35
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Enoxacin-Based Derivatives: Antimicrobial and Antibiofilm Agent: A Biology-Oriented Drug Synthesis (BIODS) Approach

, , , , , , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 947-962 | Received 30 Mar 2022, Accepted 17 May 2022, Published online: 13 Jun 2022

References

  • Stone PW . Economic burden of healthcare-associated infections: An American perspective, Expert Rev. Pharmacoeconomics Outcomes Res.9(5), 417–422 (2009).
  • Annabi C , AbouDalle A , FourcadeFet al. Enoxacin degradation by photo-Fenton process combined with a biological treatment: Optimization and improvement of by-products biodegradability. Int. J. Environ. Sci. Technol.16(2), 655–666 (2019).
  • Arayne S , SultanaN , HaroonU , MesaikMA. Synthesis, characterization, antibacterial and anti-inflammatory activities of enoxacin metal complexes. Bioinorg. Chem. Appl.2009, 914105 (2009).
  • Elks J , GanellinCR. Dictionary of Drugs,ChemicalData,Structure and Bibliographies, first ed.Springer, NY, USA (1990).
  • Lesher GY , FroelichEJ , GruettMD , BaileyJH , BrundageRP. 1, 8-Naphthyridine derivatives. A new class of chemotherapeutic agents. J. Med. Chem.91, 1063–1065 (1962).
  • Vracar TC , ZuoJ , ParkJet al. Enoxacin and bis-enoxacin stimulate 4T1 murine breast cancer cells to release extracellular vesicles that inhibit osteoclastogenesis. Sci. Rep.8(1), 16182 (2018).
  • Edlund C , LidbeckA , KagerL , NordCE. Effect of enoxacin on colonic microflora of healthy volunteers, Eur. J. Clin. Microbiol. Infect. Dis.6(3), 298–300 (1987).
  • Henwood JM , MonkJP, Enoxacin. A review of its antibacterial activity, pharmacokinetic properties, and therapeutic use. Drugs36(1), 32–66 (1988).
  • Naber KG , SorgelF , GutzlerF , Bartosik-WichB. In vitro activity, pharmacokinetics, clinical safety, and therapeutic efficacy of enoxacin in the treatment of patients with complicated urinary tract infections. Infection13(5), 219–224 (1985).
  • Yoshida H , NakamuraM , BogakiMet al. Mechanism of action of quinolones against Escherichia coli DNA gyrase. Antimicrob. Agents Chemother.37(4), 839–845 (1993).
  • Percival SL , SulemanL , VuottoC , DonelliG. Healthcare-associated infections medical devices, and biofilms: Risk, tolerance, and control. J. Med. Microbiol.64(4), 323–334 (2015).
  • Borges A , SaavedraMJ , SimoesM. The activity of ferulic and gallic acids in biofilm prevention and control of pathogenic bacteria. Biofouling28(7), 755–767 (2012).
  • Mah TF , O'TooleGA. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol.9(1), 34–39 (2001).
  • Donlan RM , CostertonJW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev.15(2), 167–193 (2002).
  • Hoiby N , BjarnsholtT , GivskovM , MolinS , CiofuO. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Agents35(4), 322–332 (2010).
  • Raka L , SpahijaG , Gashi-GecajAet al. Point prevalence survey of healthcare-associated infections and antimicrobial use in Kosovo hospitals. Infect. Dis. Rep.11(1), 7975 (2019).
  • Gotz F . Staphylococcus and biofilms. Mol. Microbiol.43(6), 1367–1378 (2002).
  • Cotter JJ , MaguireP , SoberonF , DanielsS , O'GaraJP , CaseyE. Disinfection of methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis biofilms using a remote non-thermal gas plasma. J. Hosp. Infect.78(3), 204–207 (2011).
  • Qiu J , WangD , XiangHet al. Subinhibitory concentrations of thymol reduce enterotoxins A and B and alpha-hemolysin production in Staphylococcus aureus isolates. PLoS One5(3), e9736 (2010).
  • Qiu J , ZhangX , LuoMet al. Subinhibitory concentrations of perilla oil affect the expression of secreted virulence factor genes in Staphylococcus aureus. PLoS One6(1), e16160 (2011).
