487
Views
0
CrossRef citations to date
0
Altmetric
Review

Mechanisms of Brain Iron Transport: Insight into Neurodegeneration and CNS Disorders

, , &
Pages 51-64 | Published online: 22 Dec 2009

Bibliography

  • Fillebeen C , DescampsL, DehouckMPet al. Receptor-mediated transcytosis of lactoferrin through the blood–brain barrier. J. Biol. Chem. 274(11), 7011–7017 (1999).
  • Richardson DR , PonkaP. The molecular mechanisms of the metabolism and transport of iron in normal and neoplastic cells.Biochim. Biophys. Acta.1331(1), 1–40 (1997).
  • Rothenberger S , FoodMR, GabathulerRet al. Coincident expression and distribution of melanotransferrin and transferrin receptor in human brain capillary endothelium. Brain Res. 712(1), 117–121 (1996).
  • Hentze MW , MuckenthalerMU, AndrewsNC. Balancing acts: molecular control of mammalian iron metabolism.Cell117(3), 285–297 (2004).
  • Moos T , RosengrenNT, Skj⊘rringeT, MorganEH. Iron trafficking inside the brain.J. Neurochem.103(5), 1730–1740 (2007).
  • Todorich B , PasquiniJM, GarciaCI, PaezPM, ConnorJR. Oligodendrocytes and myelination: the role of iron.Glia57(5), 467–478 (2009).
  • Ke Y , QianZM. Brain iron metabolism: neurobiology and neurochemistry.Prog. Neurobiol.83(3), 149–173 (2007).
  • Zecca L , YoudimMB, RiedererP, ConnorJR, CrichtonRR. Iron, brain ageing and neurodegenerative disorders.Nat. Rev. Neurosci.5(11), 863–873 (2004).
  • Lozoff B , GeorgieffMK. Iron deficiency and brain development.Semin. Pediatr. Neurol.13(3), 158–165 (2006).
  • Pollitt E . Early iron deficiency anemia and later mental retardation.Am. J. Clin. Nutr.69(1), 4–5 (1999).
  • Schipper HM . Brain iron deposition and the free radical–mitochondrial theory of ageing.Ageing Res. Rev.3(3), 265–301 (2004).
  • Lillig CH , BerndtC, HolmgrenA. Glutaredoxin systems.Biochim. Biophys. Acta.1780(11), 1304–1317 (2008).
  • MacKenzie EL , IwasakiK, TsujiY. Intracellular iron transport and storage: from molecular mechanisms to health implications.Antioxid. Redox Signal10(6), 997–1030 (2008).
  • Berg D , HochstrasserH. Iron metabolism in Parkinsonian syndromes.Mov. Disord.21(9), 1299–1310 (2006).
  • Lee DW , AndersenJK, KaurD. Iron dysregulation and neurodegeneration: the molecular connection.Mol. Interv.6(2), 89–97 (2006).
  • Abo-Krysha N , RashedL. The role of iron dysregulation in the pathogenesis of multiple sclerosis: an Egyptian study.Mult. Scler.14(5), 602–608 (2008).
  • Barnham KJ , BushAI. Metals in Alzheimer’s and Parkinson’s diseases.Curr. Opin. Chem. Biol.12(2), 222–228 (2008).
  • Moos T , MorganEH. The metabolism of neuronal iron and its pathogenic role in neurological disease: review.Ann. NY Acad. Sci.1012, 14–26 (2004).
  • Zhou B , WestawaySK, LevinsonB, JohnsonMA, GitschierJ, HayflickSJ. A novel pantothenate kinase gene (PANK2) is defective in Hallervorden–Spatz syndrome.Nat. Genet.28(4), 345–349 (2001).
  • Morgan NV , WestawaySK, MortonJEet al. PLA2G6, encoding a phospholipase A2, is mutated in neurodegenerative disorders with high brain iron. Nat. Genet. 38(7), 752–754 (2006).
