173
Views
0
CrossRef citations to date
0
Altmetric
Review

Molecules Inducing Specific Cyclin-Dependent Kinase Degradation and their Possible Use in Cancer Therapy

, , , , , & ORCID Icon show all
Pages 369-388 | Received 01 Sep 2023, Accepted 12 Jan 2024, Published online: 30 Jan 2024

References

  • Canavese M , Santo L , Raje N . Cyclin dependent kinases in cancer: potential for therapeutic intervention. Cancer Biol. Ther. 13(7), 451–457 (2012).
  • Zhang M , Zhang L , Hei R et al. CDK inhibitors in cancer therapy, an overview of recent development. Am. J. Cancer Res. 11(5), 1913–1935 (2021).
  • Meijer L , Borgne A , Mulner O et al. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur. J. Biochem. 243(1–2), 527–536 (1997).
  • Whittaker SR , Mallinger A , Workman P , Clarke PA . Inhibitors of cyclin-dependent kinases as cancer therapeutics. Pharmacol. Ther. 173, 83–105 (2017).
  • Fry DW , Harvey PJ , Keller PR et al. Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. Mol. Cancer Ther. 3(11), 1427–1438 (2004).
  • Gelbert LM , Cai S , Lin X et al. Preclinical characterization of the CDK4/6 inhibitor LY2835219: in-vivo cell cycle-dependent/independent anti-tumor activities alone/in combination with gemcitabine. Invest. New Drugs 32(5), 825–837 (2014).
  • Tripathy D , Bardia A , Sellers WR . Ribociclib (LEE011): mechanism of action and clinical impact of this selective cyclin-dependent kinase 4/6 inhibitor in various solid tumors. Clin. Cancer Res. 23(13), 3251–3262 (2017).
  • Adon T , Shanmugarajan D , Kumar HY . CDK4/6 inhibitors: a brief overview and prospective research directions. RSC Adv. 11(47), 29227–29246 (2021).
  • Pandey K , An HJ , Kim SK et al. Molecular mechanisms of resistance to CDK4/6 inhibitors in breast cancer: a review. Int. J. Cancer 145(5), 1179–1188 (2019).
  • Álvarez-Fernández M , Malumbres M . Mechanisms of sensitivity and resistance to CDK4/6 inhibition. Cancer Cell 37(4), 514–529 (2020).
  • Li Z , Razavi P , Li Q et al. Loss of the FAT1 tumor suppressor promotes resistance to CDK4/6 inhibitors via the Hippo pathway. Cancer Cell 34(6), 893–905.e898 (2018).
  • Eyre TA , Riches JC . The evolution of therapies targeting Bruton tyrosine kinase for the treatment of chronic lymphocytic leukaemia: future perspectives. Cancers (Basel) 15(9), 2596 (2023).
  • Surka C , Jin L , Mbong N et al. CC-90009, a novel cereblon E3 ligase modulator, targets acute myeloid leukemia blasts and leukemia stem cells. Blood 137(5), 661–677 (2021).
  • Chirnomas D , Hornberger KR , Crews CM . Protein degraders enter the clinic – a new approach to cancer therapy. Nat. Rev. Clin. Oncol. 20(4), 265–278 (2023).
  • Duronio RJ , Xiong Y . Signaling pathways that control cell proliferation. Cold Spring Harb. Perspect. Biol. 5(3), a008904 (2013).
  • Fischer M , Schade AE , Branigan TB , Müller GA , Decaprio JA . Coordinating gene expression during the cell cycle. Trends Biochem. Sci. 47(12), 1009–1022 (2022).
  • Moreno E , Pandit SK , Toussaint MJM et al. Atypical E2Fs either counteract or cooperate with RB during tumorigenesis depending on tissue context. Cancers (Basel) 13(9), 2033 (2021).
  • Bertoli C , Skotheim JM , De Bruin RA . Control of cell cycle transcription during G1 and S phases. Nat. Rev. Mol. Cell Biol. 14(8), 518–528 (2013).
  • Gao X , Leone GW , Wang H . Cyclin D–CDK4/6 functions in cancer. Adv. Cancer Res. 148, 147–169 (2020).
  • Hughes BT , Sidorova J , Swanger J , Monnat RJ Jr , Clurman BE . Essential role for Cdk2 inhibitory phosphorylation during replication stress revealed by a human Cdk2 knockin mutation. Proc. Natl Acad. Sci. USA 110(22), 8954–8959 (2013).
