318
Views
0
CrossRef citations to date
0
Altmetric
Review

Practical Synthesis of Fluorine-Containing α- and β-Amino Acids: Recipes from Kiev, Ukraine

, &
Pages 793-819 | Published online: 19 Aug 2009

Bibliography

  • Perdih A , DolencMS. Recent advances in the synthesis of unnatural α-amino acids.Curr. Org. Chem.11, 801–832 (2007).
  • Kukhar VP , SoloshonokVA (Eds). Fluorine-Containing Amino Acids. John Wiley & Sons, Chichester, UK (1995).
  • Kukhar VP , YagupolskiiYL, SoloshonokVA. β-Fluorine-containing amino acids.Russ. Chem. Reviews59, 89–102 (1990).
  • Kukhar VP , SoloshonokVA. Aliphatic fluorine-containing amino acids.Russ. Chem. Reviews60, 850–864 (1991).
  • Kukhar VP , SvistunovaNY, SolodenkoVA, SoloshonokVA. Asymmetric synthesis of fluorine and phosphorus-containing amino acids.Russ. Chem. Rev.62, 261–278 (1993).
  • Kukhar VP , SoloshonokVA, SolodenkoVA. Asymmetric synthesis of phosphorus analogs of amino acids.Phosph. Sulf. Silic.92, 239–264 (1994).
  • Qiu XL , MengWD, QingFL. Synthesis of fluorinated amino acids.Tetrahedron60, 6711–6745 (2004).
  • Sutherland A , WillisCL. Synthesis of fluorinated amino acids.Nat. Prod. Rep.17, 621–631 (2000).
  • Yoder NC , KumarK. Fluorinated amino acids in protein design and engineering.Chem. Soc. Rev.31, 335–341 (2002).
  • Bégué JP , Bonnet-DelponD. Bioorganic and Medicinal Chemistry of Fluorine. John Wiley & Sons, Hoboken, NJ, USA (2008).
  • Hagmann WK . The many roles for fluorine in medicinal chemistry.J. Med. Chem.51, 4359–4369 (2008).
  • Yoder NC , YükselD, DafikL, KumarK. Bioorthogonal noncovalent chemistry: fluorous phases in chemical biology.Curr. Opin. Chem. Biol.10, 576–583 (2006).
  • Isanbor C , O‘HaganD. Fluorine in medicinal chemistry: a review of anti-cancer agents.J. Fluor. Chem.127, 303–319 (2006).
  • Bégué JP , Bonnet-DelponD. Recent advances (1995–2005) in fluorinated pharmaceuticals based on natural products.J. Fluor. Chem.127, 992–1012 (2006).
  • Kirk KL . Fluorine in medicinal chemistry: recent therapeutic applications of fluorinated small molecules.J. Fluorine Chem.127, 1013–1029 (2006).
  • Hook DF , GessierF, NotiC, KastP, SeebachD. Probing the proteolytic stability of β-peptides containing α-fluoro- and α-hydroxy-β-amino acids.Chem. Bio. Chem.5, 691–706 (2004).
  • Vincent JM . Noncovalent associations in fluorous fluids.J. Fluor. Chem.129, 903–909 (2008).
  • Olsen JA , BannerDW, SeilerPet al. Fluorine interactions at the thrombin active site: protein backbone fragments H-C-C=O comprise a favorable C-F environment and interactions of C-F with electrophiles. Chem. Bio. Chem. 5, 666–675 (2004).
  • Olsen JA , BannerDW, SeilerPet al. A fluorine scan of thrombin inhibitors to map the fluorophilicity/fluorophobicity of an enzyme active site: evidence for C-F···C=O interactions. Angew. Chem. Int. Ed. Engl. 42, 2507–2511 (2003).
  • Hof F , ScofieldDM, SchweizerWB, DiederichF. A weak attractive interaction between organic fluorine and an amide group.Angew. Chem. Int. Ed. Engl.43, 5056–5059 (2004).
  • Sani M , VolonterioA, ZandaM. The trifluoroethylamine function as peptide bond replacement.ChemMedChem2, 1693–1700 (2007).
  • Giese C , LepthienS, MetznerL, BrandschM, BudisaN, LilieH. Intracellular uptake and inhibitory activity of aromatic fluorinated amino acids in human breast cancer cells.ChemMedChem3, 1449–1456 (2008).
  • Wang P , FicheraA, KumarK, TirrellDA. Alternative translations of a single rna message: an identity switch of (2S,3R)-4,4,4-trifluorovaline between valine and isoleucine codons. Angew. Chem. Int. Ed. Engl.43, 3664–3666 (2004).
  • Yagupolskii YL , SoloshonokVA, KukharVP. Fluorine-containing amino acids. i. an efficient synthesis of D,L-α,α,α-trifluoroalanine.Zh. Org. Khim.22, 517–521 (1986).
  • Soloshonok VA , YagupolskiiYL, KukharVP. Fluorine-containing amino acids. V. Imines of trifluoropyruvic acid in the synthesis of n-substituted trifluoroalanines.Zh. Org. Khim.24, 1638–1644 (1988).
  • Soloshonok VA , GerusII, YagupolskiiYL. N-(methoxycarbonyl)imine of trifluoropyruvic acid.Zh. Org. Khim.22, 1335–1337 (1986).
  • Soloshonok VA , GerusII, YagupolskiiYL, KukharVP. Fluorine-containing amino acids. Iii. A-trifluoromethyl-α-amino acids.Zh. Org. Khim.23, 2308–2313 (1987).
  • Basiuk VA , GromovoyTY, ChuikoAA, SoloshonokVA, KukharVPA. Novel approach to the synthesis of symmetric optically active 2,5-dioxopiperazines.Synthesis449–451 (1992).