  • Harris ZL , DurleyAP, ManTK, GitlinJD. Targeted gene disruption reveals an essential role for ceruloplasmin in cellular iron efflux.Proc. Natl Acad. Sci. USA96(19), 10812–10817 (1999).
  • Curtis AR , FeyC, MorrisCMet al. Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease. Nat. Genet.28(4), 350–354 (2001).
  • Clardy SL , WangX, BoyerPJ, EarleyCJ, AllenRP, ConnorJR. Is ferroportin–hepcidin signaling altered in restless legs syndrome?J. Neurol. Sci.247(2), 173–179 (2006).
  • Hua Y , KeepRF, HoffJT, XiG. Brain injury after intracerebral hemorrhage: the role of thrombin and iron.Stroke38(Suppl. 2), 759–762 (2007).
  • Sun M , GoldinE, StahlSet al. Mucolipidosis type IV is caused by mutations in a gene encoding a novel transient receptor potential channel. Hum. Mol. Genet. 9(17), 2471–2478 (2000).
  • Dong XP , ChengX, MillsEet al. The type IV mucolipidosis-associated protein TRPML1 is an endolysosomal iron release channel. Nature 455(7215), 992–996 (2008).
  • LaVaute T , SmithS, CoopermanSet al. Targeted deletion of the gene encoding iron regulatory protein-2 causes misregulation of iron metabolism and neurodegenerative disease in mice. Nat. Genet. 27(2), 209–214 (2001).
  • Rouault TA . The role of iron regulatory proteins in mammalian iron homeostasis and disease.Nat. Chem. Biol.2(8), 406–414 (2006).
  • Crapper McLachlan DR , DaltonAJ, KruckTPet al. Intramuscular desferrioxamine in patients with Alzheimer’s disease. Lancet 337(8753), 1304–1308 (1991).
  • Benvenisti-Zarom L , ChenJ, ReganRF. The oxidative neurotoxicity of clioquinol.Neuropharmacology49(5), 687–694 (2005).
  • Kaur D , YantiriF, RajagopalanSet al. Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinson’s disease. Neuron 37(6), 899–909 (2003).
  • Salazar J , MenaN, HunotSet al. Divalent metal transporter 1 (DMT1) contributes to neurodegeneration in animal models of Parkinson’s disease. Proc. Natl Acad. Sci. USA 105(47), 18578–18583 (2008).
  • Sayre LM , PerryG, SmithMA. Redox metals and neurodegenerative disease.Curr. Opin. Chem. Biol.3(2), 220–225 (1999).
  • Smith DG , CappaiR, BarnhamKJ. The redox chemistry of the Alzheimer’s disease amyloid b peptide.Biochim. Biophys. Acta.1768(8), 1976–1990 (2007).
  • Patel BN , DavidS. A novel glycosylphosphatidylinositol-anchored form of ceruloplasmin is expressed by mammalian astrocytes.J. Biol. Chem.272(32), 20185–20190 (1997).
  • Tsushima RG , WickendenAD, BouchardRAet al. Modulation of iron uptake in heart by L-type Ca2+ channel modifiers: possible implications in iron overload. Circ. Res. 84(11), 1302–1309 (1999).
  • Bradbury MW . Transport of iron in the blood–brain-cerebrospinal fluid system.J. Neurochem.69(2), 443–454 (1997).
  • Savman K , NilssonbUA, ThoresencM, KjellmeraI. Non-protein-bound iron in brain interstitium of newborn pigs after hypoxia.Dev. Neurosci.27(2–4), 176–184 (2005).
  • Petrat FH , de GrootRauen U. Determination of the chelatable iron pool of single intact cells by laser scanning microscopy. Arch. Biochem. Biophys.376(1), 74–81 (2000).
  • Andrews NC . Forging a field: the golden age of iron biology.Blood112(2), 219–230 (2008).
  • De Domenico I , McVey WardD, KaplanJ. Regulation of iron acquisition and storage: consequences for iron-linked disorders. Nat. Rev. Mol. Cell Biol.9(1), 72–81 (2008).
