37
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Novel Trypanocidal Thiophen-Chalcone Cruzain Inhibitors: Structure- and Ligand-Based Studies

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 795-808 | Received 20 Jan 2022, Accepted 11 Apr 2022, Published online: 11 May 2022

References

  • Lidani KCF , AndradeFA , BaviaLet al. Chagas disease: from discovery to a worldwide health problem. J. Phys. Oceanogr.7, 166 (2019).
  • World Health Organization . Chagas disease (also known as American trypanosomiasis). www.who.int/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis)
  • Santos FM , JansenAM , MourãoG de M , JurbergJ , NunesAP , HerreraHM. Triatominae (Hemiptera, reduviidae) in the pantanal region: association with Trypanosoma cruzi, different habitats and vertebrate hosts. Rev. Soc. Bras. Med. Trop.48(5), 1–7 (2015).
  • Orozco MM , EnriquezGF , Alvarado-OteguiJAet al. New sylvatic hosts of Trypanosoma cruzi and their reservoir competence in the humid Chaco of Argentina: a longitudinal study. Am. J. Trop. Med. Hyg.88(5), 872–882 (2013).
  • Freilij H . Chagas disease: past, present, and future. In: Chagas Disease: A Clinical pproach.AltchehJM ( Ed). Springer, Cham, Switzerland (2019).
  • Balouz V , AgüeroF , BuscagliaCA. Chagas disease diagnostic applications: present knowledge and future steps. Adv. Parasitol.97, 1–45 (2017).
  • Coura JR , DeCastro SL. A critical review on Chagas disease chemotherapy. Mem. Inst. Oswaldo Cruz97(1), 3–24 (2002).
  • de Souza AS , FerreiraLLG , de OliveiraAS , AndricopuloAD. Quantitative structure–activity relationships for structurally diverse chemotypes having anti-Trypanosoma cruzi activity. Int. J. Mol. Sci.20(11), 2801 (2019).
  • Sajid M , RobertsonSA , BrinenLS , McKerrowJH. Cruzain: the path from target validation to the clinic. Adv. Exp. Med. Biol.712, 100–115 (2011).
  • Mott BT , FerreiraRS , SimeonovAet al. Identification and optimization of inhibitors of trypanosomal cysteine proteases: cruzain, rhodesain, and TbCatB. J. Med. Chem.53(1), 52–60 (2010).
  • Nowakowska Z . A review of anti-infective and anti-inflammatory chalcones. Eur. J. Med. Chem.42(2), 125–137 (2007).
  • Rao YK , FangSH , TzengYM. Differential effects of synthesized 2′-oxygenated chalcone derivatives: modulation of human cell cycle phase distribution. Bioorg. Med. Chem.12(10), 2679–2686 (2004).
  • Abu N , HoWY , YeapSKet al. The flavokawains: uprising medicinal chalcones. Cancer Cell Int.13(1), 102 (2013).
  • Won SJ , LiuCT , TsaoLTet al. Synthetic chalcones as potential anti-inflammatory and cancer chemopreventive agents. Eur. J. Med. Chem.40(1), 103–112 (2005).
  • Kiat TS , PippenR , YusofR , IbrahimH , KhalidN , RahmanNA. Inhibitory activity of cyclohexenyl chalcone derivatives and flavonoids of fingerroot, Boesenbergia rotunda (L.), towards dengue-2 virus NS3 protease. Bioorg. Med. Chem. Lett.16(12), 3337–3340 (2006).
  • Cheng JH , HungCF , YangSC , WangJP , WonSJ , LinCN. Synthesis and cytotoxic, anti-inflammatory, and anti-oxidant activities of 2′,5′-dialkoxylchalcones as cancer chemopreventive agents. Bioorg. Med. Chem.16(15), 7270–7276 (2008).
  • Mondol MAM . Antiangiogenic study of two nonsteroidal antiinflammatory compounds using chick chorioallantoic membrane assay. J. Med. Sci.6(4), 609–614 (2006).
  • Duddukuri NK , ThatikondaS , GoduguC , KumarRA , DoijadN. Synthesis of novel thiophene-chalcone derivatives as anticancer- and apoptosis-inducing agents. ChemistrySelect3(24), 6859–6864 (2018).
  • Ferreira LG , DosSantos RN , OlivaG , AndricopuloAD. Molecular docking and structure-based drug design strategies. Molecules20(7), 13384–13421 (2015).