  • Soloshonok VA , KukharVP. Reactions of methyl trifluoropyruvate and its N-(methoxycarbonyl)imine with p-rich heterocycles and dipolar compounds. Zh. Org. Khim.26, 419–425 (1990)
  • Osipov SN , ChkanikovND, KolomietsAF, FokinAV. Aminoalkylation of α-picoline by methyl 2-trifluoroacetylimino-3,3,3-trifluoropropionate.Russian Chem. Bull.38, 201 (1989).
  • Osipov SN , KolomietsAF, FokinAV. Methyl α-trifluoromethylaspartate.Russian Chem. Bull.38, 673 (1989).
  • Abid M , TeixeiraL, TörökB. Triflic acid-catalyzed highly stereoselective friedel-crafts aminoalkylation of indoles and pyrroles.Org. Lett.10, 933–935 (2008).
  • Markovskii LN , ShermolovichYG, BarashenkovGG, KukharVP, SoloshonokVA, RozhenkoAB. Esters of α-amino-α-aryl-β,β-,β-trifluoroethanephosphonic acids.Zh. Obshch. Khim.60, 2244–2247 (1990).
  • Cativiela C , OrdezM. Recent Progress on the Stereoselective Synthesis of Cyclic Quaternary α-Amino Acids.Tetrahedron: Asymmetry20, 1–63 (2009).
  • Kobzev SV , SoloshonokVA, GalushkoSV, YagupolskiiYL, KukharVP. Fluorine-containing amino acids. Vi. Acid-base properties of α-trifluoromethyl-α-amino acids.Zh. Obshch. Khim.59, 909–912 (1989).
  • Galushko SV . High-performance liquid chromatography of fluorine-containing amino acids. In: Fluorine-Containing Amino Acids. Kukhar VP, Soloshonok VA (Eds). John Wiley & Sons, Chichester, UK, 295–309 (1995).
  • Galushko SV , ShishkinaIP, KobzevSP, SoloshonokVA, YagupolskiiYL, KukharVP. Determination of enantiomeric composition of α-trifluoromethyl-α-amino acids by ligand-exchange microcolumn chromatography.Zh. Anal. Khim.43, 2067–2069 (1988).
  • Galushko SV , ShishkinaIP, SoloshonokVA, KukharVP. Ligand-exchange chromatography of α-trifluoromethyl-α-amino acids on chiral sorbents.J. Chromatogr.511, 115–121 (1990).
  • Galushko SV , ShishkinaIP, SoloshonokVA. High-performance ligand-exchange chromatography of some amino acids containing two chiral centers.J. Chromatogr.592, 345–348 (1992).
  • Sewald N , BurgerK. Synthesis of β-fluorine-containing amino acids. In: Fluorine-Containing Amino Acids. Kukhar VP, Soloshonok VA (Eds). John Wiley & Sons, Chichester, UK, 295–309 (1995).
  • Soloshonok VA , YagupolskiiYL, KukharVP. Derivatives of trifluoromethyl malic acid and their reactions.Zh. Org. Khim.23, 2523–2527 (1989).
  • Soloshonok VA , GerusII, YagupolskiiYL, KukharVP. α-Trifluoromethyl-α-hydroxy carboxylic acids.Zh. Org. Khim.23, 1441–1447 (1987).
  • Soloshonok VA , RozhenkoAB, ButovichIA, KukharVP. Reactions of methyl trifluoropyruvate with terminal olefins.Zh. Org. Khim.26, 2051–2056 (1990).
  • Butovich IA , SoloshonokVA, KukharVP. The unusual action of (R,S)-2-hydroxy-2-trifluoromethyl-trans-n-octadec-4-enoic acid on 5-lipoxygenase from potato tubers. Eur. J. Biochem.199, 153–155 (1991).
  • Butovich IA , SoloshonokVA, SolodenkoVA, KukharVP. Activation of 5-lipoxygenase by lipophilic n-alkyl-containing acids is an allosteric process.Bioorg. Khim.16, 270–271 (1990).
  • Soloshonok VA , GerusII, YagupolskiiYL, KukharVP. Azomethine-azomethine isomerization of fluorinated n-benzylimines.Zh. Org. Khim.24, 993–997 (1988).
  • Soloshonok VA , KirilenkoAG, KukharVP, ResnatiGA. Practical rout to fluoroalkyl- and fluoroarylamines by base-catalyzed (1,3)-proton shift reaction.Tetrahedron Lett.35, 3119–3122 (1994).
  • Ono T , KukharVP, SoloshonokVA. Biomimetic reductive amination of fluoro-aldehydes and ketones via [1,3]-proton shift reaction: scope and limitations.J. Org. Chem.61, 6563–6569 (1996).
  • Ohkura H , BerbasovDO, SoloshonokVA. Simple and highly diastereoselective synthesis of trifluoromethyl-containing myosmines via reaction between 2-(aminomethyl)pyridine and 1,1,1,5,5,5-hexafluoro-2,4-pentanedione.Tetrahedron Lett.44, 2417–2420 (2003).
  • Soloshonok VA , OhkuraH, YasumotoM. Novel sequence of two base-catalyzed 1,3 proton shifts and [1,2] wittig rearrangement in the synthesis of 2,4-bis-(trifluoromethyl)-phenylpyridine.J. Fluor. Chem.127, 708–711 (2006).
  • Soloshonok VA , YasumotoM. Simple and convenient synthesis of 3,5-bis-(trifluoromethyl)benzylamine via 1,3-proton shift reaction.J. Fluor. Chem.127, 889–893 (2006).
  • Yasumoto M , UekiH, SoloshonokVA. Base-free, thermal 1,3-proton shift reaction and its application for operationally convenient and improved synthesis of α-(trifluoromethyl)benzylamine.J. Fluor. Chem.128, 736–739 (2007).
  • Soloshonok VA , OnoT. The effect of substituents on the feasibility of [1,3]-proton shift reaction: new synthetic opportunities.Synlett919–921 (1996).
