453
Views
1
CrossRef citations to date
0
Altmetric
Review

Screening Technologies for Ion Channel Drug Discovery

, , &
Pages 715-730 | Published online: 12 May 2010

Bibliography

  • Venter JC , AdamsMD, MyersEWet al. The sequence of the human genome. Science 291(5507), 1304–1351 (2001).
  • Lehmann-Horn F , RudelR, DenglerR, LorkovicH, HaassA, RickerK. Membrane defects in paramyotonia congenita with and without myotonia in a warm environment.Muscle Nerve4(5), 396–406 (1981).
  • Schwartzkroin PA , WylerAR. Mechanisms underlying epileptiform burst discharge.Ann. Neurol.7(2), 95–107 (1980).
  • Riordan JR , RommensJM, KeremBet al. Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science 245(4922), 1066–1073 (1989).
  • Griggs RC , NuttJG. Episodic ataxias as channelopathies.Ann. Neurol.37(3), 285–287 (1995).
  • Ashcroft FM . From molecule to malady.Nature440(7083), 440–447 (2006).
  • Imming P , SinningC, MeyerA. Drugs, their targets and the nature and number of drug targets.Nat. Rev. Drug Discov.5(10), 821–834 (2006).
  • Hamill OP , MartyA, NeherE, SakmannB, SigworthFJ. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches.Pflugers Arch.391(2), 85–100 (1981).
  • Bouevitch O , LewisA, PinevskyI, WuskellJP, LoewLM. Probing membrane potential with nonlinear optics.Biophys. J.65(2), 672–679 (1993).
  • Knisley SB , BlitchingtonTF, HillBCet al. Optical measurements of transmembrane potential changes during electric field stimulation of ventricular cells. Circ. Res. 72(2), 255–270 (1993).
  • Epps DE , WolfeML, GroppiV. Characterization of the steady-state and dynamic fluorescence properties of the potential-sensitive dye bis-(1,3-dibutylbarbituric acid)trimethine oxonol (Dibac4(3)) in model systems and cells. Chem. Phys. Lipids69(2), 137–150 (1994).
  • Schroeder KS , NeagleBD. FLiPR: a new instrument for accurate high-throughput optical screening.J. Biomol. Screen.1, 75–80 (1996).
  • Holevinsky KO , FanZ, FrameM, MakielskiJC, GroppiV, NelsonDJ. ATP-sensitive K+ channel opener acts as a potent Cl- channel inhibitor in vascular smooth muscle cells. J. Membr. Biol.137(1), 59–70 (1994).
  • Dorn A , HermannF, EbnethAet al. Evaluation of a high-throughput fluorescence assay method for HERG potassium channel inhibition. J. Biomol. Screen. 10(4), 339–347 (2005).
  • Gopalakrishnan M , MolinariEJ, ShiehCCet al. Pharmacology of human sulphonylurea receptor SUR1 and inward rectifier K+ channel Kir6.2 combination expressed in HEK-293 cells. Br. J. Pharmacol. 129(7), 1323–1332 (2000).
  • Terstappen GC , PellacaniA, AldegheriLet al. The antidepressant fluoxetine blocks the human small conductance calcium-activated potassium channels SK1, SK2 and SK3. Neurosci. Lett. 346(1–2), 85–88 (2003).
  • Whiteaker KL , Davis-TaberR, ScottVE, GopalakrishnanM. Fluorescence-based functional assay for sarcolemmal ATP-sensitive potassium channel activation in cultured neonatal rat ventricular myocytes.J. Pharmacol. Toxicol. Methods46(1), 45–50 (2001).
  • Whiteaker KL , GopalakrishnanSM, GroebeDet al. Validation of FLiPR membrane potential dye for high throughput screening of potassium channel modulators. J. Biomol. Screen. 6(5), 305–312 (2001).
  • Vasilyev DV , ShanQJ, LeeYTet al. A novel high-throughput screening assay for HCN channel blocker using membrane potential-sensitive dye and FLiPR. J. Biomol. Screen. 14(9), 1119–1128 (2009).
  • Benjamin ER , PruthiF, OlanrewajuSet al. State-dependent compound inhibition of Nav1.2 sodium channels using the FLiPR Vm dye: on-target and off-target effects of diverse pharmacological agents. J. Biomol. Screen. 11(1), 29–39 (2006).
  • Joesch C , GuevarraE, ParelSPet al. Use of FLiPR membrane potential dyes for validation of high-throughput screening with the FLiPR and microARCS technologies: identification of ion channel modulators acting on the GABAA receptor. J. Biomol. Screen. 13(3), 218–228 (2008).
  • Slack M , KirchhoffC, MollerC, WinklerD, NetzerR. Identification of novel Kv1.3 blockers using a fluorescent cell-based ion channel assay. J. Biomol. Screen.11(1), 57–64 (2006).
