95
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Structural Insight Into SSE15206 in Complex With Tubulin Provides a Rational Design for Pyrazolinethioamides As Tubulin Polymerization Inhibitors

ORCID Icon, ORCID Icon, , , , ORCID Icon & ORCID Icon show all
Pages 785-794 | Received 29 Apr 2021, Accepted 11 Apr 2022, Published online: 04 May 2022

References

  • Dumontet C , JordanMA. Microtubule-binding agents: a dynamic field of cancer therapeutics. Nat. Rev. Drug Discov.9(10), 790–803 (2010).
  • Mcloughlin EC , O'boyleNM. Colchicine-binding site inhibitors from chemistry to clinic: a review. Pharmaceuticals (Basel)13(1), 8 (2020).
  • Steinmetz MO , ProtaAE. Microtubule-targeting agents: strategies to hijack the cytoskeleton. Trends Cell Biol.28(10), 776–792 (2018).
  • Li W , SunH , XuS , ZhuZ , XuJ. Tubulin inhibitors targeting the colchicine binding site: a perspective of privileged structures. Future Med. Chem.9(15), 1765–1794 (2017).
  • Wu X , WangQ , LiW. Recent advances in heterocyclic tubulin inhibitors targeting the colchicine binding site. Anticancer Agents Med. Chem.16(10), 1325–1338 (2016).
  • Perez-Perez MJ , PriegoEM , BuenoO , MartinsMS , CanelaMD , LiekensS. Blocking blood flow to solid tumors by destabilizing tubulin: an approach to targeting tumor growth. J. Med. Chem.59(19), 8685–8711 (2016).
  • Yang CPH , HorwitzSB. Taxol®: the first microtubule stabilizing agent. Int. J. Mol. Sci.18(8), 1733 (2017).
  • Zhang Y , YangSH , GuoXL. New insights into Vinca alkaloids resistance mechanism and circumvention in lung cancer. Biomed. Pharmacother.96, 659–666 (2017).
  • Xiao H , ZhengY , MaL , TianL , SunQ. Clinically-relevant ABC transporter for anti-cancer drug resistance. Front. Pharmacol.12, 648407–648407 (2021).
  • Arnst KE , WangY , HwangDJet al. A potent, metabolically stable tubulin inhibitor targets the colchicine binding site and overcomes taxane resistance. Cancer Res.78(1), 265–277 (2018).
  • Stengel C , NewmanSP , LeeseMP , PotterBV , ReedMJ , PurohitA. Class III beta-tubulin expression and in vitro resistance to microtubule targeting agents. Br. J. Cancer102(2), 316–324 (2010).
  • Duan YT , ManRJ , TangDJet al. Design, synthesis and antitumor activity of novel link-bridge and B-ring modified combretastatin A-4 (CA-4) analogues as potent antitubulin agents. Sci. Rep.6, 25387 (2016).
  • Ning N , YuY , WuMet al. A novel microtubule inhibitor overcomes multidrug resistance in tumors. Cancer Res.78(20), 5949–5957 (2018).
  • Fojo T , MenefeeM. Mechanisms of multidrug resistance: the potential role of microtubule-stabilizing agents. Ann. Oncol.18(Suppl. 5), v3–8 (2007).
  • Arnst KE , WangY , LeiZNet al. Colchicine binding site agent DJ95 overcomes drug resistance and exhibits antitumor efficacy. Mol. Pharmacol.96(1), 73–89 (2019).
  • Kowalski RJ , GiannakakouP , GunasekeraSP , LongleyRE , DayBW , HamelE. The microtubule-stabilizing agent discodermolide competitively inhibits the binding of paclitaxel (taxol) to tubulin polymers, enhances tubulin nucleation reactions more potently than paclitaxel, and inhibits the growth of paclitaxel-resistant cells. Mol. Pharmacol.52, 613–622 (1997).
  • Ravi Sethi MA , JatoliaSatya Narayan. Pharmacological activities of pyrazoline derivatives. Int. J. Pharm. Sci. Rev. Res.34(1)(36), 228–233 (2015).
  • V Prabhakar KSB , LkRavindranath , GuruPratap Reddy P , LathaJ. Synthesis and anti-bacterial, anti-fungal activity of novel pyrazoline derivatives containing phenothiazine ring. Int. J. Chem. Stud.4(2), 51–58 (2016).
  • Panchal Ashvin D , PatelPravinkumar M. Synthesis, anti-bacterial and anti-fungal evaluation of pyrazoline derivatives. J. Chem.9(4), 1801–1809 (2012).
  • Rani M , MohamadY. Synthesis, studies and in vitro antibacterial activity of some 5-(thiophene-2-yl)-phenyl pyrazoline derivatives. J. Saudi Chem. Soc.18(5), 411–417 (2014).
  • Suresh Kumar SB , DrabuSushma , KumarRajiv , GuptaHimanshu. Biological activities of pyrazoline derivatives - a recent development. Recent Pat. Antiinfect. Drug Discov.4, 154–163 (2009).
