226
Views
0
CrossRef citations to date
0
Altmetric
Review

Small-Molecule Modulators of Inward Rectifier K+ Channels: Recent Advances and Future Possibilities

, , &
Pages 757-774 | Published online: 12 May 2010

Bibliography

  • Nichols CG , LopatinAN. Inward rectifier potassium channels.Annu. Rev. Physiol.59, 171–191 (1997).
  • Hibino H , InanobeA, FurutaniK, MurakamiS, FindlayI, KurachiY. Inwardly rectifying potassium channels: their structure, function, and physiological roles.Physiol. Rev.90(1), 291–366 (2010).
  • Ho K , NicholsCG, LedererWJet al. Cloning and expression of an inwardly rectifying ATP-regulated potassium channel. Nature 362(6415), 31–38 (1993).
  • Lopatin AN , MakhinaEN, NicholsCG. Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification.Nature372, 366–369 (1994).
  • Lu Z . Mechanism of rectification in inward-rectifier K+ channels. Annu. Rev. Physiol.66, 103–129 (2004).
  • Kuo A , GulbisJM, AntcliffJFet al. Crystal structure of the potassium channel KirBac1.1 in the closed state. Science 300(5627), 1922–1926 (2003).
  • Pegan S , ArrabitC, ZhouWet al. Cytoplasmic domain structures of Kir2.1 and Kir3.1 show sites for modulating gating and rectification. Nat. Neurosci. 8(3), 279–287 (2005).
  • Nishida M , CadeneM, ChaitBT, MacKinnonR. Crystal structure of a Kir3.1-prokaryotic Kir channel chimera.Embo. J.26(17), 4005–4015 (2007).
  • Nishida M , MacKinnonR. Structural basis of inward rectification: cytoplasmic pore of the G protein-gated inward rectifier GIRK1 at 1.8 a resolution.Cell111(7), 957–965 (2002).
  • Tao X , AvalosJL, ChenJ, MacKinnonR. Crystal structure of the eukaryotic strong inward-rectifier K+ channel Kir2.2 at 3.1 A resolution. Science326(5960), 1668–1674 (2009).
  • Fallen K , BanerjeeS, SheehanJet al. The Kir channel immunoglobulin domain is essential for Kir1.1 (ROMK) thermodynamic stability, trafficking and gating. Channels (Austin) 3(1), 57–68 (2009).
  • Rapedius M , FowlerPW, ShangL, SansomMS, TuckerSJ, BaukrowitzT. H bonding at the helix-bundle crossing controls gating in Kir potassium channels.Neuron55(4), 602–614 (2007).
  • Rodriguez-Menchaca AA , Navarro-PolancoRA, Ferrer-VilladaTet al. The molecular basis of chloroquine block of the inward rectifier Kir2.1 channel. Proc. Natl Acad. Sci. USA 105(4), 1364–1368 (2008).
  • Furutani K , OhnoY, InanobeA, HibinoH, KurachiY. Mutational and in silico analyses for antidepressant block of astroglial inward-rectifier Kir4.1 channel. Mol. Pharmacol.75(6), 1287–1295 (2009).
  • Lu M , WangT, YanQet al. Absence of small conductance K+ channel (SK) activity in apical membranes of thick ascending limb and cortical collecting duct in ROMK (Bartter‘s) knockout mice. J. Biol. Chem. 277(40), 37881–37887 (2002).
  • Hebert SC , FriedmanPA, AndreoliTE. Effects of antidiuretic hormone on cellular conductive pathways in mouse medullary thick ascending limbs of Henle: I. ADH increases transcellular conductance pathways.J. Membr. Biol.80(3), 201–219 (1984).
  • Hebert SC , AndreoliTE. Effects of antidiuretic hormone on cellular conductive pathways in mouse medullary thick ascending limbs of Henle: II. Determinants of the ADH-mediated increases in transepithelial voltage and in net Cl- absorption. J. Membr. Biol.80(3), 221–233 (1984).
  • Hebert SC . Roles of Na+-K+-2Cl- and Na-Cl cotransporters and ROMK potassium channels in urinary concentrating mechanism. Am. J. Physiol.(44), 275, F325–F327 (1998).
  • Frindt G , ShahA, EdvinssonJ, PalmerLG. Dietary K regulates ROMK channels in connecting tubule and cortical collecting duct of rat kidney.Am. J. Physiol. Renal Physiol.296(2), F347–F354 (2009).
