219
Views
0
CrossRef citations to date
0
Altmetric
Review

Fluorinase: A Tool for the Synthesis of 18F-Labeled Sugars and Nucleosides for Pet

, &
Pages 865-873 | Published online: 19 Aug 2009

Bibliography

  • O´Hagan D , SchaffrathC, CobbSL, HamiltonJTG, MurphyCD. Enzyme catalysed organofluorine synthesis.Nature416, 279 (2002).
  • Schaffrath C , DengH, O´HaganD. Isolation and characterisation of 5´-fluorodeoxyadenosine synthetase, a fluorination enzyme from Streptomyces cattleya. FEBS Lett.547, 111–114 (2003).
  • Dong C , HuangF, DengHet al. Crystal structure and mechanism of a bacterial fluorinating enzyme. Nature 427, 561–465 (2004).
  • Phelps ME , HoffmanEJ, MullaniNA, Ter-PogissianMM. Application of annihilhation and coincidence detection to transaxial reconstruction tomography.J. Nucl. Med.16, 210–224 (1975).
  • Muehllehner G , KarpJS. Positron emission tomography.Phy. Med. Biol.51, 117–137 (2006).
  • Dollé F , RoedaD, KuhnastB, Lasne M-C. Fluorine-18 chemistry for molecular imaging with PET. In: Fluorine and Health. Tressaud A, Haufe G (Eds). Elsevier, Amsterdam, The Netherlands 4–65 (2008).
  • Fowler JS . The synthesis and application of F-18 compounds in positron emission tomography. In: Organofluorine Compounds in Medicinal Chemistry and Biomedical Applications. Filler R, Kobayashi Y, Yagupolskii LM (Eds). Elsevier, Amsterdam, The Netherlands, 309–338 (1993).
  • Schiepers C . Positron emission tomography: a coming of age?Eur. J. Intern. Med.15, 143–146 (2004).
  • Chen W . Clinical applications of PET in brain tumors.J. Nucl. Med.48, 1468–1481 (2007).
  • Wong DF , BrašicJR. In vivo imaging of neurotransmitter systems in neuropsychiatry. Clinical Neurosci. Res.1, 35–45 (2001).
  • Kopka K , WagnerS, SchäfersM, FaustA, SchoberO, HaufeG. 18F-Labeled PET-tracers for cardiological imaging. In: Fluorine and Health. Tressaud A, Haufe G (Eds). Elsevier, Amsterdam, The Netherlands 85–139 (2008).
  • Någren K , RinneJO. Application of 18F-PET imaging for the study of Alzheimer’s disease. In: Fluorine and Health. Tressaud A, Haufe G (Eds). Elsevier, Amsterdam, The Netherlands, 67–84 (2008).
  • Pike KE , SavageG, VillemagneVLet al. β-amyloid imaging and memory in non-demented individuals. Evidence for preclinical Alzheimer’s disease. Brain 130, 2837–2844 (2007).
  • Rowe CC , NgS, AckermannUet al. Imaging β-amyloid burden in aging and dementia. Neurology 15, 1718–1725 (2007).
  • Foster NL , HeidebrinkJL, ClarkCMet al. FDG-PET improves accuracy in distinguishing frontotemporal dementia Alzheimer’s disease. Brain 130, 2616–2635 (2007).
  • Didelot A , RyvlinP, LotheA, MerletI, HammersA, MauguièreF. PET imaging of brain 5-HT1A receptors in the preoperative evaluation of temporal lobe epilepsy. Brain131, 1–14 (2008).
  • Milak MS , ParseyRV, KeilpJ, OquendoMA, MaloneKM, MannJJ. Neuroanatomic correlates of psychopathologic components of major depressive disorder.Arch. Gen. Psychiatry62, 397–408 (2005).
  • Kennedy S H, Evans KR, Krüger S et al. Changes in regional brain glucose metabolism measured by positron emission tomography after paroxetine treatment of major depression. Am. J. Psychiatry158, 899–905 (2001).
  • Mamo D , KapurS, KeshavanMet al. D-2 receptor occupancy olanzapine pamoate depot using positron emission tomography: an open-label study on patients with schizophrenia. Neuropsychopharmacology 33, 298–304 (2008).
  • Okubo Y , SuharaT, SuzukiKet al. Decreases prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Nature 385, 634–636 (1997).
  • Gerasimov MR , DeweySL. Development of a GABAergic treatment for substance abuse using PET.Drug Develop. Res.59, 240–248 (2003).
  • Lingford-Hughes AR , DaviesSJC, McIverS, WilliamsTM, DaglishMRC, NuttDJ. Addiction.Brit. Med. Bull.65, 209 (2003).
  • Neves AA , BrindleKM. Assessing responses to cancer therapy using molecular imaging.Biochim. Biophys. Acta1766, 242–261 (2006).
  • Weber WA . Use of PET for monitoring cancer therapy and predicting outcome.J. Nucl. Med.46, 983–995 (2005).
  • Strauss LG , ContiPS. The applications of PET in clinical oncology.J. Nucl. Med.32, 623–648 (1991).
