218
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Fluorinated Isatin Derivatives. Part 3. New Side-Chain Fluoro-Functionalized Pyrrolidinyl Sulfonyl Isatins as Potent Caspase-3 and -7 Inhibitors

, , , , , & show all
Pages 969-989 | Published online: 19 Aug 2009

Bibliography

  • Stennicke HR , SalvesenGS. Properties of the caspases.Biochim. Biophys. Acta.1387, 17–31 (1998>).
  • O‘Brien T , LeeD. Prospects for caspase inhibitors.Mini Rev. Med. Chem.4, 153–165 (2004).
  • Hengartner MO . The biochemistry of apoptosis.Nature407, 770–776 (2000).
  • Kerr JFR , WyllieAH, CurrieAR. Apoptosis – basic biological phenomenon with wide ranging implications in tissue kinetics.Brit. J. Cancer26, 239–257 (1972).
  • Shacka JJ , RothKA. Regulation of neuronal cell death and neurodegeneration by members of the Bcl-2 family: therapeutic implications.Curr. Drug Targets CNS Neurol. Disord.4, 25–39 (2005).
  • Cotman CW , PoonWW, RissmanRA, Blurton-JonesM. The role of caspase cleavage of tau in Alzheimer disease neuropathology.J. Neuropathol. Exp. Neurol.64, 104–112 (2005).
  • Ankarcrona M , WinbladB. Biomarkers for apoptosis in Alzheimer’s disease.Int. J. Geriatr. Psychiatry20, 101–105 (2005).
  • Abbate A , BussaniR, Biondi-ZoccaiGGLet al. Infarct-related artery occlusion, tissue markers of ischaemia, and increased apoptosis in the peri-infarct viable myocardium. Eur. Heart J. 26, 2039–2045 (2005).
  • Gagarin D , YangZQ, ButlerJet al. Genomic profiling of acquired resistance to apoptosis in cells derived from human atherosclerotic lesions: potential role of STATs, cyclinD1, BAD, and Bcl-X(L). J. Mol. Cell Cardiol. 39, 453–465 (2005).
  • Bjorkerud S , BjorkerudB. Apoptosis is abundant in human atherosclerotic lesions, especially in inflammatory cells (macrophages and T cells), and may contribute to the accumulation of gruel and plaque instability.Am. J. Pathol.149, 367–380 (1996).
  • Gatti L , ZuninoF. Overview of tumor cell chemoresistance mechanisms.Methods Mol. Med.111, 127–148 (2005).
  • Peter ME , LegembreP, BarnhartBC. Does CD95 have tumor promoting activities?Biochim. Biophys. Acta.1755, 25–36 (2005).
  • Peter ME , HeufelderAE, HengartnerMO. Advances in apoptosis research.Proc. Natl Acad. Sci. USA94, 12736–12737 (1997).
  • Fischer U , Schulze-OsthoffK. New approaches and therapeutics targeting apoptosis in disease.Pharmacol. Rev.57, 187–215 (2005).
  • Vaux DL , FlavellRA. Apoptosis genes and autoimmunity.Curr. Opin. Immunol.12, 719–724 (2000).
  • Roy N , MahadevanMS, McLeanMet al. The gene for neuronal apoptosis inhibitory proteins in partially deleted in individuals with spinal muscular atrophy. Cell 80, 167–178 (1995).
  • Kumar S . Regulation of caspase activation in apoptosis: implications in pathogenesis and treatment of disease.Clin. Exp. Pharmacol. Physiol.26, 295–303 (1999).
  • Alam JJ . Apoptosis: target for novel drugs.Trends Biotechnol.21, 479–483 (2003).
  • Lee D , LongSA, AdamsJL. Potent and selective nonpeptide inhibitors of caspases 3 and 7 inhibit apoptosis and maintain cell functionality.J. Biol. Chem.275, 16007–16014 (2000).
