145
Views
0
CrossRef citations to date
0
Altmetric
Perspective

Towards a More Robust Approach to Selecting and Prosecuting Promising Targets and Compounds

Pages 25-34 | Published online: 22 Dec 2009

Bibliography

  • Caricasole A , BakkerA, CopaniAet al. Two sides of the same coin: Wnt signalling in neurodegeneration and neurooncology. Biosci. Rep. 25(5–6), 309–327 (2005).
  • Sioud M . Main approaches to target discovery and validation.Methods Mol. Biol.360, 1–12 (2007).
  • Anders HJ , VielhauerV. Identifying and validating novel targets with in-vivo disease models. Drug Discov. Today12(11–12), 446–451 (2007).
  • van Es HH , ArtsGJ. Biology calls the targets: combining RNAi and disease biology.Drug Discov. Today10(20), 1385–1391 (2005).
  • Natt F . siRNAs in drug discovery: target validation and beyond.Curr. Opin. Mol. Ther.9(3), 242–247 (2007).
  • Iorns E , LordCJ, TurnerNet al. Utilizing RNA interference to enhance cancer drug discovery. Nat. Rev. Drug Discov. 6, 556–568 (2007).
  • Kourtidis A , EifertC, ConklinDS. RNAi applications in target validation.Ernst Schering Res. Found. Workshop (61), 1–21 (2007).
  • Eggert US , KigerAA, RichterCet al. Parallel chemical genetic and genome-wide RNAi screens identify cytokinesis inhibitors and targets. PLoS Biol. 2(12), E379 (2004).
  • Edwards AM , BountraC, KerrDJet al. Open access chemical and clinical probes to support drug discovery. Nature Chem. Biol. 5(7), 436–440 (2009).
  • Jones SW , LindsayMA. Overview of target validation and the impact of oligonucleotides.Curr. Opin. Mol. Ther.6(5), 546–550 (2004).
  • Altar CA , VawterMP, GinsbergSD. Target identification for CNS diseases by transcriptional profiling.Neurophsychopharmacology34, 18–54 (2009).
  • Azorsa DO , GonzalesIM, BasuGDet al. Synthetic lethal RNAi screening identifies sensitizing targets for gemcitabine therapy in pancreatic cancer. J. Transl. Med. 7, 43 (2009).
  • Jones D . Teaming up to tackle RNAi delivery challenge.Nat. Rev. Drug Discov.8, 525–526 (2009).
  • Brasnjevic I , SteinbuschHW, SchmitzC, Martinez-MartinezP. European NanoBioPharmaceutics research initiative: delivery of peptide and protein drugs over the blood–brain barrier.Prog. Neurobiol.87(4), 212–251 (2009).
  • Denora N , TrapaniA, LaquintanaV, LopedotaA, TrapaniG. Recent advances in medicinal chemistry and pharmaceutical technology – strategies for drug delivery to the brain.Curr. Top. Med. Chem.9(2), 182–196 (2009).
  • Juillerat-Jeanneret L . The targeted delivery of cancer drugs across the blood–brain barrier: chemical modifications of drugs or drug-nanoparticles?Drug Discov. Today13(23–24), 1099–1106 (2008).
  • Hansel TT , BarnesPJ. New drugs for exacerbations of chronic obstructive pulmonary disease.Lancet374(9691), 744–755 (2009).
  • Rhodes CJ , DavidsonA, GibbsJS, WhartonJ, WilkinsMR. Therapeutic targets in pulmonary arterial hypertension.Pharmacol. Ther.121(1), 69–88 (2009).
  • Resende RR , UlrichH, FariaM. Is there a rational approach for increasing drug specificity? Considerations on CNS target choice and validation.Recent Pat. CNS Drug Discov.2(1), 37–46 (2007).
  • Hurko O , RyanJL. Translational research in central nervous system drug discovery.NeuroRx.2(4), 671–682 (2005).
  • Haney SA , LaPanP, PanJet al. High-content screening moves to the front of the line. Drug Discov. Today 11(19–20), 889–894 (2006).
  • Bender A , BojanicD, DaviesJWet al. Which aspects of HTS are empirically correlated with downstream success? Curr. Opin. Drug Discov. Dev. 11(3), 327–337 (2008).
  • Fecke W , GianfriddoM, GaviraghiGet al. Small molecule drug discovery for Huntington’s Disease. Drug Discov. Today 14(9–10), 453–464 (2009).
  • Varma H , LoDC, StockwellBR. High throughput screening for neurodegeneration and complex disease phenotypes.Comb. Chem. High Throughput Screen.11(3), 238–248 (2008).
  • Bickle M . High-content screening: a new primary screening tool?iDrugs11(11), 822–826 (2008).
