242
Views
0
CrossRef citations to date
0
Altmetric
Review

Targeted Probes for Cardiovascular MRI

&
Pages 451-470 | Published online: 17 Mar 2010

Bibliography

  • Caravan P , LaufferRB. Contrast agents: basic principles. In: Clinical Magnetic Resonance Imaging. Edelman RR, Hesselink JR, Zlatkin MB, Crues JV (Eds). Saunders, Philadelphia, USA, 357–375 (2005).
  • Thomson LE , KimRJ, JuddRM. Magnetic resonance imaging for the assessment of myocardial viability.J. Magn. Reson. Imaging19(6), 771–788 (2004).
  • Goyen M , EdelmanM, PerreaultPet al. MR angiography of aortoiliac occlusive disease: a Phase III study of the safety and effectiveness of the blood-pool contrast agent MS-325. Radiology 236(3), 825–833 (2005).
  • Caravan P , ParigiG, ChasseJMet al. Albumin binding, relaxivity, and water exchange kinetics of the diastereoisomers of MS-325, a gadolinium(III)-based magnetic resonance angiography contrast agent. Inorg. Chem. 46(16), 6632–6639 (2007).
  • Eldredge HB , SpillerM, ChasseJM, GreenwoodMT, CaravanP. Species dependence on plasma protein binding and relaxivity of the gadolinium-based MRI contrast agent MS-325.Invest. Radiol.41(3), 229–243 (2006).
  • Weissleder R , MahmoodU. Molecular imaging.Radiology219(2), 316–333. (2001).
  • Sosnovik DE , NahrendorfM, WeisslederR. Molecular magnetic resonance imaging in cardiovascular medicine.Circulation115(15), 2076–2086 (2007).
  • Nahrendorf M , JafferFA, KellyKAet al. Noninvasive vascular cell adhesion molecule-1 imaging identifies inflammatory activation of cells in atherosclerosis. Circulation 114(14), 1504–1511 (2006).
  • Jaffer FA , WeisslederR. Seeing within: molecular imaging of the cardiovascular system.Circ. Res.94(4), 433–445 (2004).
  • Sosnovik DE . Molecular imaging in cardiovascular magnetic resonance imaging: current perspective and future potential.Top. Magn. Reson. Imaging19(1), 59–68 (2008).
  • Laurent S , ForgeD, PortMet al. Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108(6), 2064–2110 (2008).
  • McCarthy JR , WeisslederR. Multifunctional magnetic nanoparticles for targeted imaging and therapy.Adv. Drug Deliv. Rev.60(11), 1241–1251 (2008).
  • Sosnovik DE , NahrendorfM, WeisslederR. Magnetic nanoparticles for MR imaging: agents, techniques and cardiovascular applications.Basic Res. Cardiol.103(2), 122–130 (2008).
  • Kraitchman DL , HeldmanAW, AtalarEet al. In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation107(18), 2290–2293 (2003).
  • Kraitchman DL , TatsumiM, GilsonWDet al. Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation 112(10), 1451–1461 (2005).
  • Thorek DL , ChenAK, CzuprynaJ, TsourkasA. Superparamagnetic iron oxide nanoparticle probes for molecular imaging.Ann. Biomed. Eng.34(1), 23–38 (2006).
  • Korosoglou G , WeissRG, KedziorekDAet al. Noninvasive detection of macrophage-rich atherosclerotic plaque in hyperlipidemic rabbits using ‘positive contrast’ magnetic resonance imaging. J. Am. Coll. Cardiol. 52(6), 483–491 (2008).
  • Reynolds PR , LarkmanDJ, HaskardDOet al. Detection of vascular expression of E-selectin in vivo with MR imaging. Radiology 241(2), 469–476 (2006).
  • Flacke S , FischerS, ScottMJet al. Novel MRI contrast agent for molecular imaging of fibrin: implications for detecting vulnerable plaques. Circulation 104(11), 1280–1285 (2001).
  • Johansson LO , BjornerudA, AhlstromHK, LaddDL, FujiiDK. A targeted contrast agent for magnetic resonance imaging of thrombus: implications of spatial resolution.J. Magn. Reson. Imaging13(4), 615–618 (2001).