  • Garcia-Calvo M , PetersonEP, LeitingB, RuelR, NicholsonDW, ThornberryNA. Inhibition of human caspases by peptide-based and macromolecular inhibitors.J. Biol. Chem.273, 32608–32613 (1998).
  • Lahorte CMM , VanderheydenJL, SteinmetzN, van de Wiele C, Dierckx RA, Slegers G. Apoptosis-detecting radioligands: current state of the art and future perspectives. Eur. J. Nucl. Med. Mol. Imaging31, 887–919 (2004).
  • Thimister PWL , HofstraL, LiemIHet al. In vivo detection of cell death in the area at risk in acute myocardial infarction. J. Nucl. Med.44, 391–396 (2003).
  • Lee D , LongSA, MurrayJHet al. Potent and selective nonpeptide inhibitors of caspases 3 and 7. J. Med. Chem. 44, 2015–2017 (2001).
  • Chu WH , ZhangJ, ZengCBet al. N-benzylisatin sulfonamide analogues as potent caspase-3 inhibitors: synthesis, in vitro activity, and molecular modeling studies. J. Med. Chem. 48, 7637–7647 (2005).
  • Chu WH , RothfussJ, d‘AvignonAet al. Isatin sulfonamide analogs containing a michael addition acceptor: a new class of caspase 3/7 inhibitors. J. Med. Chem. 50, 3751–3755 (2007).
  • Podichetty AK , FaustA, KopkaKet al. Fluorinated isatin derivatives. Part 1. Synthesis of new N-substituted (S)-5-[1-(2-methoxy-methylpyrrolidinyl)sulfonyl]-isatins as potent caspase-3 and -7 inhibitors. Bioorg. Med. Chem. 17, 2680–2688 (2009).
  • Chapman JG , MageeWP, StukenbrokHA, BeckiusGE, MiliciAJ, TraceyWR. A novel nonpeptidic caspase-3/7 inhibitor, (S)-(+)-5-[1-(2-methoxymethylpyrrolidinyl)-sulfonyl]isatin reduces myocardial ischemic injury. Eur. J. Pharmacol.456, 59–68 (2002).
  • Kopka K , FaustA, KeulPet al. 5-Pyrrolidinylsulfonyl isatins as a potential tool for the molecular imaging of caspases in apoptosis. J. Med. Chem. 49, 6704–6715 (2006).
  • Zhou D , ChuWH, RothfussJet al. Synthesis, radiolabeling, and in vivo evaluation of an F-18-labeled isatin analog for imaging caspase-3 activation in apoptosis. Bioorg. Med. Chem. Lett. 16, 5041–5046 (2006).
  • Faust A , WagnerS, KeulPet al. The nonpeptidyl caspase binding radioligand (S)-1-(4-(2-[F-18]fluoroethoxy)benzyl)-5-[1-(2-methoxymethylpyrrolidinyl)sulfonyl]isatin ([18F]CbR) as potential positron emission tomography-compatible apoptosis imaging agent. Q. J. Nucl. Med. Mol. Imaging 51, 67–73 (2007).
  • Smith G , GlaserM, PerumalMet al. Design, synthesis, and biological characterization of a caspase 3/7 selective isatin labeled with 2-[18F]fluoroethylazide. J. Med. Chem. 51, 8057–8067 (2008).
  • Podichetty AK , WagnerS, SchröerSet al. Fluorinated isatin derivatives. Part 2. New N-substituted 5-pyrrolidinylsulfonyl isatins as potential tools for molecular imaging of caspases in apoptosis. J. Med. Chem. 52, 3484–3495 (2009).
  • Zhou D , Chu,WH, ChenDLet al. [18F]- and [11C]-labeled N-benzyl-isatin sulfonamide analogues as PET tracers for apoptosis: synthesis, radiolabeling mechanism, and in vivo imaging study of apoptosis in Fas-treated mice using [11C]WC-98. Org. Biomol. Chem. 7, 1337–1348 (2009).
  • Cai L , LuS, PikeVW. Chemistry with [18F]fluoride ion. Eur. J. Org. Chem.2853–2873 (2008).
  • Wallen EAA , ChristiaansJAM, SaarioSMet al. Dicarboxylic acid bis(L-prolyl-pyrrolidine) amides as prolyl oligopeptidase inhibitors. Bioorg. Med. Chem. 10, 2199–2206 (2002).