  • Tadesse S , Anshabo AT , Portman N et al. Targeting CDK2 in cancer: challenges and opportunities for therapy. Drug Discov. Today 25(2), 406–413 (2020).
  • Fagundes R , Teixeira LK . Cyclin E/CDK2: DNA replication, replication stress and genomic instability. Front. Cell Dev. Biol. 9, 774845 (2021).
  • Sunada S , Saito H , Zhang D , Xu Z , Miki Y . CDK1 inhibitor controls G2/M phase transition and reverses DNA damage sensitivity. Biochem. Biophys. Res. Commun. 550, 56–61 (2021).
  • Clark JM , Gabrielli BG . Production of a soluble cyclin B/cdc2 substrate for cdc25 phosphatase. Anal. Biochem. 254(2), 231–235 (1997).
  • Herrero-Ruiz J , Mora-Santos M , Giráldez S et al. βTrCP controls the lysosome-mediated degradation of CDK1, whose accumulation correlates with tumor malignancy. Oncotarget 5(17), 7563–7574 (2014).
  • Yoon CH , Miah MA , Kim KP , Bae YS . New Cdc2 Tyr 4 phosphorylation by dsRNA-activated protein kinase triggers Cdc2 polyubiquitination and G2 arrest under genotoxic stresses. EMBO Rep. 11(5), 393–399 (2010).
  • Cai Z , Wang J , Li Y et al. Overexpressed cyclin D1 and CDK4 proteins are responsible for the resistance to CDK4/6 inhibitor in breast cancer that can be reversed by PI3K/mTOR inhibitors. Sci. China Life Sci. 66(1), 94–109 (2023).
  • Hsin JP , Manley JL . The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev. 26(19), 2119–2137 (2012).
  • Sansó M , Fisher RP . Pause, play, repeat: CDKs push RNAP II’s buttons. Transcription 4(4), 146–152 (2013).
  • Chou J , Quigley DA , Robinson TM , Feng FY , Ashworth A . Transcription-associated cyclin-dependent kinases as targets and biomarkers for cancer therapy. Cancer Discov. 10(3), 351–370 (2020).
  • Whelan M , Pelchat M . Role of RNA polymerase II promoter-proximal pausing in viral transcription. Viruses 14(9), 2029 (2022).
  • Allen BL , Taatjes DJ . The Mediator complex: a central integrator of transcription. Nat. Rev. Mol. Cell Biol. 16(3), 155–166 (2015).
  • Van De Peppel J , Kettelarij N , Van Bakel H , Kockelkorn TT , Van Leenen D , Holstege FC . Mediator expression profiling epistasis reveals a signal transduction pathway with antagonistic submodules and highly specific downstream targets. Mol. Cell 19(4), 511–522 (2005).
  • Holstege FC , Jennings EG , Wyrick JJ et al. Dissecting the regulatory circuitry of a eukaryotic genome. Cell 95(5), 717–728 (1998).
  • Ansari SA , Ganapathi M , Benschop JJ , Holstege FC , Wade JT , Morse RH . Distinct role of Mediator tail module in regulation of SAGA-dependent, TATA-containing genes in yeast. EMBO J. 31(1), 44–57 (2012).
  • Akoulitchev S , Chuikov S , Reinberg D . TFIIH is negatively regulated by cdk8-containing mediator complexes. Nature 407(6800), 102–106 (2000).
  • Fant CB , Taatjes DJ . Regulatory functions of the Mediator kinases CDK8 and CDK19. Transcription 10(2), 76–90 (2019).
  • Galbraith MD , Donner AJ , Espinosa JM . CDK8: a positive regulator of transcription. Transcription 1(1), 4–12 (2010).
  • Donner AJ , Szostek S , Hoover JM , Espinosa JM . CDK8 is a stimulus-specific positive coregulator of p53 target genes. Mol. Cell. 27(1), 121–133 (2007).
  • Liu Y , Kung C , Fishburn J , Ansari AZ , Shokat KM , Hahn S . Two cyclin-dependent kinases promote RNA polymerase II transcription and formation of the scaffold complex. Mol. Cell. Biol. 24(4), 1721–1735 (2004).
