246
Views
0
CrossRef citations to date
0
Altmetric
Review

Fluorinated Molecules in the Diagnosis and Treatment of Neurodegenerative Diseases

&
Pages 821-833 | Published online: 19 Aug 2009

Bibliography

  • Bars DL . Fluorine-18 and medical imaging: radiopharmaceuticals for positron emission tomography.J. Fluor. Chem.127, 1488–1493 (2006).
  • Hagmann WK . The many roles for fluorine in medicinal chemistry.J. Med. Chem.51, 4359–4369 (2008).
  • Shah P , WestwellAD. The role of fluorine in medicinal chemistry.J. Enzyme Inhib. Med. Chem.22, 527–540 (2007).
  • Adejare A , ShenJ, OgunbadeniyiAM. Halogens halt aromatic group migration in Baeyer–Billiger oxidation.J. Fluor. Chem.105, 107–109 (2000).
  • Adejare A , GusovskyF, PadgettW, CrevelingJW, DalyKL. Syntheses and adrenergic activities of ring-fluorinated epinephrines.J. Med. Chem.31, 1972–1977 (1988).
  • Adejare A , NieJY, HebelDet al. Effect of fluorine substitution on the adrenergic properties of 3-(tert-butylamino)-1-(3,4-dihydroxyphenoxy)-2-propanol. J. Med. Chem. 34, 1063–1068 (1991).
  • Adejare A , SciberrasSS. Synthesis and β-adrenergic activities of R-fluoronaphthyloxypropanolamine.Pharm. Res.14, 533–536 (1997).
  • Adeniji A , AdejareA. Chemical and physical characterization of potential new chemical entity. Preclinical Development Handbook: ADME and Biopharmaceutical Properties. Cox S (Ed.). Wiley and Sons Inc, Hoboken, NJ, USA, 221–225 (2008).
  • Bass AS , KohliJD, AdejareA, KirkKL, GoldbergLI. Effect of ring fluorination of epinephrine on its cardiovascular adrenoceptor activities.Eur. J. Pharmacol.187, 87–95 (1990).
  • Clark MT , AdejareA, ShamsG, FellerDR, MillerDD. 5-Fluoro- and 8-fluorotrimetoquinol: selective β2-adrenoceptor agonists.J. Med. Chem.30, 86–90 (1987).
  • El-Gendy AM , AdejareA. Membrane permeability related physicochemical properties of a novel γ-secretase inhibitor.Int. J. Pharm.280, 47–55 (2004).
  • Nichols AJ , HamadaA, AdejareA, MillerDD, PatilPN, RuffoloRR Jr. Effect of aromatic fluorine substitution on the α and β adrenoceptor-mediated effects of 3,4-dihydroxytolazoline in the pithed rat. J. Pharmacol. Exp. Ther.248, 671–676 (1989).
  • Ogunbadeniyi AM , AdejareA. Syntheses of fluorinated phenycyclidine analogs.J. Fluor. Chem.114, 39–42 (2002).
  • Sun S , AdejareA. Fluorinated molecules as drugs and imaging agents in the CNS.Curr. Top. Med. Chem.6, 1457–1464 (2006).
  • Leopoldo M , LacivitaE, De Giorgio Contino M, Berardi F, Perrone R. Design, synthesis and binding affinities of potential positron emission tomography (PET) ligands with optimal lipophilicity for brain imaging of the dopamine D3 receptor. Part II. Bioorg. Med. Chem.17, 758–766 (2009).
  • Zeng F , MunJ, JarkasNet al. Synthesis, radiosynthesis and biological evaluation of carbon-11 and fluorine-18 labeled reboxetine analogues: potential positron emission tomography radioligands for in vivo imaging of the norepinephrine transporter. J. Med. Chem. 52, 62–73 (2009).
  • Wong DF , TauscherJ, GrunderG. The role of imaging in proof of concept for CNS drug discovery and development.Neuropsychopharmacol. Rev.34, 187–203 (2009).