  • Wang WH , GiebischG. Regulation of potassium (K+) handling in the renal collecting duct. Pflugers Arch.458(1), 157–168 (2009).
  • Simon DB , KaretFE, Rodriguez-SorianoJet al. Genetic heterogeneity of Bartter’s syndrome revealed by mutations in the K+ channel, ROMK. Nat. Genet. 14(2), 152–156 (1996).
  • Seyberth HW . An improved terminology and classification of Bartter-like syndromes.Nat. Clin. Pract. Nephrol.4(10), 560–567 (2008).
  • Peters M , ErmertS, JeckNet al. Classification and rescue of ROMK mutations underlying hyperprostaglandin E syndrome/antenatal Bartter syndrome. Kidney Int. 64(3), 923–932 (2003).
  • Schulte U , HahnH, KonradMet al. pH gating of ROMK (Kir1.1) channels: control by an Arg-Lys-Arg triad disrupted in antenatal Bartter syndrome. Proc. Natl Acad. Sci. USA 96(26), 15298–15303 (1999).
  • Flagg TP , TateM, MerotJ, WellingPA. A mutation linked with Bartter’s syndrome locks Kir 1.1a (ROMK1) channels in a closed state.J. Gen. Physiol.114(5), 685–700 (1999).
  • Good DW , WrightFS. Luminal influences on potassium secretion: sodium concentration and fluid flow rate.Am. J. Physiol.236(2), F192–F205 (1979).
  • Khanna A , KurtzmanNA. Metabolic alkalosis.J. Nephrol.19(Suppl. 9), S86–S96 (2006).
  • Sansom SC , WellingPA. Two channels for one job.Kidney Int.72(5), 529–530 (2007).
  • Rodan AR , HuangCL. Distal potassium handling based on flow modulation of maxi-K channel activity.Curr. Opin. Nephrol. Hypertens.18(4), 350–355 (2009).
  • Grimm PR , SansomSC. BK channels in the kidney.Curr. Opin. Nephrol. Hypertens.16(5), 430–436 (2007).
  • Simon DB , KaretFE, HamdanJM, DiPietroA, SanjadSA, LiftonRP. Bartter’s syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na+-K+-2Cl- cotransporter NKCC2. Nat. Genet.13(2), 183–188 (1996).
  • Hebert SC . Bartter syndrome.Curr. Opin. Nephrol. Hypertens.12(5), 527–532 (2003).
  • Bailey MA , CantoneA, YanQet al. Maxi-K channels contribute to urinary potassium excretion in the ROMK-deficient mouse model of Type II Bartter’s syndrome and in adaptation to a high-K diet. Kidney Int. 70(1), 51–59 (2006).
  • Ji W , FooJN, O‘RoakBJet al. Rare independent mutations in renal salt handling genes contribute to blood pressure variation. Nat. Genet. 40(5), 592–599 (2008).
  • Tobin MD , TomaszewskiM, BraundPSet al. Common variants in genes underlying monogenic hypertension and hypotension and blood pressure in the general population. Hypertension 51(6), 1658–1664 (2008).
  • Brater DC . Diuretic therapy.N. Engl. J. Med.339(6), 387–395 (1998).
  • Grobbee DE , HoesAW. Non-potassium-sparing diuretics and risk of sudden cardiac death.J. Hypertens.13(12 Pt 2), 1539–1545 (1995).
  • Macdonald JE , StruthersAD. What is the optimal serum potassium level in cardiovascular patients?J. Am. Coll. Cardiol.43(2), 155–161 (2004).
  • Weaver CD , HardenD, DworetzkySI, RobertsonB, KnoxRJ. A thallium-sensitive, fluorescence-based assay for detecting and characterizing potassium channel modulators in mammalian cells.J. Biomol. Screen.9(8), 671–677 (2004).
  • Gentles RG , HuS, HuangYet al. Preliminary SAR studies on non-apamin-displacing 4-(aminomethylaryl)pyrrazolopyrimidine KCa channel blockers. Bioorg. Med. Chem. Lett. 18(20), 5694–5697 (2008).
  • Gentles RG , Grant-YoungK, HuSet al. Initial SAR studies on apamin-displacing 2-aminothiazole blockers of calcium-activated small conductance potassium channels. Bioorg. Med. Chem. Lett. 18(19), 5316–5319 (2008).