  • Soloshonok VA , OnoT. The effect of substituents on the feasibility of azomethine-azomethine isomerization: new synthetic opportunities for biomimetic transamination.Tetrahedron52, 14701–14712 (1996).
  • Soloshonok VA , KukharVP. Biomimetic transamination of α-keto perfluorocarboxylic esters. An efficient preparative synthesis of β,β-,β-trifluoroalanine.Tetrahedron53, 8307–8314 (1997).
  • Ohkura H , BerbasovDO, SoloshonokVA. Chemo- and regioselectivity in the reactions between highly electrophilic fluorine containing dicarbonyl compounds and amines. Improved synthesis of the corresponding imines/enamines.Tetrahedron59, 1647–1656 (2003).
  • Berbasov DO , OjemayeID, SoloshonokVA. Synthesis of highly 1,3-proton-shift-transferable n-benzyl imines of trifluoroacetophenone under the ‘low-basicity’ reaction conditions.J. Fluor. Chem.125, 603–607 (2004).
  • Soloshonok VA , BerbasovDO. Synthesis of fluorine-containing compounds under operationally convenient conditions.J. Fluor. Chem.125, 1757–1763 (2004).
  • Soloshonok VA , SvedasVK, KukharVPet al. An enzymatic entry to enantiopure β-amino acids. Synlett 339–341 (1993).
  • Soloshonok VA , KirilenkoAG, KukharVP, ResnatiG. Transamination of fluorinated β-keto carboxylic esters. A biomimetic approach to β-polyfluoroalkyl-β-amino acids.Tetrahedron Lett.34, 3621–3624 (1993).
  • Soloshonok VA , KukharVP. Biomimetic base-catalyzed [1,3]-proton shift reaction. A practical synthesis of β-fluoroalkyl-β-amino acids.Tetrahedron52, 6953–6964 (1996).
  • Soloshonok VA , OhkuraH, UneyamaK. Reducing reagent-free, biomimetic reductive amination of perfluorocarboxylic acids to α,α-dihydroperfluoroamines.Tetrahedron Lett.43, 5449–5452 (2002).
  • Kukhar VP , SoloshonokVS, GalushkoSV, RozhenkoAB. Asymmetric [1,3]-proton shift in azomethines as a new approach to the synthesis of optically active α-trifluoromethyl-containing amines and amino acids.Dokl. Akad. Nauk SSSR310, 886–889 (1990).
  • Soloshonok VA , OnoT. Highly enantioselective transfer of chirality from a less to a more conformationally unstable stereogenic center. A practical asymmetric synthesis of perfluoroalkyl amines.J. Org. Chem.62, 3030–3031 (1997).
  • Soloshonok VA , OhkuraH, YasumotoM. Unusual condensation of 1,1,1,5,5,5-hexafluoro-2,4-pentanedione with (R)-phenylglycinol. Mendeleev Commun.165–167 (2006).
  • Soloshonok VA , OnoT, SoloshonokIV. Enantioselective biomimetic transamination of β-keto carboxylic acid derivatives. An efficient asymmetric synthesis of β-fluoroalkyl-β-amino acids.J. Org. Chem.62, 7538–7539 (1997).
  • Soloshonok VA , OhkuraH, YasumotoM. Operationally convenient asymmetric synthesis of (S)- and (R)-3-amino-4,4,4-trifluorobutanoic acid. Part I: enantioselective biomimetic transamination of isopropyl 4,4,4-trifluoro-3-oxobutanoate. J. Fluor. Chem.127, 924–929 (2006).
  • Soloshonok VA , OhkuraH, YasumotoM. Operationally convenient asymmetric synthesis of (S)- and (R)-3-amino-4,4,4-trifluorobutanoic acid. Part II: enantioselective biomimetic transamination of 4,4,4-trifluoro-3-oxo-N-[(R)-1-phenylethyl)butanamide. J. Fluor. Chem.127, 930–935 (2006).
  • Soloshonok VA , KirilenkoAG, GalushkoSV, KukharVP. Catalytic asymmetric synthesis of β-fluoroalkyl-β-amino acids via biomimetic [1,3]-proton shift reaction.Tetrahedron Lett.35, 5063–5064 (1994).
  • Soloshonok VA , YasumotoM. Catalytic asymmetric synthesis of α-(trifluoromethyl)benzylamine via cinchonidine derived base-catalyzed biomimetic 1,3-proton shift reaction.J. Fluor. Chem.128, 170–173 (2007).
  • Soloshonok VA , OnoT. First example of continuous-flow reaction conditions for biomimetic reductive amination of fluorine-containing carbonyl compounds.J. Fluor. Chem.129, 785–787 (2008).
  • Soloshonok VA , CattHT, OnoT. Continuous-flow asymmetric biomimetic transamination.J. Fluor. Chem.130, 512–515 (2009).
  • Khotkevich AB , SoloshonokVA, YagupolskiiYL. Kinetics and mechanism of the isomerization of N-(1-methoxycarbonyl-2,2,2-trifluoroethylidene)-α-methylbenzyl-amine. Zh. Obshch. Khim.60, 1005–1008 (1990).
  • Nagy P , UekiH, BerbasovDO, SoloshonokVA. Kinetics and mechanism of triethylamine-catalyzed 1,3-proton shift. Optimized and substantially improved reaction conditions for biomimetic reductive amination of fluorine-containing carbonyl compounds.J. Fluor. Chem.129, 409–415 (2008).
  • Soloshonok VA , KirilenkoAG, FokinaNAet al. Biocatalytic resolution of β-fluoroalkyl-β-amino acids. Tetrahedron: Asymmetry 5, 1119–1126 (1994).
  • Soloshonok VA , KirilenkoAG, FokinaNAet al. Chemo-enzymatic approach to the synthesis of each of the four isomers of α-alkyl-β-fluoroalkyl-substituted β-amino acids. Tetrahedron: Asymmetry 5, 1225–1228 (1994).