  • Ryu EK , ChenX. Development of Alzheimer’s disease imaging agents for clinical studies.Front. Biosci.13, 777–789 (2008).
  • Higuchi M , IwataN, MatsubaY, SatoK, SasamotoK, SaidoTC. 19F and 1H MRI detection of amyloid β plaques in vivo. Nat. Neurosci.8, 527–533 (2005).
  • Stephenson KA , ChandraR, ZhuangZPet al. Fluoro-pegylated (FPEG) imaging agents targeting Aβ aggregates. Bioconjug. Chem. 18, 238–246 (2007).
  • Sonkusare SK , KaulCL, RamaraoP. Dementia of Alzheimer’s disease and other neurodegenerative disorders – memantine, a new hope.Pharmacol. Res.51, 1–17 (2005).
  • Izumi Y , SawadaH, YamamotoNet al. Novel neuroprotective mechanisms of pramipexole, an anti-Parkinson drug, against endogenous dopamine-mediated excitotoxicity. Eur. J. Pharmacol. 557, 132–140 (2007).
  • Kirik D , BreysseN, BjorklundT, BesretL, HantrayeP. Imaging in cell-based therapy for neurodegenerative diseases.Eur. J. Nucl. Med. Mol. Imaging32(Suppl. 2), S417–S434 (2005).
  • Kwon KY , ChoiCG, KimJS, LeeMC, ChungSJ. Diagnostic value of brain MRI and 18F-FDG PET in the differentiation of Parkinsonian-type multiple system atrophy from Parkinson’s disease. Eur. J. Neurol.15, 1043–1049 (2008).
  • Bohnen NI , FreyKA. Imaging of cholinergic and monoaminergic neurochemical changes in neurodegenerative disorders.Mol. Imaging Biol.9, 243–257 (2007).
  • Paulsen JS . Functional imaging in Huntington’s disease.Exp. Neurol.216, 272–277 (2009).
  • Kirk KL . Fluorine in medicinal chemistry: Recent therapeutic applications of fluorinated small molecules.J. Fluor. Chem.127, 1013–1029 (2006).
  • Lund BW , KnappAE, PiuFet al. Design, synthesis and structure-activity analysis of isoform-selective retinoic acid receptor β ligands. J. Med. Chem. 52, 1540–1545 (2009).
  • Podichetty AK , FaustA, KopkaKet al. Fluorinated isatin derivatives. Part 1: synthesis of new N-substituted (S)-5-[1-(2-methoxymethylpyrrolidinyl)sulfonyl]isatins as potent caspase-3 and -7 inhibitors. Bioorg. Med. Chem. 17, 2680–2688 (2009).
  • Saitoh M , KunitomoJ, KimuraEet al. Design, synthesis and structure-activity relationships of 1,3,4-oxadiazole derivatives as novel inhibitors of glycogen synthase kinase-3β. Bioorg. Med. Chem. 17, 2017–2029 (2009).
  • Klunk WE , MathisCA. The future of amyloid-β imaging: a tale of radionuclides and tracer proliferation.Curr. Opin. Neurol.21, 683–687 (2008).
  • Serdons K , TerwingheC, VermaelenPet al. Synthesis and evaluation of (18)F-labeled 2-phenylbenzothiazoles as positron emission tomography imaging agents for amyloid plaques in Alzheimer’s disease. J. Med. Chem. 52, 1428–1437 (2009).
  • Zeng F , SoutherlandJA, VollRJet al. Synthesis and evaluation of two 18F-labeled imidazo[1,2-a]pyridine analogues as potential agents for imaging β-amyloid in Alzheimer’s disease. Bioorg. Med. Chem. Lett. 16, 3015–3018 (2006).
  • Lee JH , ByeonSR, KimYet al. [18F]-labeled isoindol-1-one and isoindol-1,3-dione derivatives as potential PET imaging agents for detection of β-amyloid fibrils. Bioorg. Med. Chem. Lett. 18, 5701–5704 (2008).