  • Titus SA , BeachamD, ShahaneSAet al. A new homogeneous high-throughput screening assay for profiling compound activity on the human ether-a-go-go-related gene channel. Anal. Biochem. 394(1), 30–38 (2009).
  • Delpire E , DaysE, LewisLMet al. Small-molecule screen identifies inhibitors of the neuronal K+-Cl- co-transporter KCC2. Proc. Natl Acad. Sci. USA 106(13), 5383–5388 (2009).
  • Nadeau H , McKinneyS, AndersonDJ, LesterHA. ROMK1 (Kir1.1) causes apoptosis and chronic silencing of hippocampal neurons.J. Neurophysiol.84(2), 1062–1075 (2000).
  • Yoo D , FangL, MasonA, KimBY, WellingPA. A phosphorylation-dependent export structure in ROMK (Kir1.1) channel overrides an endoplasmic reticulum localization signal.J. Biol. Chem.280(42), 35281–35289 (2005).
  • O‘Connell AD , LengQ, DongK, MacGregorGG, GiebischG, HebertSC. Phosphorylation-regulated endoplasmic reticulum retention signal in the renal outer-medullary K+ channel (ROMK). Proc. Natl Acad. Sci. USA102(28), 9954–9959 (2005).
  • Lewis LM , BhaveG, ChauderBAet al. High-throughput screening reveals a small-molecule inhibitor of the renal outer medullary potassium channel and Kir7.1. Mol. Pharmacol. 76(5), 1094–1103 (2009).
  • Krapivinsky G , MedinaI, EngL, KrapivinskyL, YangY, ClaphamDE. A novel inward rectifier K+ channel with unique pore properties. Neuron20(5), 995–1005 (1998).
  • Ookata K , TojoA, SuzukiYet al. Localization of inward rectifier potassium channel Kir7.1 in the basolateral membrane of distal nephron and collecting duct. J. Am. Soc. Nephrol. 11(11), 1987–1994 (2000).
  • Yang D , ZhangX, HughesBA. Expression of inwardly rectifying potassium channel subunits in native human retinal pigment epithelium.Exp. Eye Res.87(3), 176–183 (2008).
  • Nakamura N , SuzukiY, SakutaH, OokataK, KawaharaK, HiroseS. Inwardly rectifying K+ channel Kir7.1 is highly expressed in thyroid follicular cells, intestinal epithelial cells and choroid plexus epithelial cells: implication for a functional coupling with Na+, K+–ATPase. Biochem. J.342(Pt 2), 329–336 (1999).
  • Fakler B , BrandleU, GlowatzkiE, WeidemannS, ZennerHP, RuppersbergJP. Strong voltage-dependent inward rectification of inward rectifier K+ channels is caused by intracellular spermine. Cell80(1), 149–154 (1995).
  • Lu Z , MacKinnonR. Electrostatic tuning of Mg2+ affinity in an inward-rectifier K+ channel. Nature371(6494), 243–246 (1994).
  • Wible BA , TaglialatelaM, FickerE, BrownAM. Gating of inwardly rectifying K+ channels localized to a single negatively charged residue. Nature371(6494), 246–249 (1994).
  • Shin HG , LuZ. Mechanism of the voltage sensitivity of IRK1 inward-rectifier K+ channel block by the polyamine spermine. J. Gen. Physiol.125(4), 413–426 (2005).
  • Plaster NM , TawilR, Tristani-FirouziMet al. Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen’s syndrome. Cell 105(4), 511–519 (2001).
  • Ehrlich JR . Inward rectifier potassium currents as a target for atrial fibrillation therapy.J. Cardiovasc. Pharmacol.52(2), 129–135 (2008).
  • Zaks-Makhina E , KimY, AizenmanE, LevitanES. Novel neuroprotective K+ channel inhibitor identified by high-throughput screening in yeast. Mol. Pharmacol.65(1), 214–219 (2004).
  • Zaks-Makhina E , LiH, GrishinA, Salvador-RecatalaV, LevitanES. Specific and slow inhibition of the Kir2.1 K+ channel by gambogic acid. J. Biol. Chem.284(23), 15432–15438 (2009).
  • Sun H , ShikanoS, XiongQ, LiM. Function recovery after chemobleaching (FRAC): evidence for activity silent membrane receptors on cell surface.Proc. Natl Acad. Sci. USA101(48), 16964–16969 (2004).