  • Andrews NC , SchmidtPJ. Iron homeostasis.Annu. Rev. Physiol. 2007. 69, 69–85.
  • Garrick MD , GarrickLM. Cellular iron transport.Biochim. Biophys. Acta.1790(5), 309–325 (2009).
  • McKie AT , BarrowD, Latunde-DadaGOet al. An iron-regulated ferric reductase associated with the absorption of dietary iron. Science 291(5509), 1755–1759 (2001).
  • Gunshin H , MackenzieB, BergerUVet al. Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388(6641), 482–488 (1997).
  • Donovan A , BrownlieA, ZhouYet al. Positional cloning of zebrafish ferroportin1 identifies a conserved vertebrate iron exporter. Nature 403(6771), 776–781 (2000).
  • Vulpe CD , KuoYM, MurphyTLet al. Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the SLA mouse. Nat. Genet. 21(2), 195–199 (1999).
  • Ohgami RS , CampagnaDR, GreerELet al. Identification of a ferrireductase required for efficient transferrin-dependent iron uptake in erythroid cells. Nat. Genet. 37(11), 1264–1269(2005).
  • Shaw GC , CopeJJ, LiLet al. Mitoferrin is essential for erythroid iron assimilation. Nature 440(7080), 96–100 (2006).
  • Kidane TZ , SaubleE, LinderMC. Release of iron from ferritin requires lysosomal activity.Am. J. Physiol. Cell Physiol.291(3), C445–C455 (2006).
  • Gunshin H , FujiwaraY, CustodioAO, DirenzoC, RobineS, AndrewsNC. Slc11a2 is required for intestinal iron absorption and erythropoiesis but dispensable in placenta and liver.J. Clin. Invest.115(5), 1258–1266 (2005).
  • Ohgami RS , CampagnaDR, McDonaldA, FlemingMD. The Steap proteins are metalloreductases.Blood108(4), 1388–1394 (2006).
  • Lam-Yuk-Tseung S , GrosP. Distinct targeting and recycling properties of two isoforms of the iron transporter DMT1 (NRAMP2, Slc11A2).Biochemistry45(7), 2294–2301 (2006).
  • Jabado N , JankowskiA, DougaparsadS, PicardV, GrinsteinS, GrosP. Natural resistance to intracellular infections: natural resistance-associated macrophage protein 1 (Nramp1) functions as a pH-dependent manganese transporter at the phagosomal membrane.J. Exp. Med.192(9), 1237–1248 (2000).
  • Puertollano R , KiselyovK. TRPMLs: in sickness and in health.Am. J. Physiol. Renal Physiol.296(6), F1245–F1254 (2009).
  • Nguyen A , ZhaoN, MorrisonCet al. Mechanisms of iron release from lysosomes. FASEB. 921, 11 (2009).
  • Wang F , ParadkarPN, CustodioAOet al. Genetic variation in Mon1a affects protein trafficking and modifies macrophage iron loading in mice. Nat. Genet. 39(8), 1025–1032 (2007).
  • Zerial M , McBrideH. Rab proteins as membrane organizers.Nat. Rev. Mol. Cell Biol.2(2), 107–117 (2001).
  • Pal A , SeverinF, LommerB, ShevchenkoA, ZerialM. Huntingtin–HAP40 complex is a novel Rab5 effector that regulates early endosome motility and is up-regulated in Huntington’s disease.J. Cell Biol.172(4), 605–618 (2006).
  • Lumsden AL , HenshallTL, DayanS, LardelliMT, RichardsRI. Huntingtin-deficient zebrafish exhibit defects in iron utilization and development.Hum. Mol. Genet.16(16), 1905–1920 (2007).
  • Burdo JR , MenziesSL, SimpsonIAet al. Distribution of divalent metal transporter 1 and metal transport protein 1 in the normal and Belgrade rat. J. Neurosci. Res. 66(6), 1198–1207 (2001).