  • Soloshonok VA , FokinaNA, RybakovaAVet al. Biocatalytic approach to enantiomerically pure β-amino acids. Tetrahedron: Asymmetry 6, 1601–1610 (1995).
  • Soloshonok VA , SoloshonokIV, KukharVP, SvedasVK. Biomimetic transamination of α-alkyl-β-keto carboxylic esters. Chemo-enzymatic approach to the stereochemically defined α-alkyl-β-fluoroalkyl-β-amino acids.J. Org. Chem.63, 1878–1884 (1998).
  • Soloshonok VA . Remarkable amplification of self-disproportionation of enantiomers on achiral-phase chromatography columns.Angew. Chem. Int. Ed. Engl.45, 766–769 (2006).
  • Soloshonok VA , BerbasovDO. Self-disproportionation of enantiomers of (R)-ethyl 3-(3,5-dinitrobenzamido)-4,4,4-trifluorobutanoate on achiral silica gel stationary phase. J. Fluor. Chem.127, 597–603 (2006).
  • Soloshonok VA , BerbasovDO. Self-disproportionation of enantiomers on achiral phase chromatography. One more example of fluorine’s magic powers.Chem. Today24, 44–47 (2006).
  • Soloshonok VA , UekiH, YasumotoM, MekalaS, HirschiJS, SingletonDA. Phenomenon of optical self-purification of chiral non-racemic compounds.J. Am. Chem. Soc.129, 12112–12113 (2007).
  • Ueki H , SoloshonokVA. New sterically driven mode for generation of helical chirality.Org. Lett.11, 1797–1800 (2009).
  • Barret GC . Chemistry and Biochemistry of Amino Acids. Elmore T (Ed.). Chapman and Hall, London, UK (1985).
  • Wagner I , MussoH. New naturally occurring amino acids.Angew. Chem. Int. Ed. Engl.22, 816 (1983).
  • Greenstein JP , WinitzM. Chemistry of the Amino Acids (Volume 1–3). Krieger RE (Ed.). FL, USA (1984).
  • Herbert RA . The Biosynthesis of Secondary Metabolites. Chapman and Hall, London, UK (1981).
  • Ojima I , DasM. Recent advances in the chemistry and biology of new generation taxoids.J. Nat. Prod.72, 554–565 (2008).
  • Soloshonok VA , HayashiT. Gold(I)-catalyzed asymmetric aldol reaction of methyl isocyanoacetate with fluorinated benzaldehydes.Tetrahedron Lett.35, 2713–2716 (1994).
  • Soloshonok VA , HayashiT. Gold(I)-catalyzed asymmetric aldol reaction of fluorinated benzaldehydes with α-isocyanoacetamide.Tetrahedron: Asymmetry5, 1091–1094 (1994).
  • Soloshonok VA , KacharovAD, HayashiT. Gold(I)-catalyzed asymmetric aldol reactions of isocyanoacetic acid derivatives with fluoroaryl aldehydes.Tetrahedron52, 245–254 (1996).
  • Ito Y , SawamuraM, HayashiT. Catalytic asymmetric aldol reaction: reaction of aldehydes with isocyanoacetate catalyzed by a chiral ferrocenylphosphine–gold(I) complex.J. Am. Chem. Soc.108, 6405–6406 (1986).
  • Hayashi T , KishiE, SoloshonokVA, UozumiY. Erythro-selective aldol-type reaction of N-sulfonylaldimines with methyl isocyanoacetate catalyzed by gold(I).Tetrahedron Lett.37, 4969–4972 (1996).
  • Soloshonok VA , HayashiT, IshikawaK, NagashimaN. Highly diastereoselective aldol reaction of fluoroalkyl aryl ketones with methyl isocyanoacetate catalyzed by silver(I)/triethylamine.Tetrahedron Lett.35, 1055–1058 (1994).
  • Soloshonok VA , KacharovAD, AvilovDV, HayashiT. Transition metal-catalyzed diastereoselective aldol reactions of prochiral ketones with methyl isocyanoacetate.Tetrahedron Lett.37, 7845–7848 (1996).
  • Soloshonok VA , KacharovAD, AvilovDV, IshikawaK, NagashimaN, HayashiT. Transition metal/base-catalyzed aldol reactions of methyl α-isocyanoacetate with prochiral ketones, a straightforward approach to stereochemically defined β,β-disubstituted-β-hydroxy-α-amino acids. Scope and limitations. J. Org. Chem.62, 3470–3479 (1997).
  • Ueki H , EllisTK, MartinCH, BoleneSB, BoettigerTU, SoloshonokVA. Improved synthesis of proline derived Ni(ii)-complexes of glycine, a versatile chiral equivalents of nucleophilic glycine for general asymmetric synthesis of α-amino acids.J. Org. Chem.68, 7104–7107 (2003).
  • Kukhar VP , BelokonYN, SvistunovaNY, SoloshonokVA, RozhenkoAB, KuzminaNA. Asymmetric synthesis of organoelement analogs of natural products. Part 12. General method for the asymmetric synthesis of fluorine-containing phenylalanines and α-methylphenylalanines via alkylation of the chiral nickel(ii) Schiff’s base complexes of glycine and alanine. Synthesis117–121 (1993).
  • Soloshonok VA , TangX, HrubyVJ, MeerveltLV. Asymmetric synthesis of α,β-dialkyl-α-phenylalanines via direct alkylation of chiral alanine derivative with racemic α-alkylbenzylbromides. A case of high enantiomer differentiation at room temperature.Org. Letters3, 341–343 (2001).
  • Soloshonok VA , BoettigerTU, BoleneSB. Asymmetric synthesis of (2S,3S)- and (2R,3R)-α,β-dialkyl-α-amino acids via alkylation of chiral Ni(ii)-complexes of aliphatic α-amino acids with racemic α-alkylbenzylbromides. Synthesis2594–2602 (2008).
