161
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Concise Asymmetric Synthesis of Configurationally Stable 4-Trifluoromethyl Thalidomide

, , &
Pages 897-908 | Published online: 19 Aug 2009

Bibliography

  • Eger K , JalalianB, VerspohlEJ, LupkeNP. Synthesis, central nervous system activity and teratogenicity of a homothalidomideArzneim. Forsch.40, 1073–1075 (1990).
  • Folkman J . Tumor angiogenesis: a possible control point in tumor growth.Ann. Intern. Med.82, 96–100 (1975).
  • Sampio EP , SarnoEN, GalillyR, CohnZA, KaplanG. Thalidomide selectively inhibits tumor necrosis factor α production by stimulated human monocytesJ. Exp. Med.173, 699–703 (1991).
  • Moreira AL , SampioEP, ZmuidzinasA, FrindtP, SmithKA, KaplanG. Thalidomide exerts its inhibitory action on tumor necrosis factor α by enhancing mRNA degradationJ. Exp. Med.177, 1675–1680 (1993).
  • Musto P , D‘AuriaF, PietrantuonoGet al. Role of thalidomide in previously untreated patients with multiple myeloma. Expert Rev. Anticancer Ther. 8, 1569–1580 (2008).
  • Hashimoto Y . Thalidomide as a multi-template for development of biologically active compounds.Arch. Pharm. Chem. Life Sci.341, 536–547 (2008).
  • Palumbo A , FaconT, SonneveldPet al. Thalidomide for treatment of multiple myeloma: 10 years later. Blood 111, 3968–3977 (2008).
  • Walker SL , WatersMF, LockwoodDN. The role of thalidomide in the management of erythema nodosum leprosum.Lepr. Rev.78, 197–215 (2007).
  • Ferrara N , HillanKJ, GerberHP, NovotnyW. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer.Nat. Rev. Drug Discov.3, 391–400 (2004).
  • Kumar S , RajkumarSV. Thalidomide and dexamethasone: therapy for multiple myeloma.Expert Rev. Anticancer Ther.5759–766 (2005).
  • Kumar S , AndersonKC. Drug insight: thalidomide as a treatment for multiple myeloma.Nat. Clin. Pract. Oncol.2, 262–270 (2005).
  • Eigler A , SinhaB, HartmannG, EndresS. Taming TNF: strategies to restrain this proinflammatory cytokine.Immunology Today18, 487–492 (1997).
  • Teo SK , ResztakKE, SchefflerMAet al. Thalidomide in the treatment of leprosy. Microbes Infect. 4, 1193–1202 (2002).
  • Kruse FE , JoussenAM, RohrschneiderK, BeckerMD, VolckerHE. Thalidomide inhibits corneal angiogenesis induced by vascular endothelial growth factor.Graefe’s Arch. Clin. Exp. Ophthalmol.236, 461–466 (1998).
  • Bartlett JB , DredgeK, DalgleishAG. The evolution of thalidomide and its IMiD derivatives as anticancer agents.Nat. Rev. Cancer4, 314–322 (2004).
  • Singhal S , MehtaJ. Thalidomide in cancer: potential uses and limitations.BioDrugs15, 163–172 (2001).
  • Sheskin J . Thalidomide in the treatment of lepra reactions.Clin. Pharmacol. Ther.6, 303–306 (1965).
  • Blaschke G , KlaftHP, FickentscherK, KoehlerF. Chromatographic racemic separation of thalidomide and teratogenic activity of its enantiomers.Arzneim. Forsch.29, 1640–1642 (1979).
  • Hoglund P , ErikssonT, BjorkmanS. A double-blind study of the sedative effects of the thalidomide enantiomers in humans.J. Pharmacokinet. Biopharm.26, 363–383 (1998).
  • Eriksson T , BjorkmanS, RothB, FygeA, HoglundP. Stereospecific determination, chiral inversion in vitro and pharmacokinetics in humans of the enantiomers of thalidomide. Chirality7, 44–52 (1995).