  • Gasparri F , SolaF, BandieraTet al. High-content analysis of kinase activity in cells. Comb. Chem. High Throughput Screen. 11(7), 523–536 (2008).
  • Denner P , SchmalowskyJ, PrechtlS. High-content analysis in preclinical drug discovery.Comb. Chem. High Throughput Screen.11(3), 216–230 (2008).
  • Eglen RM , GilchristA, ReisineT. An overview of drug screening using primary and embryonic stem cells.Comb. Chem. High Throughput Screen.11(7), 566–572 (2008).
  • Weiss A , RoscicA, PaganettiP. Inducible mutant huntingtin expression in HN10 cells reproduces Huntington’s disease-like neuronal dysfunction.Mol. Neurodegener.4, 11 (2009).
  • Bakker A , CaricasoleA, GaviraghiGet al. How to achieve confidence in drug discovery and development: managing risk (from a reductionist to a holistic approach). ChemMedChem. 4(6), 923–933 (2009).
  • Dunne A , JowettM, Rees,S. Use of primary human cells in high-throughput screens.Methods Mol. Biol.565, 239–257 (2009).
  • Haney SA . RNAi and high-content screening in target identification and validation.iDrugs8(12), 997–1001 (2005).
  • Berg EL , KunkelEJ, HytopoulosEet al. Characterization of compound mechanisms and secondary activities by BioMAP analysis. J. Pharm. Toxicol. Methods 53, 67–74 (2006).
  • Butcher EC . Can cell systems biology rescue drug discovery?Nat. Rev. Drug Discov.4(6), 461–467 (2005).
  • Markou A , ChiamuleraC, GeyerMAet al. Removing obstacles in neuroscience drug discovery: the future path for animal models. Neuropsychopharmacology 34(1), 74–89 (2009).
  • Wehling M . Assessing the translatability of drug projects: what needs to be scored to predict success?Nat. Rev. Drug Discov.8(7), 541–546 (2009).
  • Charnley N , DonaldsonS, PriceP. Imaging angiogenesis.Methods Mol. Biol.467, 25–51 (2009).
  • Katz JD , NayyarG, NoethE. Overview of imaging in inflammatory arthritis.Ann. NY Acad. Sci.1154, 10–17 (2009).
  • Virostko J , PowersAC. Molecular imaging of the pancreas in small animal models.Gastroenterology136(2), 407–409 (2009).
  • Kola I , HazudaD. Innovation and greater probability of success in drug discovery and development from target to biomarkers.Curr. Opin. Biotech.16(6), 644–646 (2005).
  • Kola I . The state of innovation in drug development.Clin. Pharm. Ther.83(2), 227–230 (2008).
  • Shin J , KayserSR, LangaeeTY. Pharmacogenetics: from discovery to patient care.Am. J. Health Syst. Pharm.66(7), 625–637 (2009).
  • Yip S , ShahK. Stem-cell based therapies for brain tumors.Curr. Opin. Mol. Ther.10(4), 334–342 (2008).
  • Fu J , LiuZG, LiuXM, ChenFRet al. Glioblastoma stem cells resistant to temozolomide-induced autophagy. Chin. Med. J. (Engl.) 122(11), 1255–1259 (2009).
  • Vescovi AL , GalliR, ReynoldsBA. Brain tumour stem cells.Nat. Rev. Cancer6(6), 425–436 (2006).
  • Sultana SR , RoblinD, O‘ConnellD. Translational research in the pharmaceutical industry: from theory to reality.Drug Discov. Today12(9–10), 419–425 (2007).
  • Burczynski ME . Pharmacogenomic approaches in clinical studies to identify biomarkers of safety and efficacy.Toxicology Lett.186(1), 18–21 (2009).
  • Weiss B . Chemobrain: a translational challenge for neurotoxicology.Neurotoxicology41129(5), 891–898 (2008).
  • Gradhand U , LangT, SchaeffelerEet al. Variability in human hepatic MRP4 expression: influence of cholestasis and genotype. Pharmacogenomics J. 8(1), 42–52 (2008).
  • Ali ZK , KimRJ, YslaFM. CYP2C9 polymorphisms: considerations in NSAID therapy. Curr. Opin. Drug Discov. Devel.12(1), 108–114 (2009).
  • Ferrer-Dufol A , Menao-GuillenS. Toxicogenomics and clinical toxicology: an example of the connection between basic and applied sciences.Toxicol. Lett.186(1), 2–8 (2009).
  • Collings FB , VaidyaVS. Novel technologies for the discovery and quantitation of biomarkers of toxicity.Toxicology245(3), 167–174 (2008).
  • Ma‘ayan A , JenkinsSL, GoldfarbJet al. Network analysis of FDA approved drugs and their targets. Mt Sinai J. Med. 74(1), 27–32 (2007).