  • Parua PK , Fisher RP . Dissecting the Pol II transcription cycle and derailing cancer with CDK inhibitors. Nat. Chem. Biol. 16(7), 716–724 (2020).
  • Akhtar MS , Heidemann M , Tietjen JR et al. TFIIH kinase places bivalent marks on the carboxy-terminal domain of RNA polymerase II. Mol. Cell 34(3), 387–393 (2009).
  • Li ZM , Liu G , Gao Y , Zhao MG . Targeting CDK7 in oncology: the avenue forward. Pharmacol. Ther. 240, 108229 (2022).
  • Booth GT , Parua PK , Sansó M , Fisher RP , Lis JT . Cdk9 regulates a promoter-proximal checkpoint to modulate RNA polymerase II elongation rate in fission yeast. Nat. Commun. 9(1), 543 (2018).
  • Magnuson B , Bedi K , Narayanan IV et al. CDK12 regulates co-transcriptional splicing and RNA turnover in human cells. iScience 25(9), 105030 (2022).
  • Blazek D , Kohoutek J , Bartholomeeusen K et al. The Cyclin K/Cdk12 complex maintains genomic stability via regulation of expression of DNA damage response genes. Genes Dev. 25(20), 2158–2172 (2011).
  • Ebmeier CC , Erickson B , Allen BL et al. Human TFIIH kinase CDK7 regulates transcription-associated chromatin modifications. Cell Rep. 20(5), 1173–1186 (2017).
  • Sansó M , Levin RS , Lipp JJ et al. P-TEFb regulation of transcription termination factor Xrn2 revealed by a chemical genetic screen for Cdk9 substrates. Genes Dev. 30(1), 117–131 (2016).
  • Anshabo AT , Milne R , Wang S , Albrecht H . CDK9: a comprehensive review of its biology, and its role as a potential target for anti-cancer agents. Front. Oncol. 11, 678559 (2021).
  • Davies TG , Pratt DJ , Endicott JA , Johnson LN , Noble ME . Structure-based design of cyclin-dependent kinase inhibitors. Pharmacol. Ther. 93(2–3), 125–133 (2002).
  • Liu Y , Gray NS . Rational design of inhibitors that bind to inactive kinase conformations. Nat. Chem. Biol. 2(7), 358–364 (2006).
  • Johnson LN . Protein kinase inhibitors: contributions from structure to clinical compounds. Q. Rev. Biophys. 42(1), 1–40 (2009).
  • Christian BA , Grever MR , Byrd JC , Lin TS . Flavopiridol in the treatment of chronic lymphocytic leukemia. Curr. Opin. Oncol. 19(6), 573–578 (2007).
  • Criscitiello C , Viale G , Esposito A , Curigliano G . Dinaciclib for the treatment of breast cancer. Expert Opin. Investig. Drugs 23(9), 1305–1312 (2014).
  • O’leary B , Finn RS , Turner NC . Treating cancer with selective CDK4/6 inhibitors. Nat. Rev. Clin. Oncol. 13(7), 417–430 (2016).
  • Shi Z , Tian L , Qiang T et al. From structure modification to drug launch: a systematic review of the ongoing development of cyclin-dependent kinase inhibitors for multiple cancer therapy. J. Med. Chem. 65(9), 6390–6418 (2022).
  • Constantin TA , Varela-Carver A , Greenland KK et al. The CDK7 inhibitor CT7001 (Samuraciclib) targets proliferation pathways to inhibit advanced prostate cancer. Br. J. Cancer 128(12), 2326–2337 (2023).
  • Nedelsky NB , Todd PK , Taylor JP . Autophagy and the ubiquitin–proteasome system: collaborators in neuroprotection. Biochim. Biophys. Acta 1782(12), 691–699 (2008).
  • Yang Q , Zhao J , Chen D , Wang Y . E3 ubiquitin ligases: styles, structures and functions. Mol. Biomed. 2(1), 23 (2021).
  • Troup RI , Fallan C , Baud MGJ . Current strategies for the design of PROTAC linkers: a critical review. Explor. Target. Antitumor Ther. 1(5), 273–312 (2020).
  • Zhao B , Burgess K . PROTACs suppression of CDK4/6, crucial kinases for cell cycle regulation in cancer. Chem. Commun. (Camb.) 55(18), 2704–2707 (2019).