  • De Oliveira AS , MelloLDS , OgiharaCHet al. Diaminomaleonitrile derivatives as new potential antichagasic compounds: a study of structure–activity relationships. Future Med. Chem.13(24), 2167–2183 (2021).
  • Ferreira RS , DessoyMA , PauliIet al. Synthesis, biological evaluation, and structure–activity relationships of potent noncovalent and nonpeptidic cruzain inhibitors as anti-Trypanosoma cruzi agents. J. Med. Chem.57(6), 2380–2392 (2014).
  • dos Santos CBR , LobatoCC , de SousaMAC , daCruz Macêdo WJ , CarvalhoJCT. Molecular modeling: origin, fundamental concepts and applications using structure-activity relationship and quantitative structure-activity relationship. Rev. Theor. Sci.2(2), 1–25 (2014).
  • Borchhardt DM , MascarelloA , ChiaradiaLDet al. Biochemical evaluation of a series of synthetic chalcone and hydrazide derivatives as novel inhibitors of cruzain from Trypanosoma cruzi. J. Braz. Chem. Soc.21(1), 142–150 (2010).
  • Pauli I , FerreiraLG , DeSouza MLet al. Molecular modeling and structure–activity relationships for a series of benzimidazole derivatives as cruzain inhibitors. Future Med. Chem.9(7), 641–657 (2017).
  • Nageswari G , GeorgeG , RamalingamS , GovindarajanM. Electronic and vibrational spectroscopic (FT-IR and FT-Raman) investigation using ab initio (HF) and DFT (B3LYP and B3PW91) and HOMO/LUMO/MEP analysis on the structure of L-serine methyl ester hydrogen chloride. J. Mol. Struct.1166, 422–441 (2018).
  • Pires DEV , BlundellTL , AscherDB. pkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem.58(9), 4066–4072 (2015).
  • Branquinha MH , OliveiraSSC , SangenitoLSet al. Cruzipain: an update on its potential as chemotherapy target against the human pathogen Trypanosoma cruzi. Curr. Med. Chem.22(18), 2225–2235 (2015).
  • Freshney RI , Capes-DavisA , GregoryC , PrzyborskiS. Culture of Animal Cells: A Manual of Basic Technique and Specialized Applications (7th Edition). John Wiley & Sons, NJ, USA (2016).
  • Aguirre G , CerecettoH , DiMaio Ret al. Quinoxaline N,N′-dioxide derivatives and related compounds as growth inhibitors of Trypanosoma cruzi. Structure–activity relationships. Bioorg. Med. Chem. Lett.14(14), 3835–3839 (2004).
  • Gramatica P , SangionA. A historical excursus on the statistical validation parameters for QSAR models: a clarification concerning metrics and terminology. J. Chem. Inf. Model.56(6), 1127–1131 (2016).
  • Gillmor SA , CraikCS , FletterickRJ. Structural determinants of specificity in the cysteine protease cruzain. Protein Sci.6(8), 1603–1611 (1997).
  • Roberts JT , BleehenNM , LeeFYF , WorkmanP , WaltonMI. A phase I study of the combination of benznidazole and CCNU in man. Int. J. Radiat. Oncol. Biol. Phys.10(9), 1745–1748 (1984).
  • Altcheh J , MoscatelliG , MastrantonioGet al. Population pharmacokinetic study of benznidazole in pediatric Chagas disease suggests efficacy despite lower plasma concentrations than in adults. PLoS Negl. Trop. Dis.8(5), e2907 (2014).
  • Soy D , AldasoroE , GuerreroLet al. Population pharmacokinetics of benznidazole in adult patients with Chagas disease. Antimicrob. Agents Chemother.59(6), 3342–3349 (2015).
  • Leonardi D , BombardiereME , SalomonCJ. Effects of benznidazole: cyclodextrin complexes on the drug bioavailability upon oral administration to rats. Int. J. Biol. Macromol.62, 543–548 (2013).
  • Campos MC , Castro-PintoDB , RibeiroGAet al. P-glycoprotein efflux pump plays an important role in Trypanosoma cruzi drug resistance. Parasitol Res. 112(6), 2341–51 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.