  • Wintersk W , FrankusE. Thalidomide enantiomers.Lancet339, 365 (1992).
  • Eriksson T , BjorkmanS, HoglundP. Clinical pharmacology of thalidomide.Eur. J. Clin. Pharmacol.57, 365–376 (2001).
  • Wnendt S , FinkamM, WinterW, OssingJ, RabbeG, ZwingenbergerK. Enantioselective inhibition of TNF-α release by thalidomide and thalidomide-analogs.Chirality8, 390–396 (1996).
  • Knoche B , BlaschkeG. Investigations on the in vitro racemization of thalidomide by high-performance liquid chromatography. J. Chromatogr.2, 235–240 (1994).
  • Chung F , PalmerBD, MullerGWet al. Effect of 3-fluorothalidomide and 3-methylthalidomide enantiomers on tumor necrosis factor production and antitumor responses to the antivascular agent 5,6-dimethylxanthenone-4-acetic acid (DMXAA). Oncol. Res. 14, 75–82 (2003).
  • Miyachi H , KolsoY, ShiraiR, NiwayamaS, LiuJO, HashimotoY. Tumor necrosis factor-α production enhancing activity of substituted 3´-methylthalidomide: influence of substituents at the phthaloyl moiety on the activity and stereoselectivity.Chem. Pharm. Bull.46, 1165–1168 (1998).
  • Buech HP , OmlorG, KnabeJ. Stereoselective differences of central nervous system-depressive action of a homologous series of 3-alkyl-thalidomide analysis.Arzneim. Forsch.40, 32–36 (1990).
  • Knabe J , OmlorG. Synthesis of racemates and enantiomers of 3-alkylthalidomide analogs and determination of their absolute configuration.Arch. Der Pharmazie.322, 499–505 (1989).
  • Muller GW , ChenRS. Preparation of 4-amino-2-(3-methyl-2,6-dioxopiperidin-3-yl)-isoindole-1,3-dione and compositions thereof for pharmaceutical applications.PCT Int. Appl.56 (2006).
  • Osipov SN , TsoukerP, HennigL, BurgerK. 3-Trifluoromethyl- and 3-difluoromethyl-thalidomides.Tetrahedron,60, 271–274 (2004).
  • Takeuchi Y , ShiragamiT, KimuraK, SuzukiE, ShibataN. (R)- and (S)-3-fluorothalidomides: isosteric analogs of thalidomide. Org. Lett.1, 1571–1573 (1999).
  • Corot C , PortM, GautheretT, WilliardX. Diagnostic compounds comprising a scaffold coupled to a signal entity for medical imaging diagnostic.US Pat. Appl. Publ.17 (2005).
  • Luzzio FA , ThomasEM, FiggWD. Thalidomide metabolites and analogs. Part 2: cyclic derivatives of 2-N-phthalimido-2S,3S (3-hydroxy) ornithine. Tetrahedron Lett.41, 7151–7155 (2000).
  • Yamada T , OkadaT, SakaguchiK, OhfuneY, UekiH, SoloshonokVA. Efficient asymmetric synthesis of novel 4-substituted and configurationally stable analogs of thalidomide.Org Lett.8, 5625–5628 (2006)
  • Soloshonok VA , GerusII, YagupolskiiYL, KukharVP. Fluorine-containing amino acids. III. α-trifluoromethyl-α-amino acids.Zh. Org. Khim.23, 2308–2313 (1987).
  • Soloshonok VA , AvilovDV, KukharVPet al. Asymmetric aldol reactions of chiral Ni(II)-complex of glycine with aldehydes. Stereodivergent synthesis of syn-(2S)- and syn-(2R)-β-alkylserines. Tetra. Asymm. 6, 1741–1756 (1995).
  • Soloshonok VA , AvilovDV, KukharVP Highly diastereoselective asymmetric aldol reactions of chiral Ni(II)-complex of glycine with trifluoromethyl ketones. Tetra. Asymm.7, 1547–1550 (1996).