  • Sun H , LiuX, XiongQ, ShikanoS, LiM. Chronic inhibition of cardiac Kir2.1 and hERG potassium channels by celastrol with dual effects on both ion conductivity and protein trafficking.J. Biol. Chem.281(9), 5877–5884 (2006).
  • Barrett-Jolley R , DartC, StandenNB. Direct block of native and cloned (Kir2.1) inward rectifier K+ channels by chloroethylclonidine. Br. J. Pharmacol.128(3), 760–766 (1999).
  • Liu B , JiaZ, GengXet al. Selective inhibition of Kir currents by antihistamines. Eur. J. Pharmacol. 558(1–3), 21–26 (2007).
  • Ponce-Balbuena D , Lopez-IzquierdoA, FerrerT, Rodriguez-MenchacaAA, Arechiga-FigueroaIA, Sanchez-ChapulaJA. Tamoxifen inhibits inward rectifier K+ 2.x family of inward rectifier channels by interfering with phosphatidylinositol 4,5-bisphosphate-channel interactions. J. Pharmacol. Exp. Ther.331(2), 563–573 (2009).
  • Kobayashi T , WashiyamaK, IkedaK. Pregnenolone sulfate potentiates the inwardly rectifying K+ channel Kir2.3. PLoS One4(7), E6311 (2009).
  • Sadja R , AlagemN, ReuvenyE. Gating of GIRK channels. details of an intricate, membrane-delimited signaling complex.Neuron39(1), 9–12 (2003).
  • Krapivinsky G , GordonEA, WickmanK, VelimirovicB, KrapivinskyL, ClaphamDE. The G-protein-gated atrial K+ channel IKACh is a heteromultimer of two inwardly rectifying K+-channel proteins. Nature374(6518), 135–141 (1995).
  • Koyrakh L , LujanR, ColonJet al. Molecular and cellular diversity of neuronal G protein-gated potassium channels. J. Neurosci. 25(49), 11468–11478 (2005).
  • Mark MD , HerlitzeS. G protein-mediated gating of inward-rectifier K+ channels. Eur. J. Biochem.267(19), 5830–5836 (2000).
  • Cruz HG , IvanovaT, LunnML, StoffelM, SlesingerPA, LuscherC. Bi-directional effects of GABAB receptor agonists on the mesolimbic dopamine system. Nat. Neurosci.7(2), 153–159 (2004).
  • Jelacic TM , KennedyME, WickmanK, ClaphamDE. Functional and biochemical evidence for G protein-gated inwardly rectifying K+ (GIRK) channels composed of GIRK2 and GIRK3. J. Biol. Chem.275(46), 36211–36216 (2000).
  • Kovoor P , WickmanK, MaguireCTet al. Evaluation of the role of IKACh in atrial fibrillation using a mouse knockout model. J. Am. Coll. Cardiol. 37(8), 2136–2143 (2001).
  • Lloyd-Jones DM , WangTJ, LeipEPet al. Lifetime risk for development of atrial fibrillation: the Framingham Heart Study. Circulation 110(9), 1042–1046 (2004).
  • Bettahi I , MarkerCL, RomanMI, WickmanK. Contribution of the Kir3.1 subunit to the muscarinic-gated atrial potassium channel IKACh. J. Biol. Chem.277(50), 48282–48288 (2002).
  • Wickman K , NemecJ, GendlerSJ, ClaphamDE. Abnormal heart rate regulation in GIRK4 knockout mice.Neuron20(1), 103–114 (1998).
  • Ehrlich JR , NattelS. Novel approaches for pharmacological management of atrial fibrillation.Drugs69(7), 757–774 (2009).
  • Kaneko N , MatsudaR, HataY, ShimamotoK. Pharmacological characteristics and clinical applications of K201.Curr. Clin. Pharmacol.4(2), 126–131 (2009).
  • Watanabe Y , HaraY, TamagawaM, NakayaH. Inhibitory effect of amiodarone on the muscarinic acetylcholine receptor-operated potassium current in guinea pig atrial cells.J. Pharmacol. Exp. Ther.279(2), 617–624 (1996).
  • Gogelein H , BrendelJ, SteinmeyerKet al. Effects of the atrial antiarrhythmic drug AVE0118 on cardiac ion channels. Naunyn Schmiedebergs Arch. Pharmacol. 370(3), 183–192 (2004).