  • Ramesh B , SumanaT. Synthesis and anti-inflammatory activity of pyrazolines. J. Chem.7(2), 514–516 (2010).
  • Chandra T , GargN , LataS , SaxenaKK , KumarA. Synthesis of substituted acridinyl pyrazoline derivatives and their evaluation for anti-inflammatory activity. Eur. J. Med. Chem.45(5), 1772–1776 (2010).
  • Surendra Kumar R , ArifIA , AhamedA , IdhayadhullaA. Anti-inflammatory and antimicrobial activities of novel pyrazole analogues. Saudi J. Biol. Sci.23(5), 614–620 (2016).
  • Manzoor S , BilalA , KhanSet al. Identification and characterization of SSE15206, a microtubule depolymerizing agent that overcomes multidrug resistance. Sci. Rep.8(1), 3305 (2018).
  • Ravelli Raimond BG , GigantB , CurmiPatrick Aet al. Insight into tubulin regulation from a complex with colchicine and a stathmin-like domain. Nature428(6979), 194–198 (2004).
  • Yang J , WangY , WangTet al. Pironetin reacts covalently with cysteine-316 of alpha-tubulin to destabilize microtubule. Nat. Commun.7, 12103 (2016).
  • Mccoy AJ , Grosse-KunstleveRW , AdamsPD , WinnMD , StoroniLC , ReadRJ. Phaser crystallographic software. J. Appl. Crystallogr.40(4), 658–674 (2007).
  • Murshudov GN , SkubakP , LebedevAAet al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr.67(Pt 4), 355–367 (2011).
  • Emsley P , CowtanK. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr.60(Pt 12 Pt 1), 2126–2132 (2004).
  • Laskowski RA , RullmannnJA , MacarthurMW , KapteinR , ThorntonJM. AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J. Biomol. NMR8(4), 477–486 (1996).
  • Morris GM , HueyR , LindstromWet al. AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J. Comput. Chem.30(16), 2785–2791 (2009).
  • Trott O , OlsonAJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem.31(2), 455–461 (2010).
  • Szakacs G , PatersonJK , LudwigJA , Booth-GentheC , GottesmanMM. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov.5(3), 219–234 (2006).
  • Baguley BC . Multiple drug resistance mechanisms in cancer. Mol. Biotechnol.46(3), 308–316 (2010).
  • Dumontet C , SikicBI. Mechanisms of action of and resistance to antitubulin agents microtubule dynamics drug transport and cell death. J. Clin. Oncol.17, 1061–1070 (1999).
  • Alam A , KowalJ , BroudeE , RoninsonI , LocherKP. Structural insight into substrate and inhibitor discrimination by human p-glycoprotein. Science363(6428), 753–756 (2019).
  • Canela María-Dolores , NoppenSam , BuenoOskía , JimenoMaría-Luisa , RibattiDomenico , VelázquezSonsoles. Antivascular and antitumor properties of the tubulin-binding chalcone TUB09. Oncotarget (8(9), 14325–14342 (2017).
  • Yang J , YanW , YuYet al. The compound millepachine and its derivatives inhibit tubulin polymerization by irreversibly binding to the colchicine-binding site in beta-tubulin. J. Biol. Chem.293(24), 9461–9472 (2018).
  • Jiang J , ZhangH , WangCet al. 1-Phenyl-dihydrobenzoindazoles as novel colchicine site inhibitors: structural basis and antitumor efficacy. Eur. J. Med. Chem.177, 448–456 (2019).
  • Wang Q , ArnstKE , WangYet al. Structure-guided design, synthesis, and biological evaluation of (2-(1H-Indol-3-yl)-1H-imidazol-4-yl)(3,4,5-trimethoxyphenyl) methanone (ABI-231) analogues targeting the colchicine binding site in tubulin. J. Med. Chem.62(14), 6734–6750 (2019).
  • Chen H , DengS , WangYet al. Structure-activity relationship study of novel 6-Aryl-2-benzoyl-pyridines as tubulin polymerization inhibitors with potent antiproliferative properties. J. Med. Chem.63(2), 827–846 (2020).
  • Lai Q , WangY , WangRet al. Design, synthesis and biological evaluation of a novel tubulin inhibitor 7a3 targeting the colchicine binding site. Eur. J. Med. Chem.156, 162–179 (2018).
  • Wang Q , ArnstKE , WangYet al. Structural modification of the 3,4,5-Trimethoxyphenyl moiety in the tubulin inhibitor VERU-111 leads to improved antiproliferative activities. J. Med. Chem.61(17), 7877–7891 (2018).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.