  • Basiuk VA , GromovoyTY, ChuikoAA, SoloshonokVA, KukharVP. A novel approach to the synthesis of symmetric optically active 2,5-dioxopiperazines.Synthesis5, 449–451 (1992).
  • Soloshonok VA , KirilenkoAG, KukharVP, ResnatiG. Transamination of fluorinated β-keto carboxylic esters. A biomimetic approach to β-polyfluoroalkyl-β-amino acids.Tetrahedron Lett.34, 3621–3624 (1993).
  • Soloshonok VA , OnoT. The effect of substituents on the feasibility of azomethine-azomethine isomerization: new synthetic opportunities for biomimetic transamination.Tetrahedron52, 14701–14712 (1996).
  • Bravo P , FarinaA, FrigerioM, Valdo Meille S, Viani F, Soloshonok VA. New fluorinated chiral synthons. Tetra. Asymm.5, 987–1004 (1994).
  • Soloshonok VA , HayashiT, IshikawaK, NagashimaN. Highly diastereoselective aldol reaction of fluoroalkyl aryl ketones with methyl isocyanoacetate catalyzed by silver(I)/triethylamine.Tetrahedron Lett.35, 1055–1058 (1994).
  • Ohkura H , BerbasovDO, SoloshonokVA. Simple and highly diastereoselective synthesis of trifluoromethyl-containing myosmines via reaction between 2-(aminomethyl)pyridine and 1,1,1,5,5,5-hexafluoro-2,4-pentanedione.Tetrahedron Lett.44, 2417–2420 (2003).
  • Bravo P , FarinaA, KukharVPet al. Stereoselective additions of α-lithiated alkyl p-tolylsulfoxides to N-PMP fluoroalkyl aldimines. An efficient approach to enantiomerically pure fluoro-amino compounds J. Org. Chem. 62, 3424–3425 (1997).
  • Soloshonok VA , KacharovAD, AvilovDV, IshikawaK, NagashimaN, HayashiT. Transition metal/base-catalyzed aldol reactions of methyl α-isocyanoacetate with prochiral ketones, a straightforward approach to stereochemically defined β,β-disubstituted-β-hydroxy-α-amino acids. Scope and limitations. J. Org. Chem.62, 3470–3479 (1997).
  • Soloshonok VA , KacharovAD, HayashiT. Gold(I)-catalyzed asymmetric aldol reactions of isocyanoacetic acid derivatives with fluoroaryl aldehydes.Tetrahedron52, 245–254 (1996).
  • Soloshonok VA , KukharVP, Biomimetic transamination of α-keto perfluorocarboxylic esters. an efficient preparative synthesis of β,β,β-trifluoroalanine. Tetrahedron53, 8307–8314 (1997).
  • Soloshonok VA , YagupolskiiYL, KukharVP. Fluorine-containing amino acids. V. imines of trifluoropyruvic acid in the synthesis of n-substituted trifluoroalanines. Zh. Org. Khim.24, 1638–1644 (1988).
  • Tang X , SoloshonokVA, HrubyVJ. Convenient asymmetric synthesis of enantiomerically pure 2´6´-dimethyltyrosine (DMT) via alkylation of chiral nucleophilic glycine equivalent.Tetra. Asymm.11, 2917–2925 (2000).
  • Soloshonok VA , TangX, HrubyVJ. Large-scale asymmetric synthesis of novel sterically constrained 2´,6´-dimethyl- and α,2´,6´-trimethyltyrosine and –phenylalanine derivatives via alkylation of chiral equivalents of nucleophilic glycine and alanine. Tetrahedron57, 6375–6382 (2001).
  • Ellis TK , MartinCH, TsaiGM, UekiH, SoloshonokVA. Efficient synthesis of sterically constrained symmetrically α,α-disubstituted α-amino acids under operationally convenient conditions.J. Org. Chem.68, 6208–6214 (2003).
  • Qiu W , GuX, SoloshonokVA, CarducciMD, HrubyVJ. Stereoselective synthesis of conformationally constrained reverse turn dipeptide mimetics.Tetrahedron Lett.42, 145–148 (2001).