  • Hermann K , KrauseBJ. [18F]-Labeled PET and PET/CT compounds in oncology. In: Fluorine and Health. Tressaud A, Haufe G (Eds). Elsevier, Amsterdam, The Netherlands, 141–196 (2008).
  • West CML , JonesT, PriceP. The potential of positron emission tomography to study anti-cancer drug resistance.Nature Rev. Cancer4, 457–469 (2004).
  • Gupta N , PricePM, AboagyeEO. PET for in vivo pharmacokinetic and pharmocodynamic measurements. Eur. J. Cancer38, 2094–2107 (2002).
  • Gee AD . Neuropharmacology and drug development.Br. Med. Bull.65, 169 (2003).
  • Ido T , WanWN, CasellaVet al. Labelled 2-deoxy-D-glucose analogues. 18F-labelled 2-deoxy-2-fluoro-D-glucose, 2-deoxy-2-fluoro-D-mannose and [14C] 2-deoxy-2-fluoro-D-glucose. J. Label. Cmpd Radiopharm. 14, 175–183 (1978).
  • Lasne M -C, Perrio C, Rouden J et al. Chemistry of b+-emitting compounds based of fluorine-18. In: Topics in Current Chemistry (Volume 2). Springer-Verlag, Berlin, Heildelberg, Germany, 201–258 (2002).
  • Cai L , LuS, PikeVW. Chemistry with [18F]fluoride ion. Eur. J. Org. Chem.2853–2873 (2008).
  • Isanbor C , O‘HaganD. Fluorine in medicinal chemistry: Anticancer agents.J. Fluorine Chem.127, 303–319 (2006).
  • Le Bars D . Fluorine-18 and medical imaging. Radiopharmaceuticals for positron emission tomographyJ. Fluorine Chem.127, 1488–1493 (2006).
  • Gambhir SS , CzerninJ, SchwimmerJet al. A tabulated survey of the FDG PET literature. J. Nucl. Med. 42, S1–S93 (2001).
  • Phelps ME , MazziottaJC. Positron emission tomography: human brain function and biochemistry.Science228, 799–809 (1985).
  • Delgado-Bolton RC , Fernández-PérezC, González-MatéA, CarrerasJL. Meta-analysis of the performance of 18F-FDG PET in primary tumor detection in unknown primary tumors.J. Nucl. Med.44, 1301–1314 (2003).
  • Som P , AtkinsHL, BandoypadhyayDet al. A fluorinated glucose analog, 2-fluoro-2-deoxy-D-glucose (F-18): nontoxic tracer for rapid tumor detection. J. Nucl. Med. 21, 670–675 (1980).
  • Smith TAD . Mammalian hexokinases and their abnormal expression in cancer.Br. J. Biomed. Sci.57, 170–178 (2000).
  • Schelbert HR , HohCK, RoyalHDet al. Procedure guideline for tumor imaging using fluorine-18-FDG . J. Nucl. Med. 39, 1302–1305 (1998).
  • Varagnolo L , StokkelMPM, MazziU, PauwelsEKJ. 18F-labeled radiopharmaceuticals for PET in oncology, excluding FDG. Nucl. Med. Biol.27, 103–112 (2000).
  • Beuthien-Baumann B , HamacherK, OberdorferF, SteinbachJ. Preparation of fluorine-18 labelled sugars and derivatives and their application as tracer for positron-emission-tomography.J. Carbohydr. Res.327, 107–118 (2000).
  • Ishiwata K , KimuraY, de Vries EFJ, Elsinga P. PET Tracers for mapping adenosine receptors as probes for diagnosis for CNS disorders. Cent. Nerv. Syst. Agents. Med. Chem.7, 57–77 (2007).
  • Damaraju VL , DamarajuS, YoungJDet al. Nucleoside anticancer drugs: the role of nucleoside transporters in resistance to cancer chemotherapy. Oncogene 22, 7524–7536 (2003).
  • Pennycooke M , ChaudaryN, ShuralyovaI, ZhangY, CoeIR. Differential expression of human nucleoside transporters in normal and tumor tissue.Biochem. Biophys. Res. Commun.280, 951–959 (2001).
  • Baldwin SA , MackeyJR, CassCE, YoungJD. Nucleoside transporters: molecular biology and implications for therapeutic development.Mol. Med. Today5, 216–224 (1999).
  • Thorn JA , JarvisSM. Adenosine transporters.Gen. Pharmac.27, 613–620 (1996).
  • Spicuzza L , Di Maria G, Polosa R. Adenosine in the airways: implications and applications. Eur. J. Pharmacol.533, 77–88 (2006).
  • Klotz K -N, Falgner N, Kachler S et al. [3H] EMADO– a novel tritiated agonist selective for the human adenosine A3 receptor. Eur. J. Pharmacol.556, 14–18 (2007).
  • Cho SY , PolsterJ, EnglesJM, HiltonJ, AbrahamEH, WahlRL. In vitro evaluation of adenosine 5´-monophosphate as an imaging agent of tumor metabolism. J. Nucl. Med.47, 837–845 (2006).