  • Qu W , ChoiSR, HouCet al. Synthesis and evaluation of indolinyl- and indolylphenylacetylenes as PET imaging agents for β-amyloid plaques. Bioorg. Med. Chem. Lett. 18, 4823–4827 (2008).
  • Zhang W , OyaS, KungMP, HouC, MaierDL, KungHF. F-18 Polyethyleneglycol stilbenes as PET imaging agents targeting Aβ aggregates in the brain.Nucl. Med. Biol.32, 799–809 (2005).
  • Ono M , WatanabeR, KawashimaHet al. 18F-labeled flavones for in vivo imaging of β-amyloid plaques in Alzheimer’s brains. Bioorg. Med. Chem.17, 2069–2076 (2009).
  • Chandra R , OyaS, KungMP, HouC, JinLW, KungHF. New diphenylacetylenes as probes for positron emission tomographic imaging of amyloid plaques.J. Med. Chem.50, 2415–2423 (2007).
  • Li L , SenguptaA, HaqueN, Grundke-IqbalI, IqbalK. Memantine inhibits and reverses the Alzheimer type abnormal hyperphosphorylation of tau and associated neurodegeneration.FEBS Lett.566, 261–269 (2004).
  • Ametamey SM , BruehlmeierM, KneifelSet al. PET studies of 18F-memantine in healthy volunteers. Nucl. Med. Biol. 29, 227–231 (2002).
  • Elsinga PH , HatanoK, IshiwataK. PET tracers for imaging of the dopaminergic system.Curr. Med. Chem.13, 2139–2153 (2006).
  • Hocke C , PranteO, LoberS, HubnerH, GmeinerP, KuwertT. Synthesis and evaluation of 18F-labeled dopamine D3 receptor ligands as potential PET imaging agents. Bioorg. Med. Chem. Lett.15, 4819–4823 (2005).
  • Nanni C , FantiS, RubelloD. 18F-DOPA PET and PET/CT. J. Nucl. Med.48, 1577–1579 (2007).
  • Wuest F , BerndtM, StrobelKet al. Synthesis and radiopharmacological characterization of 2β-carbo-2´-[18F]fluoroethoxy-3β-(4-bromo-phenyl)tropane ([18F]MCL-322) as a PET radiotracer for imaging the dopamine transporter (DAT). Bioorg. Med. Chem. 15, 4511–4519 (2007).
  • Chitneni SK , GarreauL, CleynhensBet al. Improved synthesis and metabolic stability analysis of the dopamine transporter ligand [(18)F]FECT. Nucl. Med. Biol. 35, 75–82 (2008).
  • Easwaramoorthy B , PichikaR, CollinsD, PotkinSG, LeslieFM, MukherjeeJ. Effect of acetylcholinesterase inhibitors on the binding of nicotinic a4b2 receptor P radiotracer ET, (18)F-nifene: a measure of acetylcholine competition. Synapse61, 29–36 (2007).
  • Kozikowski AP , ChellappanSK, HendersonDet al. Acetylenic pyridines for use in PET imaging of nicotinic receptors. ChemMedChem 2, 54–57 (2007).
  • Pomper MG , PhillipsE, FanHet al. Synthesis and biodistribution of radiolabeled α 7 nicotinic acetylcholine receptor ligands. J. Nucl. Med. 46, 326–334 (2005).
  • Roger G , SabaW, ValetteHet al. Synthesis and radiosynthesis of [18F]FPhEP, a novel α4β2-selective, epibatidine-based antagonist for PET imaging of nicotinic acetylcholine receptors. Bioorg. Med. Chem. 14, 3848–3858 (2006).
  • Deuther-Conrad W , FischerS, HillerAet al. Molecular imaging of α7 nicotinic acetylcholine receptors: design and evaluation of the potent radioligand [18F]NS10743. Eur. J. Nucl. Med. Mol. Imaging 36, 791–800 (2009).