  • Gonzalez JE , TsienRY. Voltage sensing by fluorescence resonance energy transfer in single cells.Biophys. J.69(4), 1272–1280 (1995).
  • Gonzalez JE , TsienRY. Improved indicators of cell membrane potential that use fluorescence resonance energy transfer.Chem. Biol.4(4), 269–277 (1997).
  • Falconer M , SmithF, Surah-NarwalSet al. High-throughput screening for ion channel modulators. J. Biomol. Screen. 7(5), 460–465 (2002).
  • Felix JP , WilliamsBS, PriestBTet al. Functional assay of voltage-gated sodium channels using membrane potential-sensitive dyes. Assay Drug Dev. Technol. 2(3), 260–268 (2004).
  • Liu CJ , PriestBT, BugianesiRMet al. A high-capacity membrane potential FRET-based assay for NaV1.8 channels. Assay Drug Dev. Technol. 4(1), 37–48 (2006).
  • Solly K , CassadayJ, FelixJPet al. Miniaturization and HTS of a FRET-based membrane potential assay for Kir channel inhibitors. Assay Drug Dev. Technol. 6(2), 225–234 (2008).
  • Willow M , KuenzelEA, CatterallWA. Inhibition of voltage-sensitive sodium channels in neuroblastoma cells and synaptosomes by the anticonvulsant drugs diphenylhydantoin and carbamazepine.Mol. Pharmacol.25(2), 228–234 (1984).
  • Rasmussen CA Jr, Sutko JL, Barry WH. Effects of ryanodine and caffeine on contractility, membrane voltage, and calcium exchange in cultured heart cells. Circ. Res.60(4), 495–504 (1987).
  • Rasmussen H , TakuwaY, ParkS. Protein kinase C in the regulation of smooth muscle contraction.FASEB J.1(3), 177–185 (1987).
  • Weir SW , WestonAH. The effects of BRL 34915 and nicorandil on electrical and mechanical activity and on 86Rb efflux in rat blood vessels. Br. J. Pharmacol.88(1), 121–128 (1986).
  • Terstappen GC . Functional analysis of native and recombinant ion channels using a high-capacity nonradioactive rubidium efflux assay.Anal. Biochem.272(2), 149–155 (1999).
  • Terstappen GC . Nonradioactive rubidium ion efflux assay and its applications in drug discovery and development.Assay Drug Dev. Technol.2(5), 553–559 (2004).
  • Terstappen GC . Nonradioactive rubidium efflux assay technology for screening of ion channels. In: Label-Free Assay Technologies for Drug Discovery. Cooper M, Mayer L (Eds). Wiley-VCH, Weinheim, Germany (2010) (In Press).
  • Rezazadeh S , HeskethJC, FedidaD. Rb+ flux through hERG channels affects the potency of channel blocking drugs: correlation with data obtained using a high-throughput Rb+ efflux assay. J. Biomol. Screen.9(7), 588–597 (2004).
  • Tang W , KangJ, WuXet al. Development and evaluation of high throughput functional assay methods for HERG potassium channel. J. Biomol. Screen. 6(5), 325–331 (2001).
  • Chaudhary KW , O‘NealJM, MoZL, FerminiB, GallavanRH, BahinskiA. Evaluation of the rubidium efflux assay for preclinical identification of HERG blockade.Assay Drug Dev. Technol.4(1), 73–82 (2006).
  • Trivedi S , DekermendjianK, JulienRet al. Cellular HTS assays for pharmacological characterization of Na(V)1.7 modulators. Assay Drug Dev. Technol. 6(2), 167–179 (2008).
  • Gill S , GillR, XieY, WicksD, LiangD. Development and validation of HTS flux assay for endogenously expressed chloride channels in a CHO-K1 cell line.Assay Drug Dev. Technol.4(1), 65–71 (2006).
  • Kasner SE , GanzMB. Regulation of intracellular potassium in mesangial cells: a fluorescence analysis using the dye, PBFI.Am. J. Physiol.262(3 Pt 2), F462–467 (1992).
  • Minta A , TsienRY. Fluorescent indicators for cytosolic sodium.J. Biol. Chem.264(32), 19449–19457 (1989).
  • Verkman AS , TaklaR, SeftonB, BasbaumC, WiddicombeJH. Quantitative fluorescence measurement of chloride transport mechanisms in phospholipid vesicles.Biochemistry28(10), 4240–4244 (1989).
  • Grynkiewicz G , PoenieM, TsienRY. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem.260(6), 3440–3450 (1985).
  • Mattheakis LC , SavchenkoA. Assay technologies for screening ion channel targets.Curr. Opin. Drug Discov. Devel.4(1), 124–134 (2001).