  • Jefferies WA , BrandonMR, HuntSV, WilliamsAF, GatterKC, MasonDY. Transferrin receptor on endothelium of brain capillaries.Nature312(5990), 162–163 (1984).
  • Abbott NJ , RonnbackL, HanssonE. Astrocyte–endothelial interactions at the blood–brain barrier.Nat. Rev. Neurosci.7(1), 41–53 (2006).
  • Moos T , MorganEH. Evidence for low molecular weight, non-transferrin-bound iron in rat brain and cerebrospinal fluid.J. Neurosci. Res.54(4), 486–494 (1998).
  • Burdo JR , AntonettiDA, WolpertEB, ConnorJR. Mechanisms and regulation of transferrin and iron transport in a model blood–brain barrier system.Neuroscience121(4), 883–890 (2003).
  • Burdo JR , ConnorJR. Brain iron uptake and homeostatic mechanisms: an overview.Biometals16(1), 63–75 (2003).
  • Beard JL , WiesingerJA, LiN, ConnorJR. Brain iron uptake in hypotransferrinemic mice: influence of systemic iron status.J. Neurosci. Res.79(1–2), 254–261 (2005).
  • Fisher J , DevrajK, IngramJet al. Ferritin: a novel mechanism for delivery of iron to the brain and other organs. Am. J. Physiol. Cell Physiol. 293(2), C641–C649 (2007).
  • Li JY , ParagasN, NedRMet al. Scara5 is a ferritin receptor mediating non-transferrin iron delivery. Dev. Cell 16(1), 35–46 (2009).
  • Todorich B , ZhangX, Slagle-WebbB, SeamanWE, ConnorJR. Tim-2 is the receptor for H-ferritin on oligodendrocytes.J. Neurochem.107(6), 1495–1505 (2008).
  • Siddappa AJ , RaoRB, WobkenJD, LeiboldEA, ConnorJR, GeorgieffMK. Developmental changes in the expression of iron regulatory proteins and iron transport proteins in the perinatal rat brain.J. Neurosci. Res.68(6), 761–775 (2002).
  • Mackenzie B , UjwalML, ChangMH, RomeroMF, HedigerMA. Divalent metal-ion transporter DMT1 mediates both H+-coupled Fe2+ transport and uncoupled fluxes. Pflugers Arch.451(4), 544–558 (2006).
  • Wu LJ , LeendersAG, CoopermanSet al. Expression of the iron transporter ferroportin in synaptic vesicles and the blood–brain barrier. Brain Res. 1001(1–2), 108–117 (2004).
  • Moos T , SkjoerringeT, GoskS, MorganEH. Brain capillary endothelial cells mediate iron transport into the brain by segregating iron from transferrin without the involvement of divalent metal transporter 1.J. Neurochem.98(6), 1946–1958 (2006).
  • Donovan A , LimaCA, PinkusJLet al. The iron exporter ferroportin/Slc40a1 is essential for iron homeostasis. Cell Metab. 1(3), 191–200 (2005).
  • Montana V , MalarkeyEB, VerderioC, MatteoliM, ParpuraV. Vesicular transmitter release from astrocytes.Glia54(7), 700–715 (2006).
  • Reddy A , CalerEV, AndrewsNW. Plasma membrane repair is mediated by Ca2+-regulated exocytosis of lysosomes. Cell106(2), 157–169 (2001).
  • Dringen R , BishopGM, KoeppeM, DangTN, RobinsonSR. The pivotal role of astrocytes in the metabolism of iron in the brain.Neurochem. Res.32(11), 1884–1890 (2007).
  • Qian ZM , ToY, TangPL, FengYM. Transferrin receptors on the plasma membrane of cultured rat astrocytes.Exp. Brain Res.129(3), 473–476 (1999).
  • Xu J , LingEA. Studies of the ultrastructure and permeability of the blood–brain barrier in the developing corpus callosum in postnatal rat brain using electron dense tracers.J. Anat.184(2), 227–237 (1994).
