80
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Synergistic Effect of Bovine Cateslytin-Loaded Nanoparticles Combined With Ultrasound Against Candida Albicans Biofilm

, , , , , , , , , & ORCID Icon show all
Pages 43-55 | Received 23 Mar 2022, Accepted 28 Nov 2022, Published online: 20 Jan 2023

References

  • Rajendran R , SherryL , NileCJet al. Biofilm formation is a risk factor for mortality in patients with Candida albicans bloodstream infection – Scotland, 2012–2013. Clin. Microbiol. Infect.22(1), 87–93 (2016).
  • Vitális E , NagyF , TóthZet al. Candida biofilm production is associated with higher mortality in patients with candidaemia. Mycoses63(4), 352–360 (2020).
  • Marcos-Zambrano LJ , Gómez-PerosanzM , EscribanoP , ZaragozaO , BouzaE , GuineaJ. Biofilm production and antibiofilm activity of echinocandins and liposomal amphotericin B in echinocandin-resistant yeast species. Antimicrob. Agents Chemother.6, 3579–3586 (2016).
  • Taff HT , MitchellKF , EdwardJA , AndesDR. Mechanisms of Candida biofilm drug resistance. Future Microbiol.8(10), 1325–1337 (2013).
  • Tsui C , KongEF , Jabra-RizkMA. Pathogenesis of Candida albicans biofilm. Pathog. Dis.74(4), ftw018 (2016).
  • Do Nascimento Dias J , DeSouza Silva C , DeAraújo ARet al. Mechanisms of action of antimicrobial peptides ToAP2 and NDBP-5.7 against Candida albicans planktonic and biofilm cells. Sci. Rep.10(1), 10327 (2020).
  • Aslam R , AtindehouM , LavauxT , HaïkelY , SchneiderF , Metz-BoutigueMH. Chromogranin A-derived peptides are involved in innate immunity. Curr. Med. Chem.19(24), 4115–4123 (2012).
  • Louthan O . Chromogranin A in physiology and oncology. Folia Biologica57(5), 173–181 (2011).
  • Zazo H , ColinoCI , LanaoJM. Current applications of nanoparticles in infectious diseases. J. Control. Release224(20), 86–102 (2016).
  • Danhier F , AnsorenaE , SilvaJM , CocoR , BretonAL , PréatV. PLGA-based nanoparticles: an overview of biomedical applications. J. Control. Release161(2), 505–522 (2012).
  • Wang TY , ChoeJW , PuKet al. Ultrasound-guided delivery of microRNA loaded nanoparticles into cancer. J. Control. Release203, 99–108 (2015).
  • Tang X , ZhuH , SunLet al. Enhanced antifungal effects of amphotericin B-TPGS-b-(PCL-ran-PGA) nanoparticles in vitro and in vivo. Int. J. Nanomed.9, 5403–5413 (2014).
  • Ahmadi F , McLoughlinIV , ChauhanS , Ter-HaarG. Bio-effects and safety of low-intensity, low-frequency ultrasonic exposure. Prog. Biophys. Mol. Biol.108(3), 119–138 (2012).
  • Peterson RV , PittWG. The effect of frequency and power density on the ultrasonically-enhanced killing of biofilm-sequestered Escherichia coli. Colloid Surf. B17(4), 219–227 (2000).
  • Ibrahim NH , MelakeNA , SomilyAM , ZakariaAS , BaddourMM , MahmoudAZ. The effect of antifungal combination on transcripts of a subset of drug-resistance genes in clinical isolates of Candida species induced biofilms. Saudi Pharm. J.23(1), 55–66 (2015).
  • Jeffery H , DavisSS , O'HaganDT. The preparation and characterization of poly(lactide-co-glycolide) microparticles. II. The entrapment of a model protein using a (water-in-oil)-in-water emulsion solvent evaporation technique. Pharm. Res.10(3), 362–368 (1993).
  • Radwan MA , AlquadeibBT , ŠillerL , WrightMC , HorrocksB. Oral administration of amphotericin B nanoparticles: antifungal activity, bioavailability and toxicity in rats. Drug Deliv.24(1), 40–50 (2017).