  • Quave CL , PlanoLR , PantusoT , BennettBC. Effects of extracts from Italian medicinal plants on planktonic growth, biofilm formation, and adherence of methicillin-resistant Staphylococcus aureus. J. Ethnopharmacol.118(3), 418–428 (2008).
  • Lynch AS , RobertsonGT. Bacterial and fungal biofilm infections. Annu. Rev. Med.59, 415–428 (2008).
  • Centers for Disease Control and Prevention, USA . CDC estimates 94,000 invasive drug-resistant staph infections occurred in the US in 2005 (2008).
  • Ali S , BadshahA , AtafAA , Imtiaz-ud-dinD , LalB , KhanKM. Synthesis of 3-ferrocenylaniline: DNA interaction, antibacterial, and antifungal activity. Med. Chem. Res.22(7), 3154–3159 (2013).
  • Chohan ZH , Mahmoodul H , KhanKM , SupuranCT. In vitro antibacterial, antifungal, and cytotoxic properties of sulfonamide-derived Schiff's bases and their metal complexes. J. Enzyme Inhib. Med. Chem. (2), 183–188 (2005).
  • Chohan ZH , PervezH , RaufA , KhanKM , SupuranCT. Isatin-derived antibacterial and antifungal compounds and their transition metal complexes. J. Enzyme Inhib. Med. Chem.19(5), 417–423 (2004).
  • Imran S , TahaM , IsmailNHet al. Synthesis of novel bisindolylmethane Schiff bases and their antibacterial activity. Molecules19(8), 11722–11740 (2014).
  • Khan KM , AqeelA , NidaAet al. Schiff Bases of 3-formylchromones as antibacterial, antifungal, and phytotoxic agents (supplementary table). Lett. Drug. Des. Discov.6(5), 363–373 (2009).
  • Pervez H , IqbalMS , TahirMY , NasimFU , ChoudharyMI , KhanKM. In vitro cytotoxic, antibacterial, antifungal, and urease inhibitory activities of some N4- substituted isatin-3-thiosemicarbazones. J. Enzyme Inhib. Med. Chem.23(6), 848–854 (2008).
  • Siddiqui R , SultanaN , KhanKM , AkberN , AliM , ArayneS. Effects of skeletal modifications of ciprofloxacin on antibacterial, antifungal and cytotoxic activities. J. Chin. Clin. Med.21, 188–195 (2007).
  • Arshia Khan AK , KhanKM , AhmedA , TahaM , PerveenS. Antibiofilm potential of synthetic 2-amino-5-chlorobenzophenone Schiff bases and its confirmation through fluorescence microscopy. Microb. Pathog.110, 497–506 (2017).
  • Seraj F , KhanKM , KhanAet al. Biology-oriented drug synthesis (BIODS), in vitro urease inhibitory activity, and in silico studies on ibuprofen derivatives, Mol. Divers.25(1), 143–157 (2021).
  • Esfahani EN , Mohammadi‐KhanaposhtaniM , RezaeiZet al. Biology‐oriented drug synthesis (BIODS) approach toward the synthesis of ciprofloxacin‐dithiocarbamate hybrids and their antibacterial potential both in vitro and in silico. Chem Biodivers.15(10), e1800273 (2018).
  • Hamad A , KhanMA , AhmadIet al. Bio-oriented synthesis of new sulphadiazine derivatives for urease inhibition and their pharmacokinetic analysis. Sci. Rep.11(1), 1–14 (2021).
  • CLSI . Performance Standards for Antimicrobial Susceptibility Testing. CLSI supplement M100.30th edition. Clinical and Laboratory Standards Institute, PA, USA (2020).
  • Ahmed A , KhanAK , AnwarA , AliSA , ShahMR. Biofilm inhibitory effect of chlorhexidine conjugated gold nanoparticles against Klebsiella pneumoniae. Microb. Pathog.98, 50–56 (2016).
  • O'Toole GA , PrattLA , WatnickPI , NewmanDK , WeaverVB , KolterR. Genetic approaches to study of biofilms. Meth. Enzymol.310, 91–109 (1999).
  • Zehra B , AhmedA , SarwarRet al. Apoptotic and antimetastatic activities of betulin isolated from Quercus incana against non-small cell lung cancer cells. Cancer Manag. Res.11, 1667 (2019).