  • Sosnovik DE , SchellenbergerEA, NahrendorfMet al. Magnetic resonance imaging of cardiomyocyte apoptosis with a novel magneto-optical nanoparticle. Magn. Reson. Med. 54(3), 718–724 (2005).
  • McAteer MA , SchneiderJE, AliZAet al. Magnetic resonance imaging of endothelial adhesion molecules in mouse atherosclerosis using dual-targeted microparticles of iron oxide. Arterioscler. Thromb. Vasc. Biol. 28(1), 77–83 (2008).
  • von zur Muhlen C , von ElverfeldtD, MoellerJAet al. Magnetic resonance imaging contrast agent targeted toward activated platelets allows in vivo detection of thrombosis and monitoring of thrombolysis. Circulation118(3), 258–267 (2008).
  • Fuster V , MorenoPR, FayadZA, CortiR, BadimonJJ. Atherothrombosis and high-risk plaque: part I: evolving concepts.J. Am. Coll. Cardiol.46(6), 937–954 (2005).
  • Shah PK . Pathophysiology of coronary thrombosis: role of plaque rupture and plaque erosion.Prog. Cardiovasc. Dis.44(5), 357–368 (2002).
  • Virmani R , BurkeAP, KolodgieFD, FarbA. Vulnerable plaque: the pathology of unstable coronary lesions.J. Interv. Cardiol.15(6), 439–446 (2002).
  • Libby P . Inflammation in atherosclerosis.Nature420(6917), 868–874 (2002).
  • Lanza GM , AbendscheinDR, YuXet al. Molecular imaging and targeted drug delivery with a novel, ligand-directed paramagnetic nanoparticle technology. Acad. Radiol. 9(Suppl. 2), S330–S331 (2002).
  • Trivedi RA , U-King-ImJM, GravesMJet al. In vivo detection of macrophages in human carotid atheroma: temporal dependence of ultrasmall superparamagnetic particles of iron oxide-enhanced MRI. Stroke35(7), 1631–1635 (2004).
  • Kooi ME , CappendijkVC, CleutjensKBet al. Accumulation of ultrasmall superparamagnetic particles of iron oxide in human atherosclerotic plaques can be detected by in vivo magnetic resonance imaging. Circulation 107(19), 2453–2458 (2003).
  • Jaffer FA , NahrendorfM, SosnovikD, KellyKA, AikawaE, WeisslederR. Cellular imaging of inflammation in atherosclerosis using magnetofluorescent nanomaterials.Mol. Imaging5(2), 85–92 (2006).
  • Weissleder R , KellyK, SunEY, ShtatlandT, JosephsonL. Cell-specific targeting of nanoparticles by multivalent attachment of small molecules.Nat. Biotechnol.23(11), 1418–1423 (2005).
  • Stuber M , GilsonWD, ScharMet al. Positive contrast visualization of iron oxide-labeled stem cells using inversion-recovery with ON-resonant water suppression (IRON). Magn. Reson. Med. 58(5), 1072–1077 (2007).
  • Farrar CT , DaiG, NovikovMet al. Impact of field strength and iron oxide nanoparticle concentration on the linearity and diagnostic accuracy of off-resonance imaging. NMR Biomed. 21(5), 453–463 (2008).
  • Tsourkas A , Shinde-PatilVR, KellyKAet al. In vivo imaging of activated endothelium using an anti-VCAM-1 magnetooptical probe. Bioconjug. Chem.16(3), 576–581 (2005).
  • Kelly KA , AllportJR, TsourkasA, Shinde-PatilVR, JosephsonL, WeisslederR. Detection of vascular adhesion molecule-1 expression using a novel multimodal nanoparticle.Circ. Res.96(3), 327–336 (2005).
  • Kang PM , IzumoS. Apoptosis and heart failure: a critical review of the literature.Circ. Res.86(11), 1107–1113 (2000).
  • Weissleder R , LeeAS, KhawBA, ShenT, BradyTJ. Antimyosin-labeled monocrystalline iron oxide allows detection of myocardial infarct: MR antibody imaging.Radiology182(2), 381–385 (1992).