  • Wang H , Nicolay BN , Chick JM et al. The metabolic function of cyclin D3-CDK6 kinase in cancer cell survival. Nature 546(7658), 426–430 (2017).
  • Tigan AS , Bellutti F , Kollmann K , Tebb G , Sexl V . CDK6 – a review of the past and a glimpse into the future: from cell-cycle control to transcriptional regulation. Oncogene 35(24), 3083–3091 (2016).
  • Kollmann K , Heller G , Schneckenleithner C et al. A kinase-independent function of CDK6 links the cell cycle to tumor angiogenesis. Cancer Cell 24(2), 167–181 (2013).
  • Brand M , Jiang B , Bauer S et al. Homolog-selective degradation as a strategy to probe the function of CDK6 in AML. Cell Chem. Biol. 26(2), 300–306.e309 (2019).
  • Li Q , Jiang B , Guo J et al. INK4 tumor suppressor proteins mediate resistance to CDK4/6 kinase inhibitors. Cancer Discov. 12(2), 356–371 (2022).
  • Wei M , Zhao R , Cao Y et al. First orally bioavailable prodrug of proteolysis targeting chimera (PROTAC) degrades cyclin-dependent kinases 2/4/6 in vivo . Eur. J. Med. Chem. 209, 112903 (2021).
  • Anderson NA , Cryan J , Ahmed A et al. Selective CDK6 degradation mediated by cereblon, VHL, and novel IAP-recruiting PROTACs. Bioorg. Med. Chem. Lett. 30(9), 127106 (2020).
  • Steinebach C , Ng YLD , Sosič I et al. Systematic exploration of different E3 ubiquitin ligases: an approach towards potent and selective CDK6 degraders. Chem. Sci. 11(13), 3474–3486 (2020).
  • Su S , Yang Z , Gao H et al. Potent and preferential degradation of CDK6 via proteolysis targeting chimera degraders. J. Med. Chem. 62(16), 7575–7582 (2019).
  • Xiong Y , Zhong Y , Yim H et al. Bridged proteolysis targeting chimera (PROTAC) enables degradation of undruggable targets. J. Am. Chem. Soc. 144(49), 22622–22632 (2022).
  • Teng M , Jiang J , He Z et al. Development of CDK2 and CDK5 dual degrader TMX-2172. Angew. Chem. Int. Ed. Engl. 59(33), 13865–13870 (2020).
  • Zhou F , Chen L , Cao C et al. Development of selective mono or dual PROTAC degrader probe of CDK isoforms. Eur. J. Med. Chem. 187, 111952 (2020).
  • Ying M , Shao X , Jing H et al. Ubiquitin-dependent degradation of CDK2 drives the therapeutic differentiation of AML by targeting PRDX2. Blood 131(24), 2698–2711 (2018).
  • Wang L , Shao X , Zhong T et al. Discovery of a first-in-class CDK2 selective degrader for AML differentiation therapy. Nat. Chem. Biol. 17(5), 567–575 (2021).
  • Robb CM , Contreras JI , Kour S et al. Chemically induced degradation of CDK9 by a proteolysis targeting chimera (PROTAC). Chem. Commun. (Camb.) 53(54), 7577–7580 (2017).
  • Olson CM , Jiang B , Erb MA et al. Pharmacological perturbation of CDK9 using selective CDK9 inhibition or degradation. Nat. Chem. Biol. 14(2), 163–170 (2018).
  • Bian J , Ren J , Li Y et al. Discovery of wogonin-based PROTACs against CDK9 and capable of achieving antitumor activity. Bioorg. Chem. 81, 373–381 (2018).
  • Qiu X , Li Y , Yu B et al. Discovery of selective CDK9 degraders with enhancing antiproliferative activity through PROTAC conversion. Eur. J. Med. Chem. 211, 113091 (2021).
  • Jiang B , Gao Y , Che J et al. Discovery and resistance mechanism of a selective CDK12 degrader. Nat. Chem. Biol. 17(6), 675–683 (2021).
  • Niu T , Li K , Jiang L et al. Noncovalent CDK12/13 dual inhibitors-based PROTACs degrade CDK12-Cyclin K complex and induce synthetic lethality with PARP inhibitor. Eur. J. Med. Chem. 228, 114012 (2022).
  • Yang J , Chang Y , Tien JC et al. Discovery of a highly potent and selective dual PROTAC degrader of CDK12 and CDK13. J. Med. Chem. 65(16), 11066–11083 (2022).