  • Soloshonok VA , OnoT. Operationally convenient asymmetric synthesis of (S)-2-amino-3,3-bis-(4-fluorophenyl)propanoic acid. J. Fluor. Chem.130, 547–549 (2009).
  • von Geldern TW , TrevillyanJM. The next big thing in diabetes: clinical progress on DPP-IV inhibitors.Drug Dev. Res.67, 627–642 (2006).
  • Patterson DE , XieS, JonesLA, OsterhoutMH, HenryCG, RoperTD. Synthesis of 4-fluoro-β-(4-fluorophenyl)-l-phenylalanine by an asymmetric phase-transfer catalyzed alkylation: synthesis on scale and catalyst stability.Org. Process Res. Dev.11, 624–627 (2007).
  • Soloshonok VA , BelokonYN, KuzminaNAet al. Asymmetric synthesis of phosphorus analogs of dicarboxylic α-amino acids. J. Chem. Soc.Perkin Trans. I. 1525–1529 (1992).
  • Soloshonok VA , SvistunovaNY, KukharVPet al. Asymmetric synthesis of organoelement analogs of natural products. 6. (S)-α-amino-w-phosphonocarboxylic acids. Izv. Akad. Nauk SSSR Ser. Khim. 397–402 (1992).
  • Colanduoni JA , VillafrancaJJ. Inhibition of Escherichia coli glutamine synthetase by phosphinothricin. Bioorg. Chem.14, 163–169 (1986).
  • Soloshonok VA , SvistunovaNY, KukharVPet al. Asymmetric synthesis of organoelement analogs of natural products. 17. Fluorine-containing esters of (S)-homocysteic acid. Russian Chem. Bull. 42, 755–759 (1993)
  • Taylor SM , YamadaT, UekiH, SoloshonokVA. Asymmetric synthesis of enantiomerically pure 4-aminoglutamic acids via methylenedimerization of chiral glycine equivalents with dichloromethane under operationally convenient conditions.Tetrahedron Lett.45, 9159–9162 (2004).
  • Soloshonok VA , YamadaT, UekiHet al. Operationally convenient, efficient asymmetric synthesis of enantiomerically pure 4-aminoglutamic acids via direct methylenedimerization of chiral glycine equivalents with dichloromethane. Tetrahedron 62, 6412–6419 (2006).
  • Tsushima T , KawadaK, IshiharaSet al. Fluorine-containing amino acids and their derivatives. 7. Synthesis and antitumor activity of α - and γ -substituted methotrexate analogs. Tetrahedron 44, 5375–5387 (1988).
  • Soloshonok VA . Highly diastereoselective michael addition reactions between nucleophilic glycine equivalents and β-substituted-α,β-unsaturated carboxylic acid derivatives; a general approach to the stereochemically defined and sterically χ-constrained α-amino acids. Curr. Org. Chem.6, 341–364 (2002).
  • Cai M , CaiC, MayorovAVet al. Biological and conformational study of α-substituted prolines in mt-ii template: steric effects leading to human mc5 receptor selectivity. J. Peptide Research 63, 116–131 (2004).
  • Soloshonok VA , TangX, HrubyVJ. Large-scale asymmetric synthesis of novel sterically constrained 2´,6´-dimethyl- and a,2´,6´-trimethyltyrosine and -phenylalanine derivatives via alkylation of chiral equivalents of nucleophilic glycine and alanine. Tetrahedron57, 6375–6382 (2001).
  • Tang X , SoloshonokVA, HrubyVJ. Convenient asymmetric synthesis of enantiomerically pure 2´,6´-dimethyltyrosine (dmt) via alkylation of chiral nucleophilic glycine equivalent.Tetrahedron: Asymmetry11, 2917–2925 (2000).
  • Qiu W , SoloshonokVA, CaiC, TangX, HrubyVJ. Convenient, large-scale asymmetric synthesis of enantiomerically pure trans-cinnamylglycine and -α-alanine.Tetrahedron56, 2577–2582 (2000).
  • Ellis TK , HochlaVM, SoloshonokVA. Efficient synthesis of 2-aminoindane-2-carboxylic acid via dialkylation of nucleophilic glycine equivalent.J. Org. Chem.68, 4973–4976 (2003).
  • Ellis TK , MartinCH, UekiH, SoloshonokVA. Efficient, practical synthesis of symmetrically α,α-disubstituted α-amino acids.Tetrahedron Lett.44, 1063–1066 (2003).
  • Ellis TK , MartinCH, TsaiGM, UekiH, SoloshonokVA. Efficient synthesis of sterically constrained symmetrically α,α-disubstituted α-amino acids under operationally convenient conditions.J. Org. Chem.68, 6208–6214 (2003).
  • Soloshonok VA , KukharVP, GalushkoSVet al. General method for the synthesis of enantiomerically pure β-hydroxy-α-amino acids, containing fluorine atoms in the side chains. Case of stereochemical distinction between methyl and trifluoromethyl groups. X-ray crystal and molecular structure of the nickel(ii) complex of (2S,3S)-2-(trifluoromethyl)threonine. J. Chem. Soc. Perkin Trans. 1, 3143–3155 (1993).
  • Soloshonok VA , AvilovDV, KukharVPet al. Asymmetric aldol reactions of chiral ni(ii)-complex of glycine with aldehydes. Stereodivergent synthesis of syn-(2S)- and syn-(2R)-β-alkylserines. Tetrahedron: Asymmetry 6, 1741–1756 (1995).
  • Soloshonok VA , AvilovDV, KukharVP, MeerveltLV, MischenkoN. Highly diastereoselective aza-aldol reactions of a chiral ni(ii) complex of glycine with imines. An efficient asymmetric approach to 3-perfluoroalkyl-2,3-diamino acids.Tetrahedron Lett.38, 4671–4674 (1997).
  • Soloshonok VA , AvilovDV, KukharVP. Highly diastereoselective asymmetric aldol reactions of chiral Ni(ii)-complex of glycine with trifluoromethyl ketones.Tetrahedron: Asymmetry7, 1547–1550(1996).