  • Song Y , BuelowB, PerraudAL, ScharenbergAM. Development and validation of a cell-based high-throughput screening assay for TRPM2 channel modulators.J. Biomol. Screen.13(1), 54–61 (2008).
  • Dai G , HaedoRJ, WarrenVAet al. A high-throughput assay for evaluating state dependence and subtype selectivity of Cav2 calcium channel inhibitors. Assay Drug Dev. Technol. 6(2), 195–212 (2008).
  • Weaver CD , HardenD, DworetzkySI, RobertsonB, KnoxRJ. A thallium-sensitive, fluorescence-based assay for detecting and characterizing potassium channel modulators in mammalian cells.J. Biomol. Screen.9(8), 671–677 (2004).
  • Titus SA , BeachamD, ShahaneSAet al. A new homogeneous high-throughput screening assay for profiling compound activity on the human ether-a-go-go-related gene channel. Anal. Biochem. 394(1), 30–38 (2009).
  • Kiss L , BennettPB, UebeleVNet al. High throughput ion-channel pharmacology: planar-array-based voltage clamp. Assay Drug Dev. Technol. 1(1,2), 127–135 (2003).
  • Schroeder K , NeagleB, TreziseDJ, WorleyJ. Ionworks HT: a new high-throughput electrophysiology measurement platform.J. Biomol. Screen.8(1), 50–64 (2003).
  • Finkel A , WittelA, YangN, HandranS, HughesJ, CostantinJ. Population patch clamp improves data consistency and success rates in the measurement of ionic currents.J. Biomol. Screen.11(5), 488–496 (2006).
  • Dunlop J , BowlbyM, PeriR, VasilyevD, AriasR. High-throughput electrophysiology: an emerging paradigm for ion-channel screening and physiology.Nat. Rev. Drug Discov.7(4), 358–368 (2008).
  • Lu Q , AnWF. Impact of novel screening technologies on ion channel drug discovery.Comb. Chem. High Throughput Screen.11(3), 185–194 (2008).
  • Bridgland-Taylor MH , HargreavesAC, EasterAet al. Optimisation and validation of a medium-throughput electrophysiology-based hERG assay using IonWorks HT. J. Pharmacol. Toxicol. Methods 54(2), 189–199 (2006).
  • Sorota S , ZhangXS, MargulisM, TuckerK, PriestleyT. Characterization of a hERG screen using the IonWorks HT: comparison to a hERG rubidium efflux screen.Assay Drug Dev. Technol.3(1), 47–57 (2005).
  • John VH , DaleTJ, HollandsECet al. Novel 384-well population patch clamp electrophysiology assays for Ca2+-activated K+ channels. J. Biomol. Screen. 12(1), 50–60 (2007).
  • Jow F , ShenR, ChandaPet al. Validation of a medium-throughput electrophysiological assay for KCNQ2/3 channel enhancers using IonWorks HT. J. Biomol. Screen. 12(8), 1059–1067 (2007).
  • Xie X , Van DeusenAL, VitkoIet al. Validation of high throughput screening assays against three subtypes of Cav3 T-type channels using molecular and pharmacologic approaches. Assay Drug Dev. Technol.5(2), 191–203 (2007).
  • Lee YT , VasilyevDV, ShanQJ, DunlopJ, MayerS, BowlbyMR. Novel pharmacological activity of loperamide and CP-339,818 on human HCN channels characterized with an automated electrophysiology assay.Eur. J. Pharmacol.581(1–2), 97–104 (2008).
  • Harmer AR , Abi-GergesN, EasterAet al. Optimisation and validation of a medium-throughput electrophysiology-based hNav1.5 assay using IonWorks. J. Pharmacol. Toxicol. Methods 57(1), 30–41 (2008).
  • Castle N , PrintzenhoffD, ZellmerS, AntonioB, WickendenA, SilviaC. Sodium channel inhibitor drug discovery using automated high throughput electrophysiology platforms.Comb. Chem. High Throughput Screen.12(1), 107–122 (2009).
  • Cox JJ , ReimannF, NicholasAKet al. An SCN9A channelopathy causes congenital inability to experience pain. Nature 444(7121), 894–898 (2006).
  • Goldberg YP , MacFarlaneJ, MacDonaldMLet al. Loss-of-function mutations in the Nav1.7 gene underlie congenital indifference to pain in multiple human populations. Clin. Genet. 71(4), 311–319 (2007).
  • Dunlop J , BowlbyM, PeriRet al. Ion channel screening. Comb. Chem. High Throughput Screen. 11(7), 514–522 (2008).