  • Koroleva OA , Dutikova YV , Trubnikov AV et al. PROTAC: targeted drug strategy. Principles and limitations. Russ. Chem. Bull. 71(11), 2310–2334 (2022).
  • Wang Y , Jiang X , Feng F , Liu W , Sun H . Degradation of proteins by PROTACs and other strategies. Acta Pharm. Sin. B 10(2), 207–238 (2020).
  • Qiu J , Bai X , Zhang W et al. LPM3770277, a potent novel CDK4/6 degrader, exerts antitumor effect against triple-negative breast cancer. Front. Pharmacol. 13, 853993 (2022).
  • Wang M , Lin R , Li J et al. Discovery of LL-K8-22: a selective, durable, and small-molecule degrader of the CDK8–cyclin C complex. J. Med. Chem. 66(7), 4932–4951 (2023).
  • Zhou K , Zhuang S , Liu F et al. Disrupting the Cdk9/Cyclin T1 heterodimer of 7SK snRNP for the Brd4 and AFF1/4 guided reconstitution of active P-TEFb. Nucleic Acids Res. 50(2), 750–762 (2022).
  • Li JC , Liu T , Song YL et al. Discovery of small-molecule degraders of the CDK9–cyclin T1 complex for targeting transcriptional addiction in prostate cancer. J. Med. Chem. 65(16), 11034–11057 (2022).
  • Stanton BZ , Chory EJ , Crabtree GR . Chemically induced proximity in biology and medicine. Science 359(6380), eaao5902 (2018).
  • Dong G , Ding Y , He S , Sheng C . Molecular glues for targeted protein degradation: from serendipity to rational discovery. J. Med. Chem. 64(15), 10606–10620 (2021).
  • Bettayeb K , Oumata N , Echalier A et al. CR8, a potent and selective, roscovitine-derived inhibitor of cyclin-dependent kinases. Oncogene 27(44), 5797–5807 (2008).
  • Słabicki M , Kozicka Z , Petzold G et al. The CDK inhibitor CR8 acts as a molecular glue degrader that depletes cyclin K. Nature 585(7824), 293–297 (2020).
  • Lv L , Chen P , Cao L et al. Discovery of a molecular glue promoting CDK12-DDB1 interaction to trigger cyclin K degradation. Elife 9, e59994 (2020).
  • Mayor-Ruiz C , Bauer S , Brand M et al. Rational discovery of molecular glue degraders via scalable chemical profiling. Nat. Chem. Biol. 16(11), 1199–1207 (2020).
  • Jorda R , Havlíček L , Peřina M et al. 3,5,7-Substituted pyrazolo[4,3-d]pyrimidine inhibitors of cyclin-dependent kinases and cyclin K degraders. J. Med. Chem. 65(13), 8881–8896 (2022).
  • Toriki ES , Papatzimas JW , Nishikawa K et al. Rational chemical design of molecular glue degraders. ACS Cent. Sci. 9(5), 915–926 (2023).
  • Eskelinen EL , Saftig P . Autophagy: a lysosomal degradation pathway with a central role in health and disease. Biochim. Biophys. Acta 1793(4), 664–673 (2009).
  • Zhang J , Gan Y , Li H et al. Inhibition of the CDK2 and cyclin A complex leads to autophagic degradation of CDK2 in cancer cells. Nat. Commun. 13(1), 2835 (2022).
  • Basset CA , Conway De Macario E , Leone LG , Macario AJL , Leone A . The chaperone system in cancer therapies: Hsp90. J. Mol. Histol. 54(2), 105–118 (2023).
  • Paladino A , Woodford MR , Backe SJ et al. Chemical perturbation of oncogenic protein folding: from the prediction of locally unstable structures to the design of disruptors of Hsp90–client interactions. Chemistry 26(43), 9459–9465 (2020).
  • Gray PJ Jr , Prince T , Cheng J , Stevenson MA , Calderwood SK . Targeting the oncogene and kinome chaperone CDC37. Nat. Rev. Cancer 8(7), 491–495 (2008).
  • Jinwal UK , Trotter JH , Abisambra JF et al. The Hsp90 kinase co-chaperone Cdc37 regulates tau stability and phosphorylation dynamics. J. Biol. Chem. 286(19), 16976–16983 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.