  • Soloshonok VA , AvilovDV, KukharVP. Asymmetric aldol reactions of trifluoromethyl ketones with a chiral Ni(ii) complex of glycine: stereocontrolling effect of the trifluoromethyl group.Tetrahedron52, 12433–12442 (1996).
  • Soloshonok VA , AvilovDV, KukharVP, MeerveltLV, MischenkoN. An efficient asymmetric synthesis of (2S,3S)-3-trifluoromethylpyroglutamic acid. Tetrahedron Lett.38, 4903–4904 (1997).
  • Soloshonok VA , CaiC, HrubyVJ, MeerveltLV, MischenkoN. Stereochemically defined c-substituted glutamic acids and their derivatives. 1. An efficient asymmetric synthesis of (2S,3S)-3-methyl- and -3-trifluoromethylpyroglutamic acids. Tetrahedron55, 12031–12044 (1999).
  • Soloshonok VA , CaiC, HrubyVJ, MeerveltLV. Asymmetric synthesis of novel highly sterically constrained (2S,3S)-3-methyl-3-trifluoromethyl- and (2S,3S,4R)-3-trifluoromethyl-4-methylpyroglutamic acids. Tetrahedron55, 12045–12058 (1999).
  • Cai C , SoloshonokVA, HrubyVJ. Michael addition reactions between chiral Ni(ii) complex of glycine and 3-(trans-enoyl)oxazolidin-2-ones. A case of electron donor–acceptor attractive interactions-controlled face diastereoselectivity.J. Org. Chem.66, 1339–1350 (2001).
  • Soloshonok VA , CaiC, HrubyVJ, MeerveltLV, YamazakiT. Rational design of highly diastereoselective, organic base-catalyzed, room temperature michael addition reactions.J. Org. Chem.65, 6688–6696 (2000).
  • Soloshonok VA , CaiC, HrubyVJ. Asymmetric michael addition reactions of chiral Ni(ii) complex of glycine with N-(enoyl)oxazolidinones: improved reactivity and stereochemical outcome.Tetrahedron: Asymmetry.10, 4265–4269 (1999).
  • Soloshonok VA , CaiC, HrubyVJ. Toward design of a practical methodology for stereocontrolled synthesis of χ-constrained pyroglutamic acids and related compounds. Virtually complete control of simple diastereoselectivity in the michael addition reactions of glycine ni(ii) complexes with N-(enoyl)oxazolidinones. Tetrahedron Lett.41, 135–139 (2000).
  • Soloshonok VA , UekiH, JiangC, CaiC, HrubyVJ. A convenient, room temperature-organic base protocol for preparing chiral n-(enoyl)-1,3-oxazolidine-2-ones.Helv. Chim. Acta85, 3616–3623 (2002).
  • Soloshonok VA , CaiC, HrubyVJ. A practical asymmetric synthesis of enantiomerically pure 3-substituted pyroglutamic acids and related compounds.Angew. Chem. Int. Ed. Engl.39, 2172–2175 (2000).
  • Soloshonok VA , CaiC, YamadaT, UekiH, OhfuneY, HrubyVJ. Michael addition reactions between chiral equivalents of a nucleophilic glycine and (S)- or (R)-3-(E-Enoyl)-4-phenyl-1,3-oxazolidin-2-ones as a general method for efficient preparation of β-substituted pyroglutamic acids. Case of topographically controlled stereoselectivity. J. Am. Chem. Soc.127, 15296–15303 (2005).
  • Cai C , YamadaT, TiwariR, HrubyVJ, SoloshonokVA. Application of (S)- and (R)-methyl pyroglutamates as inexpensive, yet highly efficient chiral auxiliaries in the asymmetric michael addition reactions. Tetrahedron Lett.45, 6855–6858 (2004).
  • Ueki H , EllisTK, MartinCH, SoloshonokVA. Efficient large-scale synthesis of picolinic acid derived Ni(II)-complexes of glycine.Eur. J. Org. Chem.1954–1957 (2003).
  • Soloshonok VA , CaiC, HrubyVJ. (S)- or (R)-N-(E-enoyl)-4-phenyl-1,3-oxazolidin-2-ones: ideal michael acceptors to afford a virtually complete control of simple and face diastereoselectivity in addition reactions with glycine derivatives. Org. Letters2, 747–750 (2000).
  • Soloshonok VA , CaiC, HrubyVJ. A unique case of face diastereoselectivity in the michael addition reactions between Ni(ii)-complexes of glycine and chiral 3-(E-enoyl)-1,3-oxazolidin-2-ones.Tetrahedron Lett.41, 9645–9649 (2000).
  • Soloshonok VA , UekiH, TiwariR, CaiC, HrubyVJ. Virtually complete control of simple and face diastereoselectivity in the michael addition reactions between achiral equivalents of a nucleophilic glycine and (S)- or (R)-3-(E-enoyl)-4-phenyl-1,3-oxazolidin-2-ones: practical method for preparation of β-substituted pyroglutamic acids and prolines. J. Org. Chem.69, 4984–4990 (2004).
  • Soloshonok VA , UekiH, EllisTK. New generation of nucleophilic glycine equivalents.Tetrahedron Lett.46, 941–944 (2005).
  • Soloshonok VA , UekiH, EllisTK, YamadaT, OhfuneY. Application of modular nucleophilic glycine equivalents for truly practical asymmetric synthesis of β-substituted pyroglutamic acids.Tetrahedron Lett.46, 1107–1110 (2005).
  • Soloshonok VA , EllisTK. Design and synthesis of a new generation of ‘NH’ Ni(ii) complexes of glycine Schiff bases and their unprecedented C-H vs. N-H chemoselectivity in the alkyl halide alkylations and michael addition reactions.Synlett533–538 (2006).