  • Port M , IdeeJM, MedinaC, RobicC, SabatouM, CorotC. Efficiency, thermodynamic and kinetic stability of marketed gadolinium chelates and their possible clinical consequences: a critical review.Biometals21(4), 469–490 (2008).
  • Rofsky NM , SherryAD, LenkinskiRE. Nephrogenic systemic fibrosis: a chemical perspective.Radiology247(3), 608–612 (2008).
  • Thomsen HS , MarckmannP. Extracellular Gd-CA: differences in prevalence of NSF.Eur. J. Radiol.66(2), 180–183 (2008).
  • Lancelot E , AmirbekianV, BriggerIet al. Evaluation of matrix metalloproteinases in atherosclerosis using a novel noninvasive imaging approach. Arterioscler. Thromb. Vasc. Biol. 28(3), 425–432 (2008).
  • Amirbekian V , AguinaldoJG, AmirbekianSet al. Atherosclerosis and matrix metalloproteinases: experimental molecular MR imaging in vivo. Radiology 251(2), 429–438 (2009).
  • Helm PA , CaravanP, FrenchBAet al. Postinfarction myocardial scarring in mice: molecular MR imaging with use of a collagen-targeting contrast agent. Radiology 247(3), 788–796 (2008).
  • Caravan P , DasB, DumasSet al. Collagen-targeted MRI contrast agent for molecular imaging of fibrosis. Angew. Chem. Int. Ed. Engl. 46(43), 8171–8173 (2007).
  • Caravan P , DasB, DengQet al. A lysine walk to high relaxivity collagen-targeted MRI contrast agents. Chem. Commun. (Camb.) (4), 430–432 (2009).
  • Corti R , FarkouhME, BadimonJJ. The vulnerable plaque and acute coronary syndromes.Am. J. Med.113(8), 668–680 (2002).
  • Botnar RM , PerezAS, WitteSet al. In vivo molecular imaging of acute and subacute thrombosis using a fibrin-binding magnetic resonance imaging contrast agent. Circulation109(16), 2023–2029 (2004).
  • Overoye-Chan K , KoernerS, LoobyRJet al. EP-2104R: a fibrin-specific gadolinium-based MRI contrast agent for detection of thrombus. J. Am. Chem. Soc. 130(18), 6025–6039 (2008).
  • Sirol M , AguinaldoJG, GrahamPBet al. Fibrin-targeted contrast agent for improvement of in vivo acute thrombus detection with magnetic resonance imaging. Atherosclerosis 182(1), 79–85 (2005).
  • Spuentrup E , KatohM, BueckerAet al. Molecular MR imaging of human thrombi in a swine model of pulmonary embolism using a fibrin-specific contrast agent. Invest. Radiol. 42(8), 586–595 (2007).
  • Spuentrup E , KatohM, WiethoffAJet al. Molecular magnetic resonance imaging of pulmonary emboli with a fibrin-specific contrast agent. Am. J. Respir. Crit. Care Med. 172(4), 494–500 (2005).
  • Spuentrup E , FaustenB, KinzelSet al. Molecular magnetic resonance imaging of atrial clots in a swine model. Circulation 112(3), 396–399 (2005).
  • Spuentrup E , BueckerA, KatohMet al. Molecular magnetic resonance imaging of coronary thrombosis and pulmonary emboli with a novel fibrin-targeted contrast agent. Circulation 111(11), 1377–1382 (2005).
  • Botnar RM , BueckerA, WiethoffAJet al. In vivo magnetic resonance imaging of coronary thrombosis using a fibrin-binding molecular magnetic resonance contrast agent. Circulation110(11), 1463–1466 (2004).
  • Spuentrup E , BotnarRM, WiethoffAJet al. MR imaging of thrombi using EP-2104R, a fibrin-specific contrast agent: initial results in patients. Eur. Radiol. 18(9), 1995–2005 (2008).
  • Nair SA , KolodziejAF, BholeG, GreenfieldMT, McMurryTJ, CaravanP. Monovalent and bivalent fibrin-specific MRI contrast agents for detection of thrombus.Angew. Chem. Int. Ed. Engl.47(26), 4918–4921 (2008).
  • Morawski AM , WinterPM, YuXet al. Quantitative ‘magnetic resonance immunohistochemistry’ with ligand-targeted (19)F nanoparticles. Magn. Reson. Med. 52(6), 1255–1262 (2004).