  • Clare JJ , ChenMX, DownieDL, TreziseDJ, PowellAJ. Use of planar array electrophysiology for the development of robust ion channel cell lines.Comb. Chem. High Throughput Screen.12(1), 96–106 (2009).
  • Dubin AE , NasserN, RohrbacherJet al. Identifying modulators of hERG channel activity using the PatchXpress planar patch clamp. J. Biomol. Screen. 10(2), 168–181 (2005).
  • Ghetti A , GuiaA, XuJ. Automated voltage-clamp technique.Methods Mol. Biol.403, 59–69 (2007).
  • Asmild M , OswaldN, KrzywkowskiKMet al. Upscaling and automation of electrophysiology: toward high throughput screening in ion channel drug discovery. Receptors Channels 9(1), 49–58 (2003).
  • Beck EJ , HutchinsonTL, QinN, FloresCM, LiuY. Development and validation of a secondary screening assay for TRPM8 antagonists using QPatch HT.Assay Drug Dev. Technol.
  • Mathes C , FriisS, FinleyM, LiuY. QPatch: the missing link between HTS and ion channel drug discovery.Comb. Chem. High Throughput Screen.12(1), 78–95 (2009).
  • McPate M , LilleyS, GoslingM, FriisS, JacobsenRB, TranterP. Evaluation of the QPatch HT and HTX systems as methods for ion channel screening.Biophys. J.98(3, Suppl. 1), 340a (2010).
  • Farre C , StoelzleS, HaarmannC, GeorgeM, BruggemannA, FertigN. Automated ion channel screening: patch clamping made easy.Expert Opin. Ther. Targets11(4), 557–565 (2007).
  • Brueggemann A , GeorgeM, KlauMet al. Ion channel drug discovery and research: the automated nano-patch-clamp technology. Curr. Drug Discov. Technol. 1(1), 91–96 (2004).
  • Bruggemann A , GeorgeM, KlauMet al. High quality ion channel analysis on a chip with the NPC technology. Assay Drug Dev. Technol. 1(5), 665–673 (2003).
  • Farre C , HaythornthwaiteA, HaarmannCet al. Port-a-patch and patchliner: high fidelity electrophysiology for secondary screening and safety pharmacology. Comb. Chem. High Throughput Screen. 12(1), 24–37 (2009).
  • Balasubramanian B , ImredyJP, KimD, PennimanJ, LagruttaA, SalataJJ. Optimization of Cav1.2 screening with an automated planar patch clamp platform. J. Pharmacol. Toxicol. Methods59(2), 62–72 (2009).
  • Guo L , GuthrieH. Automated electrophysiology in the preclinical evaluation of drugs for potential QT prolongation.J. Pharmacol. Toxicol. Methods52(1), 123–135 (2005).
  • Korsgaard MP , StrobaekD, ChristophersenP. Automated planar electrode electrophysiology in drug discovery: examples of the use of QPatch in basic characterization and high content screening on Nav, K(Ca)2.3, and Kv11.1 channels. Comb. Chem. High Throughput Screen12(1), 51–63 (2009).
  • Kutchinsky J , FriisS, AsmildMet al. Characterization of potassium channel modulators with QPatch automated patch-clamp technology: system characteristics and performance. Assay Drug Dev. Technol. 1(5), 685–693 (2003).
  • Tao H , Santa AnaD, GuiaAet al. Automated tight seal electrophysiology for assessing the potential hERG liability of pharmaceutical compounds. Assay Drug Dev. Technol.2(5), 497–506 (2004).
  • Mo ZL , FaxelT, YangYS, GallavanR, MessingD, BahinskiA. Effect of compound plate composition on measurement of hERG current IC(50) using PatchXpress.J. Pharmacol. Toxicol. Methods60(1), 39–44 (2009).
  • Ratliff KS , PetrovA, EiermannGJet al. An automated electrophysiology serum shift assay for K(V) channels. Assay Drug Dev. Technol. 6(2), 243–253 (2008).
  • Jones KA , GarbatiN, ZhangH, LargeCH. Automated patch clamping using the QPatch.Methods Mol. Biol.565, 209–223 (2009).
  • Schroder RL , FriisS, SunesenM, MathesC, WillumsenNJ. Automated patch-clamp technique: increased throughput in functional characterization and in pharmacological screening of small-conductance Ca2+ release-activated Ca2+ channels. J. Biomol. Screen.13(7), 638–647 (2008).
  • Dunlop J , RoncaratiR, JowBet al. In vitro screening strategies for nicotinic receptor ligands. Biochem. Pharmacol.74(8), 1172–1181 (2007).
  • Friis S , MathesC, SunesenM, BowlbyMR, DunlopJ. Characterization of compounds on nicotinic acetylcholine receptor α7 channels using higher throughput electrophysiology.J. Neurosci. Methods177(1), 142–148 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.