  • Soloshonok VA , EllisTK, UekiH, OnoT. Resolution/deracemization of chiral α-amino acids using resolving reagents with flexible stereogenic centers.J. Am. Chem. Soc.131, 7208–7209 (2009).
  • Ellis TK , UekiH, YamadaT, OhfuneY, SoloshonokVA. The design, synthesis and evaluation of a new generation of modular nucleophilic glycine equivalents for the efficient synthesis of sterically constrained α-amino acids.J. Org. Chem.71, 8572–8578 (2006).
  • Yamada T , SakaguchiK, ShinadaT, OhfuneY, SoloshonokVA. Efficient asymmetric synthesis of the functionalized pyroglutamate core unit common to oxazolomycin and neooxazolomycin using michael reaction of nucleophilic glycine Schiff base with α,β-disubstituted acrylate.Tetrahedron: Asymmetry19, 2789–2795 (2008).
  • Yamada T , OkadaT, SakaguchiK, OhfuneY, UekiH, SoloshonokVA. Efficient asymmetric synthesis of novel 4-substituted and configurationally stable analogs of thalidomide.Org. Lett.8, 5625–5628 (2006).
  • Soloshonok VA , YamadaT, SakaguchiK, OhfuneY. Concise asymmetric synthesis of configurationally stable 4-trifluoromethyl thalidomide. 1(5), 897–908 (2009).
  • Pellissier H . Use of chiral sulfoxides in asymmetric synthesis.Tetrahedron62, 5559–5601 (2006).
  • Zhou P , ChenBC, DavisF. Recent advances in asymmetric reactions using sulfinimines (N-sulfinyl imines).Tetrahedron60, 8003–8030 (2004).
  • Morton D , StockmanRA. Chiral non-racemic sulfinimines. versatile reagents for asymmetric synthesis.Tetrahedron62, 8869–8905 (2006).
  • Ngoc Tam NT , MagueurG, OurevitchM, CrousseB, BéguéJP, Bonnet-DelponD. Analogues of key precursors of aspartyl protease inhibitors: synthesis of trifluoromethyl amino epoxides.J. Org. Chem.70, 699–702 (2005).
  • Lee TW , ProudfootJR, ThomsonDS. A concise asymmetric route for the synthesis of a novel class of glucocorticoid mimetics containing a trifluoromethyl-substituted alcohol.Bioorg. Med. Chem. Lett.16, 654–657 (2006).
  • Song JJ , TanZ, XuJet al. Practical stereoselective synthesis of an α-trifluoromethyl-α-alkyl epoxide via a diastereoselective trifluoromethylation reaction. J. Org. Chem. 72, 292–294 (2007).
  • Keeling SP , CampbellIB, CoeDMet al. Efficient synthesis of an α-trifluoromethyl-α-tosyloxymethyl epoxide enabling stepwise double functionalisation to afford cf3-substituted tertiary alcohols. Tetrahedron Lett. 49, 5101–5104 (2008).
  • Dos Santos M , CrousseB, Bonnet-DelponD. Improved ritter reaction with CF3-containing oxirane for an access to central units of protease inhibitors. Tetrahedron Lett.50, 857–859 (2009).
  • Bravo P , FrigerioM, FronzaGet al. Stereoselective oxirane formation by reaction of diazomethane on 1-fluoro-3-[(4-methylphenyl)sulfinyl]-3-phenylpropan-2-one. Can. J. Chem. 72, 1769–1779 (1994).
  • Arnone A , BravoP, FrigerioMet al. Reactions of α-substituted β-keto-γ-fluoro sulfoxides with diazomethane. A general approach to enantiomerically pure α-fluoromethyl-a´,a´-alkyl/alkenyl-sulfinylmethyl oxiranes. Gazz. Chim. Ital. 127, 819–826 (1997).
  • Arnone A , BravoP, FrigerioM, VianiF, SoloshonokVA. Synthesis and reactivity of enantiomerically pure 2-fluoromethyl-2-(1´-p-tolylsulfinyl)alkyl oxiranes.Tetrahedron54, 11825–11840 (1998).
  • Arnone A , BravoP, FrigerioM, VianiF, SoloshonokVA. Highly diastereoselective methylene transfer from diazomethane to the carbonyl of β-keto sulfoxides. A general approach to synthetically versatile fluorine-containing chiral building blocks.Tetrahedron54, 11841–11860 (1998).
  • Katagiri T , IguchiN, KawateT, TakahashiS, UneyamaK. Trifluoromethylated amino alcohol as chiral auxiliary for highly diastereoselective and fast simmons-smith cyclopropanation of allylic amine.Tetrahedron: Asymmetry17, 1157–1160 (2006).
  • Harada A , FujiwaraY, KatagiriT. Improvement of the asymmetry-inducing ability of a trifluoromethylated amino alcohol by electron donation to a CF3 group. Tetrahedron: Asymmetry19, 1210–1214 (2008).
  • Xu X -H, Qiu X-L, Qing F-L. Synthesis and utilization of trifluoromethylated amino alcohol ligands for the enantioselective reformatsky reaction and addition of diethylzinc to n-(diphenylphosphinoyl)imine. Tetrahedron64, 7353–7361 (2008).
  • Bravo P , FrigerioM, SoloshonokV, VianiF. Optically pure and fluoro substituted carboacyclic nucleoside analogues.Tetrahedron Lett.34, 7771–7772 (1993).
  • Bravo P , FarinaA, FrigerioM, Valdo Meille S, Viani F, Soloshonok V. New fluorinated chiral synthons. Tetrahedron: Asymmetry5, 987–1004 (1994).
  • Bravo P , CapelliS, MeilleSVet al. Synthesis of optically pure (R)- and (S)-α-trifluoromethyl-alanine. Tetrahedron: Asymmetry 5, 2009–2018 (1994).
  • Bravo P , VianiF, ZandaM, SoloshonokV. Synthesis of enantiomerically pure (R)- and (S)-α-trifluoromethylserine. Gazz. Chim. Ital.125, 149–150 (1995).