  • Zhou G , LiLJ , ShiQS , OuyangYS , ChenYB , HuWF. Efficacy of metal ions and isothiazolones in inhibiting Enterobacter cloacae BF-17 biofilm formation. Can. J. Microbiol.60(1), 5–14 (2014).
  • Khan AK , AhmedA , HussainMet al. Antibiofilm potential of 16-oxo-cleroda-3, 13(14) E-diene-15-oic acid and its five new gamma-amino gamma-lactone derivatives against methicillin-resistant Staphylococcus aureus and Streptococcus mutans. Eur. J. Med. Chem.138, 480–490 (2017).
  • Zarrini G , DelgoshaZB , MoghaddamKM , ShahverdiAR. Post-antibacterial effect of thymol. Pharm. Biol.48(6), 633–636 (2010).
  • Usmani Y , AhmedA , FaiziSet al. Antimicrobial and biofilm inhibiting potential of an amide derivative [N-(2′, 4′-dinitrophenyl)-3beta-hydroxyurs-12-en-28-carbonamide] of ursolic acid by modulating membrane potential and quorum sensing against colistin-resistant Acinetobacter baumannii. Microb. Pathog.157, 104997 (2021).
  • Atshan SS , ShamsudinMN , KarunanidhiAet al. Quantitative PCR analysis of genes expressed during biofilm development of methicillin-resistant Staphylococcus aureus (MRSA). Infect. Genet. Evol.18, 106–112 (2013).
  • Ma Y , XuY , YestrepskyBDet al. Novel inhibitors of Staphylococcus aureus virulence gene expression and biofilm formation. PLoS One7(10), e47255 (2012).
  • Melo S , VillanuevaA , MoutinhoCet al. Small molecule enoxacin is a cancer-specific growth inhibitor that acts by enhancing TAR RNA-binding protein 2-mediated microRNA processing. Proc. Natl. Acad. Sci. U.S.A.108(11), 4394–4399 (2011).
  • Nie B , LongT , AoH , ZhouJ , TangT , YueB. Covalent immobilization of enoxacin onto titanium implant surfaces for inhibiting multiple bacterial species infections and in vivo methicillin-resistant Staphylococcus aureus infection prophylaxis. Antimicrob. Agents Chemother.61(1), e01766–16 (2016).
  • Rafalsky V , AndreevaI , RjabkovaE. Quinolones for uncomplicated acute cystitis in women. Cochrane Database Syst. Rev. (3), CD003597 (2006).
  • Omar MA , SalamaA , ElsifyAet al. Evaluation of in vitro inhibitory effect of enoxacin on Babesia and Theileria parasites. Exp. Parasitol.161, 62–67 (2016).
  • Skogman ME , VuorelaPM , FallareroA. Combining biofilm matrix measurements with biomass and viability assays in susceptibility assessments of antimicrobials against Staphylococcus aureus biofilms. J. Antibiot.65(9), 453–459 (2012).
  • Mazda Y , Kawada-MatsuoM , KanbaraKet al. Association of CiaRH with the resistance of Streptococcus mutans to antimicrobial peptides in biofilms. Mol. Oral Microbiol.27(2), 124–135 (2012).
  • Lee JH , KimYG , RyuSY , LeeJ. Calcium-chelating alizarin and other anthraquinones inhibit biofilm formation and the hemolytic activity of Staphylococcus aureus. Sci. Rep.6, 19267 (2016).
  • Saba T , SajidM , KhanAA , ZahraR. Role of intracellular adhesion icaAD and agr genes in biofilm formation in clinical S. aureus isolates and assessment of two phenotypic methods. Pak. J. Med. Sci.34(3), 633–637 (2018).
  • Merino N , Toledo-AranaA , Vergara-IrigarayMet al. Protein A-mediated multicellular behavior in Staphylococcus aureus. J. Bacteriol.191(3), 832–843 (2009).
  • Arciola CR , BaldassarriL , MontanaroL. Presence of icaA and icaD genes and slime production in a collection of Staphylococcal strains from catheter-associated infections. J. Clin. Microbiol.39(6), 2151–2156 (2001).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.