  • Sanders HM , StrijkersGJ, MulderWJet al. Morphology, binding behavior and MR-properties of paramagnetic collagen-binding liposomes. Contrast Media Mol. Imaging 4(2), 81–88 (2009).
  • Amirbekian V , LipinskiMJ, Briley-SaeboKCet al. Detecting and assessing macrophages in vivo to evaluate atherosclerosis noninvasively using molecular MRI. Proc. Natl Acad. Sci. USA 104(3), 961–966 (2007).
  • Mulder WJ , DoumaK, KoningGAet al. Liposome-enhanced MRI of neointimal lesions in the ApoE-KO mouse. Magn. Reson. Med. 55(5), 1170–1174 (2006).
  • Winter PM , MorawskiAM, CaruthersSDet al. Molecular imaging of angiogenesis in early-stage atherosclerosis with α-(v)-β-3-integrin-targeted nanoparticles. Circulation 108(18), 2270–2274 (2003).
  • Lipinski MJ , AmirbekianV, FriasJCet al. MRI to detect atherosclerosis with gadolinium-containing immunomicelles targeting the macrophage scavenger receptor. Magn. Reson. Med. 56(3), 601–610 (2006).
  • Briley-Saebo KC , ShawPX, MulderWJet al. Targeted molecular probes for imaging atherosclerotic lesions with magnetic resonance using antibodies that recognize oxidation-specific epitopes. Circulation 117(25), 3206–3215 (2008).
  • Meding J , UrichM, LichaKet al. Magnetic resonance imaging of atherosclerosis by targeting extracellular matrix deposition with gadofluorine M. Contrast Media Mol. Imaging 2(3), 120–129 (2007).
  • Zheng J , OchoaE, MisselwitzBet al. Targeted contrast agent helps to monitor advanced plaque during progression: a magnetic resonance imaging study in rabbits. Invest. Radiol. 43(1), 49–55 (2008).
  • Koktzoglou I , HarrisKR, TangRet al. Gadofluorine-enhanced magnetic resonance imaging of carotid atherosclerosis in Yucatan miniswine. Invest. Radiol. 41(3), 299–304 (2006).
  • Sirol M , ItskovichVV, ManiVet al. Lipid-rich atherosclerotic plaques detected by gadofluorine-enhanced in vivo magnetic resonance imaging. Circulation 109(23), 2890–2896 (2004).
  • Barkhausen J , EbertW, HeyerC, DebatinJF, WeinmannHJ. Detection of atherosclerotic plaque with gadofluorine-enhanced magnetic resonance imaging.Circulation108(5), 605–609 (2003).
  • Ronald JA , ChenJW, ChenYet al. Enzyme-sensitive magnetic resonance imaging targeting myeloperoxidase identifies active inflammation in experimental rabbit atherosclerotic plaques. Circulation 120(7), 592–599 (2009).
  • Chen JW , PhamW, WeisslederR, BogdanovA Jr. Human myeloperoxidase: a potential target for molecular MR imaging in atherosclerosis. Magn. Reson. Med.52(5), 1021–1028 (2004).
  • Querol M , BennettDG, SotakC, KangHW, BogdanovA Jr. A paramagnetic contrast agent for detecting tyrosinase activity. ChemBioChem.8(14), 1637–1641 (2007).
  • Tung CH , HoNH, ZengQet al. Novel factor XIII probes for blood coagulation imaging. ChemBioChem. 4(9), 897–899 (2003).
  • Nivorozhkin AL , KolodziejAF, CaravanP, GreenfieldMT, LaufferRB, McMurryTJ. Enzyme-activated Gd3+ magnetic resonance imaging contrast agents with a prominent receptor-induced magnetization enhancement Angew. Chem. Int. Ed. Engl.40(15), 2903–2906 (2001).
  • Louie AY , HuberMM, AhrensETet al. In vivo visualization of gene expression using magnetic resonance imaging. Nat. Biotechnol.18(3), 321–325 (2000).
  • Young JL , LibbyP, SchonbeckU. Cytokines in the pathogenesis of atherosclerosis.Thromb. Haemost.88(4), 554–567 (2002).