  • Matsuda T , ItoM, IshimaruSet al. Blockade by NIP-142, an antiarrhythmic agent, of carbachol-induced atrial action potential shortening and GIRK1/4 channel. J. Pharmacol. Sci. 101(4), 303–310 (2006).
  • Hashimoto N , YamashitaT, TsuruzoeN. Characterization of in vivo and in vitro electrophysiological and antiarrhythmic effects of a novel IKACh blocker, NIP-151: a comparison with an IKr-blocker dofetilide. J. Cardiovasc. Pharmacol.51(2), 162–169 (2008).
  • Scanziani M . GABA spillover activates postsynaptic GABAB receptors to control rhythmic hippocampal activity. Neuron25(3), 673–681 (2000).
  • Lujan R , MaylieJ, AdelmanJP. New sites of action for GIRK and SK channels.Nat. Rev. Neurosci.10(7), 475–480 (2009).
  • Pravetoni M , WickmanK. Behavioral characterization of mice lacking GIRK/Kir3 channel subunits.Genes Brain Behav.7(5), 523–531 (2008).
  • Marker CL , CintoraSC, RomanMI, StoffelM, WickmanK. Hyperalgesia and blunted morphine analgesia in G protein-gated potassium channel subunit knockout mice.Neuroreport13(18), 2509–2513 (2002).
  • Marker CL , StoffelM, WickmanK. Spinal G protein-gated K+ channels formed by GIRK1 and GIRK2 subunits modulate thermal nociception and contribute to morphine analgesia. J. Neurosci.24(11), 2806–2812 (2004).
  • Morgan AD , CarrollME, LothAK, StoffelM, WickmanK. Decreased cocaine self-administration in Kir3 potassium channel subunit knockout mice.Neuropsychopharmacol.28(5), 932–938 (2003).
  • Kobayashi T , WashiyamaK, IkedaK. Inhibition of G protein-activated inwardly rectifying K+ channels by various antidepressant drugs. Neuropsychopharmacol.29(10), 1841–1851 (2004).
  • Kobayashi T , IkedaK, KumanishiT. Inhibition by various antipsychotic drugs of the G-protein-activated inwardly rectifying K+ (GIRK) channels expressed in Xenopus oocytes. Br. J. Pharmacol.129(8), 1716–1722 (2000).
  • Kobayashi T , WashiyamaK, IkedaK. Inhibition of G protein-activated inwardly rectifying K+ channels by fluoxetine (Prozac). Br. J. Pharmacol.138(6), 1119–1128 (2003).
  • Zhou W , ArrabitC, ChoeS, SlesingerPA. Mechanism underlying bupivacaine inhibition of G protein-gated inwardly rectifying K+ channels. Proc. Natl Acad. Sci. USA98(11), 6482–6487 (2001).
  • Kobayashi T , HiraiH, IinoMet al. Inhibitory effects of the antiepileptic drug ethosuximide on G protein-activated inwardly rectifying K+ channels. Neuropharmacol. 56(2), 499–506 (2009).
  • Weigl LG , SchreibmayerW. G protein-gated inwardly rectifying potassium channels are targets for volatile anesthetics.Mol. Pharmacol.60(2), 282–289 (2001).
  • Kuzhikandathil EV , OxfordGS. Classic D1 dopamine receptor antagonist R-(+)-7-chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzaze pine hydrochloride (SCH23390) directly inhibits G protein-coupled inwardly rectifying potassium channels. Mol. Pharmacol.62(1), 119–126 (2002).
  • Ulens C , DaenensP, TytgatJ. The dual modulation of GIRK1/GIRK2 channels by opioid receptor ligands.Eur. J. Pharmacol.385(2–3), 239–245 (1999).
  • Pan HL , WuZZ, ZhouHY, ChenSR, ZhangHM, LiDP. Modulation of pain transmission by G-protein-coupled receptors.Pharmacol. Ther.117(1), 141–161 (2008).
  • Ueda H , UedaM. Mechanisms underlying morphine analgesic tolerance and dependence.Front. Biosci.14, 5260–5272 (2009).
  • Li L , HeadV, TimpeLC. Identification of an inward rectifier potassium channel gene expressed in mouse cortical astrocytes.Glia33(1), 57–71 (2001).