  • Mathews WB , NakamotoY, AbrahamEHet al. Synthesis and biodistribution of [11C]adenosine 5´-monophosphate ([11C]AMP). Mol. Imaging Biol. 7, 203–208 (2005).
  • Alauddin MM , ShahinianA, ParkR, TohmeM, FissekisJD, ContiPS. Biodistribution and PET imaging of [18F]-fluoroadenosine derivatives. Nucl. Med. Biol.34, 267–272 (2007).
  • Alauddin MM , FissekisJD, ContiPS. Synthesis of [18F]-labeled adenosine analogues as potential PET imaging agents. J. Labelled Cmpd. Radiopharm.46, 805–814 (2003).
  • Nanni C , Di LeoK, TonelliRet al. FDG small animal PET permits early detection of malignant cells in a xenograft murine model. Eur. J. Nucl. Med. Mol. I.34, 755–762 (2007).
  • Kenny LM , AboagyeEO, PricePM. Positron emission tomography imaging of cell proliferation in oncology.Clin. Oncol.16, 176–185 (2004).
  • Lehel S z, Horváth G, Boros I, Mikecz P, Márián T, Trón L. Synthesis of 5´-deoxy-5´-[18F]fluoro-adenosine by radiofluorination of 5´-deoxy-5´-haloadenosine derivates. J. Radioanal. Nucl. Chem.245, 399–401 (2000).
  • Lehel SZ , HorváthG, BorosI, MáriánT, TrónL. The nucleophilic substitution reaction for [18F]fluoride-ion on the series of N6-benzoyl-2´,3´-isopropylideneadenosine-5´-sulfonates. J. Radioanal. Nucl. Chem.251, 413–416 (2002).
  • Antoni G , OmuraH, IkemotoM, MoulderR, WatanabeY, LångströmB. Enzyme catalysed synthesis of l-[4–11C]aspartate and l-[5–11C]glutamate. J. Labelled Cmpd. Radiopharm.44, 287–294 (2001).
  • Lui E , ChirakalR, FirnauG. Enzymatic synthesis of (-)-6-[18F]-fluoronorepinephrine from 6-[18F]-fluorodopamine by dopamine β-hydroxylase. J. Labelled Cmpd Radiopharm.41, 503–521 (1998).
  • Bjurling P , AntoniG, WatanabeY, LångströmB. Enzymatic synthesis of carboxy-11C-labelled l-tyrosine, l-DOPA, l-tryptophan and 5-hydroxy-L-tryptophan. Acta Chem. Scand.4, 178–182 (1990).
  • Cadicamo CD , CourtieuJ, DengH, MeddourA, O‘HaganD. Enzymatic fluorination in Streptomyces cattleya takes place with an inversion of configuration consistent with an SN2 reaction mechanism. ChemBioChem5, 685–690 (2004).
  • Martarello L , SchaffrathC, DengH, GeeAD, LockhartA, O‘HaganD. The first enzymatic method for C-F-18 bond formation: the synthesis of 5´-[F-18]-fluoro-5´-deoxyadenosine for imaging with PET.J. Label. Cmpd Radiopharm.46, 1181–1189 (2003).
  • Deng H , CobbSL, McEwanARet al. The fluorinase from Streptomyces cattleya is also a chlorinase. Angew. Chemie Int. Ed. 45, 759–762 (2006).
  • Deng H , CobbSL, GeeADet al. Fluorinase mediated C-18F bond formation, an enzymatic tool for PET labelling. Chem. Commun. 652–654 (2006).
  • Cobb SL , DengH, McEwanAR, NaismithJH, O‘HaganD, RobinsonDA. Substrate specificity in enzymatic fluorination. The fluorinase from Streptomyces cattleya accepts 2´-deoxyadenosine substrates. Org. Biomol. Chem.4, 1458–1460 (2006).
  • Winkler M , DomarkasJ, SchweigerLF, O‘HaganD. Fluorinase-coupled base swaps: synthesis of [18F]-5´-deoxy-5´-fluorouridines. Angew. Chem. Int. Ed.47, 10141–10143 (2008).
  • O‘Hagan D , DengH, SchaffrathC. Fluorometabolite biosynthesis and the fluorinase from Streptomyces cattleya. Nat. Prod. Rep.21, 773–784 (2004).
  • Onega M , McGlincheyRP, DengH, HamiltonJTG, O‘HaganD. The identification of (3R,4S)-5-fluoro-5-deoxy-D-ribulose-1-phosphate as an intermediate in fluorometabolite biosynthesis in Streptomyces cattleya. Bioorg. Chem.35, 375–385 (2007).
  • Deng H , CrossSM, McGlincheyRP, HamiltonJTG, O‘HaganD. In vitro reconstituted biotransformation of 4-fluorothreonine from fluoride ion: application of the fluorinase. Chem. Biol.15, 1268–1276 (2008).
  • Drager G , KissC, KunzU, KirschningA. Enzyme-purification and catalytic transformations in a microstructured PASSflow reactor using a new tyrosine-based Ni-NTA linker system attached to a polyvinylpyrrolidinone-based matrix. Org. Biomol. Chem.5, 3657–3664 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.