  • Naruko T , UedaM, HazeKet al. Neutrophil infiltration of culprit lesions in acute coronary syndromes. Circulation 106(23), 2894–2900 (2002).
  • Brennan ML , PennMS, Van Lente F et al. Prognostic value of myeloperoxidase in patients with chest pain. N. Engl. J. Med.349(17), 1595–1604 (2003).
  • Nicholls SJ , HazenSL. Myeloperoxidase and cardiovascular disease.Arterioscler. Thromb. Vasc. Biol.25(6), 1102–1111 (2005).
  • Sugiyama S , KugiyamaK, AikawaM, NakamuraS, OgawaH, LibbyP. Hypochlorous acid, a macrophage product, induces endothelial apoptosis and tissue factor expression: involvement of myeloperoxidase-mediated oxidant in plaque erosion and thrombogenesis.Arterioscler. Thromb. Vasc. Biol.24(7), 1309–1314 (2004).
  • Querol M , ChenJW, WeisslederR, BogdanovA Jr. DTPA-bisamide-based MR sensor agents for peroxidase imaging. Org. Lett.7(9), 1719–1722 (2005).
  • Chen JW , Querol Sans M, Bogdanov A Jr. Weissleder R. Imaging of myeloperoxidase in mice by using novel amplifiable paramagnetic substrates. Radiology240(2), 473–481 (2006).
  • Querol M , ChenJW, BogdanovAA Jr. A paramagnetic contrast agent with myeloperoxidase-sensing properties. Org. Biomol. Chem.4(10), 1887–1895 (2006).
  • Nahrendorf M , SosnovikD, ChenJWet al. Activatable magnetic resonance imaging agent reports myeloperoxidase activity in healing infarcts and noninvasively detects the antiinflammatory effects of atorvastatin on ischemia-reperfusion injury. Circulation 117(9), 1153–1160 (2008).
  • Yeon SB , SabirA, ClouseMet al. Delayed-enhancement cardiovascular magnetic resonance coronary artery wall imaging: comparison with multislice computed tomography and quantitative coronary angiography. J. Am. Coll. Cardiol. 50(5), 441–447 (2007).
  • Harisinghani MG , BarentszJ, HahnPFet al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N. Engl. J. Med. 348(25), 2491–2499 (2003).
  • Winter PM , NeubauerAM, CaruthersSDet al. Endothelial α-(v)-β-3 integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 26(9), 2103–2109 (2006).
  • Wehrl HF , JudenhoferMS, WiehrS, PichlerBJ. Pre-clinical PET/MR: technological advances and new perspectives in biomedical research.Eur. J. Nucl. Med. Mol. Imaging36(Suppl. 1), S56–S68 (2009).
  • Schlemmer HP , PichlerBJ, SchmandMet al. Simultaneous MR/PET imaging of the human brain: feasibility study. Radiology 248(3), 1028–1035 (2008).
  • Catana C , ProcissiD, WuYet al. Simultaneous in vivo positron emission tomography and magnetic resonance imaging. Proc. Natl Acad. Sci. USA 105(10), 3705–3710 (2008).
  • Lanza GM , WinterPM, NeubauerAM, CaruthersSD, HockettFD, WicklineSA. 1H/19F magnetic resonance molecular imaging with perfluorocarbon nanoparticles. Curr. Top. Dev. Biol.70, 57–76 (2005).
  • Merritt ME , HarrisonC, StoreyC, JeffreyFM, SherryAD, MalloyCR. Hyperpolarized 13C allows a direct measure of flux through a single enzyme-catalyzed step by NMR.Proc. Natl Acad. Sci. USA104(50), 19773–19777 (2007).
  • Olsson LE , ChaiCM, AxelssonO, KarlssonM, GolmanK, PeterssonJS. MR coronary angiography in pigs with intraarterial injections of a hyperpolarized 13C substance.Magn. Reson. Med.55(4), 731–737 (2006).
  • Sherry AD , WoodsM. Chemical exchange saturation transfer contrast agents for magnetic resonance imaging.Annu. Rev. Biomed. Eng.10, 391–411 (2008).
  • Ward KM , AletrasAH, BalabanRS. A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST).J. Magn. Reson.143(1), 79–87 (2000).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.