  • Reckzeh ES , KarageorgisG , SchwalfenbergMet al. Inhibition of glucose transporters and glutaminase synergistically impairs tumor cell growth. Cell Chem. Biol.26(9), 1214–1228 (2019).
  • Kang SA , O'neillDJ , MachlAWet al. Discovery of small-molecule selective mTORC1 inhibitors via direct inhibition of glucose transporters. Cell Chem. Biol.26(9), 1203–1213 (2019).
  • Karageorgis G , ReckzehES , CeballosJet al. Chromopynones are pseudo natural product glucose uptake inhibitors targeting glucose transporters GLUT-1 and -3. Nat. Chem.10(11), 1103–1111 (2018).
  • Ceballos J , SchwalfenbergM , KarageorgisGet al. Synthesis of indomorphan pseudo-natural product inhibitors of glucose transporters GLUT-1 and -3. Angew Chem. Int. Ed. Engl.58(47), 17016–17025 (2019).
  • Cuppoletti J , MayhewE , JungCY. Cytochalasin B binding to Ehrlich ascites tumor cells and its relationship to glucose carrier. Biochim. Biophys. Acta.642(2), 392–404 (1981).
  • Nelson KM , DahlinJL , BissonJet al. The essential medicinal chemistry of curcumin. J. Med. Chem.60(5), 1620–1637 (2017).
  • Unlu A , NayirE , DogukanKalenderoglu Met al. Curcumin (turmeric) and cancer. J. Buon.21(5), 1050–1060 (2016).
  • Capodanno D , AngiolilloDJ. Aspirin for primary cardiovascular risk prevention and beyond in diabetes mellitus. Circulation134(20), 1579–1594 (2016).
  • Levine LD , HollandTL , KimKet al. The role of aspirin and inflammation on reproduction: the EAGeR trial. Can. J. Physiol. Pharmacol.97(3), 187–192 (2019).
  • Liu YX , FengJY , SunMMet al. Aspirin inhibits the proliferation of hepatoma cells through controlling GLUT1-mediated glucose metabolism. Acta. Pharmacol. Sin.40(1), 122–132 (2019).
  • Wang T , NingK , LuTX , HuaD. Elevated expression of TrpC5 and GLUT1 is associated with chemoresistance in colorectal cancer. Oncol. Rep.37(2), 1059–1065 (2017).
  • Sawayama H , OgataY , IshimotoTet al. Glucose transporter 1 regulates the proliferation and cisplatin sensitivity of esophageal cancer. Cancer Sci.110(5), 1705–1714 (2019).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.