  • MacArthur BD , Ma‘ayanA, LemischkaIR. Toward stem cell systems biology: from molecules to networks and landscapes.Cold Spring Harb. Symp. Quant. Biol.73, 211–215 (2008).
  • Sivachenko AY , YuryevA. Pathway analysis software as a tool for drug target selection, prioritization and validation of drug mechanism.Expert Opin. Ther. Targets.11(3), 411–421 (2007).
  • Rosa DD , IsmaelG, LagoLDet al. Molecular-targeted therapies: lessons from years of clinical development. Cancer Treat. Rev. 34(1), 61–80 (2008).
  • Shanks N , GreekR, GreekJ. Are animal models predictive for humans?Phil. Ethics Humanities Med.4, 2 (2009).
  • Watterson C , LanevschiA, HornerJet al. A comparative analysis of acute-phase proteins as inflammatory biomarkers in preclinical toxicology studies: implications for preclinical to clinical translation. Toxicol. Pathol. 37(1), 28–33 (2009).
  • Burgun A , BodenreiderO. Accessing and integrating data and knowledge for biomedical research.Yearb Med. Inform.91–101 (2008).
  • Renner S , van Otterlo WAL, Seoane MD. Bioactivity-guided mapping and navigation of chemical space. Nat. Chem. Biol.5(8), 585–592 (2009).
  • Richard AM , GoldLS, NicklausMC. Chemical structure indexing of toxicity data on the internet: moving toward a flat world.Curr. Opin. Drug Discov. Devel.9(3), 314–325 (2006).
  • Di L , KernsEH, CarterGT. Drug-like property concepts in pharmaceutical design.Curr. Pharm. Des.15(19), 2184–2194 (2009).
  • Vistoli G , PedrettiA, TestaB. Assessing drug-likeness – what are we missing?Drug Discov. Today13(7–8), 285–294 (2008).
  • Degtyarenko K , EnnisM, GaravelliJS. “Good annotation practice” for chemical data in biology.In Silico Biol.7(Suppl. 2), S45–S56 (2007).
  • Paolini GV , ShaplandRH, van Hoorn WP et al. Global mapping of pharmacological space. Nat. Biotechnol.24(7), 805–815 (2006).
  • Bender A , DanielW, YoungDWet al. Chemogenomic data analysis: prediction of small-molecule targets and the advent of biological fingerprints. Comb. Chem. High Throughput Screen. 10(2), 719–731 (2007).
  • Rhodes DR , Kalyana-SundaramS, TomlinsSAet al. Molecular concepts analysis links tumors, pathways, mechanisms, and drugs. Neoplasia 9(5), 443–454 (2007).
  • Lamb J , CrawfordED, PeckDet al. The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313, 1929–1935 (2006).
  • Cases M , MestresJ: A chemogenomic approach to drug discovery: focus on cardiovascular diseases.Drug Discov. Today14(9–10), 479–485 (2009).
  • Goldstein DM , GrayNS, ZarrinkarPP. High-throughput kinase profiling as a platform for drug discovery.Nat. Rev. Drug Discov.7(5), 391–397 (2008).
  • Wang J : Comprehensive assessment of ADMET risks in drug discovery.Curr. Pharm. Des.15(19), 2195–2219 (2009).
  • Shon J , OhkawaH, HammerJ: Scientific workflows as productivity tools for drug discovery.Curr. Opin. Drug Discov. Devel.11(3), 381–388 (2008).
  • Hopkins AL , GroomCR. The druggable genome.Nat. Rev. Drug Discov.1(9), 727–730 (2002).
  • Fuentes G , OyarzabalJ, RojasAM. Databases of protein–protein interactions and their use in drug discovery.Curr. Opin. Drug Discov. Devel.12(3), 358–366 (2009).
  • Kumar P , WuH, McBrideJLet al. Transvascular delivery of small interfering RNA to the central nervous system. Nature 448(7149), 39–45 (2007).
  • De Souza EB , CloadST, PendergrastPSet al. Novel therapeutic modalities to address nondrugable protein interaction targets. Neuropsychopharmacology. 34(1), 142–158 (2009).
  • Schnur DM . Recent trends in library design: ‘rational design’ revisited.Curr. Opin. Drug Discov. Devel.11(3), 375–380 (2008).
  • Price DA , BlaggJ, JonesL, GreeneN, WagerT. Physicochemical drug properties associated with in vivo toxicological outcomes: a review. Expert Opin. Drug Metab. Toxicol.5(8), 921–931 (2009).
  • Leeson PD , SpringthorpeB. The influence of drug-like concepts on decision-making in medicinal chemistry.Nat. Rev. Drug Discov.6(11), 881–890 (2007).
  • Dragunow M . High-content analysis in neuroscience.Nat. Rev. Neurosci.9(10), 779–788 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.