  • Pierce CG , PriyaU , TristanARet al. A simple and reproducible 96-well plate-based method for the formation of fungal biofilms and its application to antifungal susceptibility testing. Nat. Protocols3(9), 1494–1500 (2008).
  • Wang H , JosephJA. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic. Biol. Med.27(5-6), 612–616 (1999).
  • Yu Q , ZhangB , LiJ , ZhangB , WangH , LiM. Endoplasmic reticulum-derived reactive oxygen species (ROS) is involved in toxicity of cell wall stress to Candida albicans. Free Radic. Biol. Med.99, 572–583 (2016).
  • Markéta R , SonaK , HélèneTet al. Candida albicans biofilm formation in a new in vivo rat model. Microbiology156(3), 909–919 (2010).
  • Sandai D , TabanaYM , OuweiniAE , AyodejiIO. Resistance of Candida albicans biofilms to drugs and the host immune system. Jundishapur J. Microbiol.9(11), e37385 (2016).
  • Ramage G , LópezribotJL. Techniques for antifungal susceptibility testing of Candida albicans biofilms. Methods Mol. Med.118(118), 71–79 (2005).
  • Yun C , JinW , XuL , RuiW , LeiX. A review of the combination therapy of low frequency ultrasound with antibiotics. Bio. Med. Res. Int.2017, 1–14 (2017).
  • Yang M , DuK , HouYet al. Synergistic antifungal effect of amphotericin B-loaded poly(lactic-co-glycolic acid) nanoparticles and ultrasound against Candida albicans biofilms. Antimicrob. Agents Chemother.63(4), e02022–e02018 (2019).
  • Roudbarmohammadi S , RoudbaryM , BakhshiB , KatiraeeF , MohammadiR , FalahatiM. ALS1 and ALS3 gene expression and biofilm formation in Candida albicans isolated from vulvovaginal candidiasis. Adv. Biomed. Res.5(1), 105 (2016).
  • Kucharíková S , TournuH , LagrouK , Van DijckP , BujdákováH. Detailed comparison of Candida albicans and Candida glabrata biofilms under different conditions and their susceptibility to caspofungin and anidulafungin. J. Med. Microbiol.60(9), 1261–1269 (2011).
  • Manoharan RK , LeeJH , KimYG , LeeJ. Alizarin and chrysazin inhibit biofilm and hyphal formation by Candida albicans. Front. Cell. Infect. Microbiol.7, 447 (2017).
  • Sánchez-Gómez S , Martínez-De-TejadaG. Antimicrobial peptides as anti-biofilm agents in medical implants. Curr. Topics Med. Chem.17(5), 590–603 (2017).
  • Briolat J , WuSD , MahataSKet al. New antimicrobial activity for the catecholamine release-inhibitory peptide from chromogranin A. Cell. Mol. Life Sci.62(3), 377–385 (2005).
  • Mahata SK , MahataM , LivseyTaylor CV , TaupenotL , ParmerRJ , O'ConnorDT. The novel catecholamine release-inhibitory peptide catestatin (chromogranin A344-364). Properties and function. Adv. Exp. Med. Biol.482, 263–277 (2000).
  • Felício MR , SilvaON , GonçalvesS , SantosNC , FrancoOL. Peptides with dual antimicrobial and anticancer activities. Front. Chem.5, 5 (2017).
  • Helmerhorst EJ , TroxlerRF , OppenheimFG. The human salivary peptide histatin 5 exerts its antifungal activity through the formation of reactive oxygen species. Proc. Natl Acad. Sci. USA98(25), 14637–14642 (2001).
  • Wang K , DangW , XieJet al. Antimicrobial peptide protonectin disturbs the membrane integrity and induces ROS production in yeast cells. Biochim. Biophys. Acta1848(10 Pt A), 2365–2373 (2015).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.