  • Huang Y , ZhuZ, XiaoY, LaruelleM. Epibatidine analogues as selective ligands for the αxβ2-containing subtypes of nicotinic acetylcholine receptors. Bioorg. Med. Chem. Lett.15, 4385–4388 (2005).
  • Takano A , GulyasB, VarroneAet al. Imaging the norepinephrine transporter with positron emission tomography: initial human studies with (S,S)-[18F]FMeNER-D2. Eur. J. Nucl. Med. Mol. Imaging 35, 153–157 (2008).
  • Zeng F , JarkasN, StehouwerJSet al. Synthesis, in vitro characterization and radiolabeling of reboxetine analogs as potential PET radioligands for imaging the norepinephrine transporter. Bioorg. Med. Chem. 16, 783–793 (2008).
  • Fookes CJ , PhamTQ, MattnerFet al. Synthesis and biological evaluation of substituted [18F]imidazo[1,2-a]pyridines and [18F]pyrazolo[1,5-α]pyrimidines for the study of the peripheral benzodiazepine receptor using positron emission tomography. J. Med. Chem. 51, 3700–3712 (2008).
  • Yanamoto K , KumataK, YamasakiTet al. [18F]FEAC and [18F]FEDAC: lwo novel positron emission tomography ligands for peripheral-type benzodiazepine receptor in the brain. Bioorg. Med. Chem. Lett. 19, 1707–1710 (2009).
  • Yu W , WangE, VollRJ, MillerAH, GoodmanMM. Synthesis, fluorine-18 radiolabeling and in vitro characterization of 1-iodophenyl-N-methyl-N-fluoroalkyl-3-isoquinoline carboxamide derivatives as potential PET radioligands for imaging peripheral benzodiazepine receptor. Bioorg. Med. Chem.16, 6145–6155 (2008).
  • Zhang MR , MaedaJ, OgawaMet al. Development of a new radioligand N-(5-fluoro-2-phenoxyphenyl)-N-(2-[18F]fluoroethyl-5-methoxybenzyl)acetamide, for PET imaging of peripheral benzodiazepine receptor in primate brain. J. Med. Chem. 47, 2228–2235 (2004).
  • Serdons K , VerduycktT, VanderghinsteDet al. Synthesis of 18F-labelled 2-(4´-fluorophenyl)-1,3-benzothiazole and evaluation as amyloid imaging agent in comparison with [11C]PIB. Bioorg. Med. Chem. Lett. 19, 602–605 (2009).
  • Goswami R , PondeDE, KungMP, HouC, KilbournMR, KungHF. Fluoroalkyl derivatives of dihydrotetrabenazine as positron emission tomography imaging agents targeting vesicular monoamine transporters.Nucl. Med. Biol.33, 685–694 (2006).
  • Kung MP , HouC, GoswamiR, PondeDE, KilbournMR, KungHF. Characterization of optically resolved 9-fluoropropyl-dihydrotetrabenazine as a potential PET imaging agent targeting vesicular monoamine transporters.Nucl. Med. Biol.34, 239–246 (2007).
  • Wilson AA , GarciaA, ParkesJet al. Radiosynthesis and initial evaluation of [18F]-FEPPA for PET imaging of peripheral benzodiazepine receptors. Nucl. Med. Biol. 35, 305–314 (2008).
  • Reid DG , MurphyPS. Fluorine magnetic resonance in vivo: a powerful tool in the study of drug distribution and metabolism. Drug Discov. Today13, 473–480 (2008).
  • Flaherty DP , WalshSM, KiyotaT, DongY, IkezuT, VennerstromJL. Polyfluorinated bis-styrylbenzene β-amyloid plaque binding ligands. J. Med. Chem.50, 4986–4992 (2007).
  • Amatsubo T , MorikawaS, InubushiTet al. Trifluoromethoxy-benzylated ligands improve amyloid detection in the brain using 19F magnetic resonance imaging. Neurosci. Res. 63, 76–81 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.