  • Kofuji P , BiedermannB, SiddharthanVet al. Kir potassium channel subunit expression in retinal glial cells. implications for spatial potassium buffering. Glia 39(3), 292–303 (2002).
  • Lang F , VallonV, KnipperM, WangemannP. Functional significance of channels and transporters expressed in the inner ear and kidney.Am. J. Physiol. Cell. Physiol.293(4), C1187–C1208 (2007).
  • Lourdel S , PaulaisM, CluzeaudFet al. An inward rectifier K+ channel at the basolateral membrane of the mouse distal convoluted tubule. similarities with Kir4-Kir5.1 heteromeric channels. J. Physiol. 538(Pt 2), 391–404 (2002).
  • Lachheb S , CluzeaudF, BensMet al. Kir4.1/Kir5.1 channel forms the major K+ channel in the basolateral membrane of mouse renal collecting duct principal cells. Am. J. Physiol. Renal Physiol. 294(6), F1398–F1407 (2008).
  • Pessia M , TuckerSJ, LeeK, BondCT, AdelmanJP. Subunit positional effects revealed by novel heteromeric inwardly rectifying K+ channels. EMBO. J.15(12), 2980–2987 (1996).
  • Kofuji P , CeelenP, ZahsKR, SurbeckLW, LesterHA, NewmanEA. Genetic inactivation of an inwardly rectifying potassium channel (Kir4.1 subunit) in mice: phenotypic impact in retina.J. Neurosci.20(15), 5733–5740 (2000).
  • Neusch C , RozengurtN, JacobsRE, LesterHA, KofujiP. Kir4.1 potassium channel subunit is crucial for oligodendrocyte development and in vivo myelination. J. Neurosci.21(15), 5429–5438 (2001).
  • Rozengurt N , LopezI, ChiuCS, KofujiP, LesterHA, NeuschC. Time course of inner ear degeneration and deafness in mice lacking the Kir4.1 potassium channel subunit.Hear. Res.177(1–2), 71–80 (2003).
  • Bockenhauer D , FeatherS, StanescuHCet al. Epilepsy, ataxia, sensorineural deafness, tubulopathy, and KCNJ10 mutations. N. Engl. J. Med. 360(19), 1960–1970 (2009).
  • Scholl UI , ChoiM, LiuTet al. Seizures, sensorineural deafness, ataxia, mental retardation, and electrolyte imbalance (SeSAME syndrome) caused by mutations in KCNJ10. Proc. Natl Acad. Sci. USA 106(14), 5842–5847 (2009).
  • Butt AM , KalsiA. Inwardly rectifying potassium channels (Kir) in central nervous system glia: a special role for Kir4.1 in glial functions.J. Cell. Mol. Med.10(1), 33–44 (2006).
  • Su S , OhnoY, LossinC, HibinoH, InanobeA, KurachiY. Inhibition of astroglial inwardly rectifying Kir4.1 channels by a tricyclic antidepressant, nortriptyline.J. Pharmacol. Exp. Ther.320(2), 573–580 (2007).
  • Ohno Y , HibinoH, LossinC, InanobeA, KurachiY. Inhibition of astroglial Kir4.1 channels by selective serotonin reuptake inhibitors.Brain Res.1178, 44–51 (2007).
  • Jahangir A , TerzicA. KATP channel therapeutics at the bedside. J. Mol. Cell. Cardiol.39(1), 99–112 (2005).
  • Sattiraju S , ReyesS, KaneGC, TerzicA. KATP channel pharmacogenomics: from bench to bedside. Clin. Pharmacol. Ther.83(2), 354–357 (2008).
  • Lefer DJ , NicholsCG, CoetzeeWA. Sulfonylurea receptor 1 subunits of ATP-sensitive potassium channels and myocardial ischemia/reperfusion injury.Trends Cardiovasc. Med.19(2), 61–67 (2009).
  • Hejtmancik JF , JiaoX, LiAet al. Mutations in KCNJ13 cause autosomal-dominant snowflake vitreoretinal degeneration. Am. J. Hum. Genet. 82(1), 174–180 (2008).
  • Li Y , HalmDR. Secretory modulation of basolateral membrane inwardly rectified K+ channel in guinea pig distal colonic crypts. Am. J. Physiol. Cell. Physiol.282(4), C719–C735 (2002).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.