  • Cai M , CaiC, MayorovAVet al. Biological and conformational study of β-substituted prolines in MT-II template: steric effects leading to human MC5 receptor selectivity. J. Peptide Res. 63, 116–131 (2004).
  • Soloshonok VA , TangX, HrubyVJ, MeerveltLV. asymmetric synthesis of α,β-dialkyl-α-phenylalanines via direct alkylation of chiral alanine derivative with racemic α-alkylbenzylbromides. A case of high enantiomer differentiation at room temperature.Org. Lett.3, 341–343 (2001).
  • Soloshonok VA , HayashiT. Gold(I)-catalyzed asymmetric aldol reaction of methyl isocyanoacetate with fluorinated benzaldehydes.Tetrahedron Lett.35, 2713–2716 (1994).
  • Soloshonok VA , AvilovDV, KukharVP, MeerveltLV, MischenkoN. An efficient asymmetric synthesis of (2S,3S)-3-trifluoromethylpyroglutamic acid. Tetrahedron Lett.38, 4903–4904 (1997).
  • Soloshonok VA , CaiC, HrubyVJ. Asymmetric michael addition reactions of chiral Ni(II) complex of glycine with N-(enoyl)oxazolidinones: improved reactivity and stereochemical outcome. Tetrahedron55, 12031–12044 (1999).
  • Soloshonok VA , CaiC, HrubyVJ, MeerveltLV. Asymmetric synthesis of novel highly sterically constrained (2S,3S)-3-methyl-3-trifluoromethyl- and (2S,3S,4R)-3-trifluoromethyl-4-methylpyroglutamic acids. Tetrahedron55, 12045–12058 (1999).
  • Ueki H , EllisTK, MartinCH, BoleneSB, BoettigerTU, SoloshonokVA. Improved synthesis of proline derived Ni(II)-complexes of glycine, a versatile chiral equivalents of nucleophilic glycine for general asymmetric synthesis of α-amino acids.J. Org. Chem.68, 7104–7107 (2003).
  • Soloshonok VA , CaiC, YamadaT, UekiH, OhfuneY, HrubyVJ. Michael addition reactions between chiral equivalents of a nucleophilic glycine and (S)- or (R)-3-(E-enoyl)-4-phenyl-1,3-oxazolidin-2-ones as a general method for efficient preparation of β-substituted pyroglutamic acids. Case of topographically controlled stereoselectivity. J. Am. Chem. Soc.127, 15296–15303 (2005).
  • Soloshonok VA . Highly diastereoselective michael addition reactions between nucleophilic glycine equivalents and β-substituted-α,β-unsaturated carboxylic acid derivatives; a general approach to the stereochemically defined and sterically χ-constrained α-amino acids. Current Org. Chem.6, 341–364 (2002).
  • Soloshonok VA , BelokonYN, KuzminaNAet al. Asymmetric synthesis of phosphorus analogs of dicarboxylic α-amino acids. J. Chem. Soc. Perkin Trans. 1, 1525–1529 (1992).
  • Soloshonok VA , CaiC, HrubyVJ. (S)- or (R)-N-(E-enoyl)-4-phenyl-1,3-oxazolidin-2-ones: ideal michael acceptors to afford a virtually complete control of simple and face diastereoselectivity in addition reactions with glycine derivatives. Org. Lett.2, 747–750 (2000).
  • Soloshonok VA , CaiC, HrubyVJ. Toward design of a practical methodology for stereocontrolled synthesis of χ-constrained pyroglutamic acids and related compounds. virtually complete control of simple diastereoselectivity in the michael addition reactions of glycine Ni(II) complexes with N-(enoyl)oxazolidinones. Tetrahedron Lett.41, 135–139 (2000).
  • Soloshonok VA , CaiC, HrubyVJ. A unique case of face diastereoselectivity in the michael addition reactions between Ni(II)-complexes of glycine and chiral 3-(E-enoyl)-1,3-oxazolidin-2-ones. Tetrahedron Lett.41, 9645–9649 (2000).