  • Bravo P , VianiF, ZandaMet al. Synthesis of both enantiomers of α-(trifluoromethyl)butyrine and α-(trifluoromethyl)phenylalanine. Gazz. Chim. Ital. 126, 645–652 (1996).
  • Bravo P , FarinaA, KukharVPet al. Stereoselective additions of α-lithiated alkyl-p-tolylsulfoxides to N-PMP (fluoroalkyl)aldimines. An efficient approach to enantiomerically pure fluoro amino compounds. J. Org. Chem. 62, 3424–3425 (1997).
  • Bravo P , GuidettiM, VianiFet al. Chiral sulfoxide controlled asymmetric additions to c-n double bond. An efficient approach to stereochemically defined α-fluoroalkyl amino compounds. Tetrahedron 54, 12789–12806 (1998).
  • Bravo P , CapelliS, CrucianelliMet al. Asymmetric synthesis of α-arylglycinols via additions of lithium methyl p-tolyl sulfoxide to n-(pmp)arylaldimines followed by ‘non oxidative’ pummerer reaction. Tetrahedron 55, 3025–3040 (1999).
  • Kirk KL . Synthesis and biochemical applications of fluorine-containing peptides and proteins. In:Fluorine-containing Amino Acids. Kukhar VP, Soloshonok VA (Eds). John Wiley & Sons, Chichester, UK (1995).
  • Nakayama K , KawatoH, InagakiHet al. Synthesis and antifungal activity of rhodopeptin analogues. 2. Modification of the west amino acid moiety. Org. Lett. 2, 977–980 (2000).
  • Staas D , SavageK, HomnickC, TsouN, BallR. Asymmetric synthesis of α,α-difluoro-β-amino acid derivatives from enantiomerically pure n-tert-butylsulfinimines.J. Org. Chem.67, 8276–8279 (2002).
  • Niida A , TomitaK, MizumotoMet al. Unequivocal synthesis of (Z)-alkene and (E)-fluoroalkene dipeptide isosteres to probe structural requirements of the peptide transporter PEPT1. Org. Lett. 8, 613–616 (2006).
  • Narumi T , TomitaK, InokuchiEet al. Diastereoselective synthesis of highly functionalized fluoroalkene dipeptide isosteres and its application to fmoc-based solid-phase synthesis of a cyclic pentapeptide mimetic. Tetrahedron 64, 4332–4346 (2008).
  • Uoto K , OhsukiS, TakenoshitaHet al. Synthesis and structure-activity relationships of novel 2´,2´-difluoro analogs of docetaxel. Chem. Pharm. Bull. 45, 1793–1804 (1997).
  • Tarui A , OzakiD, NakajimaNet al. Rhodium-catalyzed reformatsky-type reaction for asymmetric synthesis of difluoro-β-lactams using menthyl group as a chiral auxiliary. Tetrahedron Lett. 49, 3839–3843 (2008).
  • Boyer N , GloanecP, De Nanteuil G, Jubaulta P, Quiriona JC. Chemoselective and stereoselective synthesis of gem-difluoro-β-aminoesters or gem-difluoro-β-lactams from ethylbromodifluoroacetate and imines during reformatsky reaction. Tetrahedron63, 12352–12366 (2007).
  • Otaka A , WatanabeJ, YukimasaAet al. SmI2-mediated reduction of γ,γ-difluoro-α,β-enoates with application to the synthesis of functionalized (z)-fluoroalkene-type dipeptide isosteres. J. Org. Chem. 69, 1634–1645 (2004).
  • Ocampoa R , DolbierWR. The reformatsky reaction in organic synthesis. Recent advances.Tetrahedron60, 9325–9374 (2004).
  • Fokina NA , KornilovAM, KukharVP. The mitsunobu reaction in the synthesis of α,α-difluoro-β-amino acids.J. Fluorine Chem.111, 69–76 (2001).
  • Soloshonok VA , OhkuraH, SorochinskyAet al. Convenient, large-scale asymmetric synthesis of β-aryl-substituted α,α-difluoro-β-amino acids. Tetrahedron Lett. 43, 5445–5448 (2002).
  • Sorochinsky A , VoloshinN, MarkovskyAet al. Convenient asymmetric synthesis of β-substituted α,α-difluoro-β-amino acids via reformatsky reaction between davis’ n-sulfinylimines and ethyl bromodifluoroacetate. J. Org. Chem. 68, 7448–7454 (2003).
  • Kafarski P , LejczakB. The biological activity of phosphono- and phosphinopeptides. In: Aminophosphonic and Aminophosphinic Acids. Chemistry and Biological Activity. Kukhar VP, Hudson HR (Eds). John Wiley and Sons, Chichester, UK, 407–442 (2000).
  • Romanenko VD , KukharVP. Fluorinated phosphonates: synthesis and biomedical application.Chem. Rev.106, 3868–3935 (2006).
  • Mikolajczyk M . Acyclic and cyclic aminophosphonic acids: asymmetric syntheses mediated by chiral sulfinyl auxiliary.J. Organometall. Chem.690, 2488–2496 (2005).
  • Ordonez M , Rojas-CabreraH, CativielaC. An overview of stereoselective synthesis of α-aminophosphonic acids and derivatives.Tetrahedron65, 17–49 (2009).
  • Röschenthaler GV , KukharV, BartenJ, GvozdovskaN, BelikM, SorochinskyA. Asymmetric synthesis of a, α-difluoro-β-amino phosphonic acids using sulfinimines.Tetrahedtron Lett.45, 6665–6667 (2004).
  • Röschenthaler GV , KukharV, BelikM, MazurenkoK, SorochinskyA. Diastereoselective addition of diethyl difluoromethylphosphonate to enantiopure sulfinimines: synthesis of α,α-difluoro-β-aminophosphonates, phosphonic acids and phosphonamidic acids.Tetrahedron62, 9902–9910 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.