  • Bischofberger N , WaldmannH, SaitoTet al. Synthesis of analogs of 1,3-dihydroxyacetone phosphate and glyceraldehyde-3-posphate for use in studies of fructose-1,6-diphosphate aldolase. J. Org. Chem. 53, 3457–3465 (1988).
  • Ruppert I , SchlichK, VolbachW. The first CF3-substituted organyl(chloro)silanes. Tetrahedron Lett.25, 2195–2198 (1984).
  • Prakash GKS , KrishnamurtiR, OlahGA. Synthetic methods and reactions. 141. Fluoride-induced trifluoromethylation of carbonyl-compounds with trifluoromethyltrimethylsilane (TMS-CF3) – a trifluoromethide equivalent. J. Am. Chem. Soc.111, 393–395(1989).
  • Sondej SC , KatzenellenbogenJA. Gem-difluoro compounds – a conveniant preparation from ketones and aldehydes by halogen fluoride treatment of 1,3-dithiolanes. J. Org. Chem.51, 3508–3513 (1986).
  • Kuroboshi M , KanieK, HiyamaT. Oxidative desulfurization–fluorination: a facile entry to a wide variety of organofluorine compounds leading to novel liquid-crystalline materials.Adv. Synth. Catal.343, 235–250 (2001).
  • Feldman KS . Modern Pummerer-type reactions.Tetrahedron62, 5003–5034 (2006).
  • Furuta S , KuroboshiM, HiyamaT. Fluoro-pummerer rearrangement under oxidative desulfurization–fluorination conditions. Facile synthesis of oligofluoroalkyl sulfides.Tetrahedron Lett.36, 8243–8246 (1995).
  • Kirsch P , BremerM, TaugerbeckA, WallmichrathT. Difluorooxymethylene-bridged liquid crystals: a novel synthesis based on the oxidative alkoxydifluorodesulfuration of dithianylium salts.Angew. Chem. Int. Ed.40, 1480–1483 (2001).
  • Harris BD , BhatKL, JoullieMM. Synthetic Studies of detoxin complex 2. Syntheses of detoxi-B1 and detoxin-B3.Heterocycles24, 1045–1060 (1986).
  • McKeever B , PattendenG. Total synthesis of the cytotoxic cyclopeptide mollamide, isolated from the sea squirt Didemnum molle. Tetrahedron59, 2701–2712 (2003).
  • Kuroboshi M , SuzukiK, HiyamaT. Oxidative desulfurization–fluorination of xanthates – a convenient synthesis of trifluoromethyl ethers and difluoro-(methylthio)methyl ethers.Tetrahedron Lett.33, 4173–4176 (1992).
  • Kanie K , TanakaY, ShimizuM, KuroboshiM, HiyamaT. Oxidative desulfurization–fluorination of alkanol xanthates. Control of the reaction pathway to fluorination or trifluoromethoxylation.Chem. Comm.309–310 (1997).
  • Tozer MJ , HerpinTF. Methods for the synthesis of gem-difluoromethylene compounds. Tetrahedron52, 8619–8683 (1996).
  • Hayashi S , NakaiT, IshikawaN, BurtonDJ, NaaeDG, KeslingJS. Convenient procedures for conversion of carbonyl-compounds to gem-difluoroolefins and their selective reductions to monofluoroolefins. Chem. Lett.8, 983–986 (1979).
  • Lohmann W , KarstU. Biomimetic modeling of oxidative drug metabolism – strategies, advantages and limitations.Anal. Bioanal. Chem.391, 79–96 (2008).
  • Hugenberg V , HaufeG. Oxidative desulfurization–defluorination of alkyl aryl thioethers: synthesis of ω-substituted 1,2-difluoroalkanes.Synlett106–108 (2009).

Patent

  • Ando T , ShibataK, MatsuiSet al. EP 0844229. Chem. Abstr.129, 60620 (1998).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.