  • Soloshonok VA , CaiC, HrubyVJ. Asymmetric michael addition reactions of chiral Ni(II) complex of glycine with N-(enoyl)oxazolidinones: improved reactivity and stereochemical outcome. Tetra. Asymm.10, 4265–4269 (1999).
  • Soloshonok VA , UekiH, EllisTK. New generation of nucleophilic glycine equivalents.Tetrahedron Lett.46, 941–944 (2005).
  • Soloshonok VA , UekiH, EllisTK, YamadaT, OhfuneY. Application of modular nucleophilic glycine equivalents for truly practical asymmetric synthesis of β-substituted pyroglutamic acids.Tetrahedron Lett.46, 1107–1110 (2005).
  • Soloshonok VA , EllisTK. Design and synthesis of a new generation of ‘NH’ Ni(II) complexes of glycine schiff bases and their unprecedented C-H vs. N-H chemoselectivity in the alkyl halide alkylations and Michael addition reactions.Synlett533–538 (2006).
  • Ellis TK , UekiH, YamadaT, OhfuneY, SoloshonokVA. The design, synthesis and evaluation of a new generation of modular nucleophilic glycine equivalents for the efficient synthesis of sterically constrained α-amino acids.J. Org. Chem.71, 8572–8578 (2006).
  • Soloshonok VA , UekiH, JiangC, CaiC, HrubyVJ. A convenient, room temperature-organic base protocol for preparing chiral N-(enoyl)-1,3-oxazolidine-2-ones. Helv. Chim. Acta.85, 3616–3623 (2002).
  • Yamazaki T , ShinoharaN, KitazumeT, SatoS. Michael addition of organocopper species to 3-[(E)-4,4,4-trifluorobut-2-enoyl]oxazolidin-2-ones.J. Fluorine Chem.97, 91–96 (1999).
  • Cai C , SoloshonokVA, HrubyVJ. Michael addition reactions between chiral Ni(II) complex of glycine and 3-(trans-enoyl)oxazolidin-2-ones. A case of electron donor-acceptor attractive interactions-controlled face diastereoselectivity. J. Org. Chem.66, 1339–1350 (2001).
  • Kobzev SV , SoloshonokVA, GalushkoSV, YagupolskiiYL, KukharVP. Fluorine-containing amino acids. VI. Acid–base properties of α-trifluoromethyl-α-amino acids.Zh. Obshch. Khim.59, 909–912 (1989).
  • Soloshonok VA , HayashiT. Gold(I)-catalyzed asymmetric aldol reaction of fluorinated benzaldehydes with α-isocyanoacetamide.Tetra. Asymm.5, 1091–1094 (1994).
  • Tarver JE , TerranoveKM, JoullieMM. Hetero-Diels–Alder and pyroglutamate approaches to (2S,4R)-2-methylamino-5-hydroxy-4-methylpentanoic acid. Tetrahedron45, 10277–10284 (2004).
  • King FE , KiddDAA. New synthesis of glutamine and of γ-dipeptides of glutamic acid from phthalylated intermediates.J. Chem. Soc.3315–3319 (1949).
  • Krstenansky JL , del Rosario-Chow M, Currie BL. The synthesis of syn- and anti-2(S)-phthalimidomethyl-2,3,4,4α,7,7α-hexahydro-6-oxo-5H-pyrano[2,3-β]pyrroles as rigid β-bend peptide-mimetics. J. Heterocyclic Chem.29, 707–711 (1992).
  • Sakaitani M , OhfuneY. Syntheses and reactions of silyl carbamates. 1. Chemoselective transformation of amino protecting groups viatert-butyldimethylsilyl carbamates. J. Org. Chem.55, 870–876 (1990).
  • Flaih N , Pharm-HuyC, GalonsH. An expeditious synthesis of cyclic imides.Tetrahedron Lett.40, 3697–3698 (1999).
  • Nefkens GHL . Synthesis of phthaloyl amino acids under mild conditions.Nature185, 309 (1960).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.