  • Ham D , SchipperHM. Heme oxygenase-1 induction and mitochondrial iron sequestration in astroglia exposed to amyloid peptides.Cell Mol. Biol.46(3), 587–596 (2000).
  • Jeong SY , DavidS. Glycosylphosphatidylinositol-anchored ceruloplasmin is required for iron efflux from cells in the central nervous system.J. Biol. Chem.278(29), 27144–27148 (2003).
  • Kaneko K , YoshidaK, ArimaKet al. Astrocytic deformity and globular structures are characteristic of the brains of patients with aceruloplasminemia. J. Neuropathol. Exp. Neurol. 61(12), 1069–1077 (2002).
  • Vargas JD , HerpersB, McKieAT. Stromal cell-derived receptor 2 and cytochrome b561 are functional ferric reductases.Biochim. Biophys. Acta.1651(1–2), 116–123 (2003).
  • Liuzzi JP , AydemirF, NamH, KnutsonMD, CousinsRJ. Zip14 (Slc39a14) mediates non-transferrin-bound iron uptake into cells.Proc. Natl Acad. Sci. USA103(37), 13612–13617 (2006).
  • Oudit GY , SunH, TrivieriMGet al. l-type Ca2+ channels provide a major pathway for iron entry into cardiomyocytes in iron-overload cardiomyopathy. Nat. Med. 9(9), 1187–1194 (2003).
  • Mwanjewe J , GroverAK. Role of transient receptor potential canonical 6 (TRPC6) in non-transferrin-bound iron uptake in neuronal phenotype PC12 cells.Biochem. J.378(3), 975–982 (2004).
  • Kurz T , TermanA, GustafssonB, BrunkUT. Lysosomes in iron metabolism, ageing and apoptosis.Histochem.Cell Biol.129(4), 389–406 (2008).
  • Carlson ES , TkacI, MagidRet al. Iron is essential for neuron development and memory function in mouse hippocampus. J. Nutr. 139(4), 672–679 (2009).
  • Hulet SW , HessEJ, DebinskiWet al. Characterization and distribution of ferritin binding sites in the adult mouse brain. J. Neurochem. 72(2), 868–874 (1999).
  • Taylor EM , CroweA, MorganEH. Transferrin and iron uptake by the brain: effects of altered iron status.J. Neurochem.57(5), 1584–1592 (1991).
  • Chang J , JallouliY, KroubiMet al. Characterization of endocytosis of transferrin-coated PLGA nanoparticles by the blood–brain barrier. Int. J. Pharm. 379(2), 285–292 (2009).
  • Liu G , MenP, KudoW, PerryG, SmithMA. Nanoparticle-chelator conjugates as inhibitors of amyloid-β aggregation and neurotoxicity: a novel therapeutic approach for Alzheimer disease.Neurosci. Lett.455(3), 187–190 (2009).
  • Persson HL , YuZ, TiroshO, EatonJW, BrunkUT. Prevention of oxidant-induced cell death by lysosomotropic iron chelators.Free Radic. Biol. Med.34(10), 1295–1305 (2003).
  • Boado RJ , ZhangY, WangY, PardridgeWM. Engineering and expression of a chimeric transferrin receptor monoclonal antibody for blood–brain barrier delivery in the mouse.Biotechnol. Bioeng.102(4), 1251–1258 (2009).
  • Boado RJ , ZhangY, WangY, PardridgeWM. Deficiency of pantothenate kinase 2 (Pank2) in mice leads to retinal degeneration and azoospermia.Hum. Mol. Genet.14(1), 49–57 (2005).
  • Balsinde J , BalboaMA. Cellular regulation and proposed biological functions of group VIA calcium-independent phospholipase A2 in activated cells.Cell Signal.17(9), 1052–1062 (2005).
  • De S , TriguerosMA, KalyvasA, DavidS. Phospholipase A2 plays an important role in myelin breakdown and phagocytosis during Wallerian degeneration.Mol. Cell Neurosci.24(3), 753–765 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.