234
Views
2
CrossRef citations to date
0
Altmetric
Review

Computer Tools in the Discovery of HIV-1 Integrase Inhibitors

&
Pages 1123-1140 | Published online: 12 Jul 2010

Bibliography

  • Anthony NJ . HIV-1 integrase: a target for new AIDS chemotherapeutics.Curr. Top. Med. Chem.4(9), 979–990 (2004).
  • Bushman FD , FujiwaraT, CraigieR. Retroviral DNA integration directed by HIV integration protein in vitro. Science249(4976), 1555–1558 (1990).
  • Asante-Appiah E , SkalkaAM. HIV-1 integrase: structural organization, conformational changes, and catalysis.Adv. Virus. Res.52, 351–369 (1999).
  • Grobler JA , StillmockK, HuBet al. Diketo acid inhibitor mechanism and HIV-1 integrase: implications for metal binding in the active site of phosphotransferase enzymes. Proc. Natl Acad. Sci. USA 99(10), 6661–6666 (2002).
  • LaFemina RL , SchneiderCL, RobbinsHLet al. Requirement of active human immunodeficiency virus type 1 integrase enzyme for productive infection of human T-lymphoid cells. J. Virol. 66(12), 7414–7419 (1992).
  • Egbertson MS . HIV integrase inhibitors: from diketoacids to heterocyclic templates: a history of HIV integrase medicinal chemistry at Merck West Point and Merck Rome (IRBM).Curr. Top. Med. Chem.7(13), 1251–1272 (2007).
  • Pace P , RowleyM. Integrase inhibitors for the treatment of HIV infection.Curr. Opin. Drug Discov. Devel.11(4), 471–479 (2008).
  • Marchand C , MaddaliK, MetifiotM, PommierY. HIV-1 IN inhibitors: 2010 update and perspectives.Curr. Top. Med. Chem.9(11), 1016–1037 (2009).
  • Al-Mawsawi LQ , Al-SafiRI, NeamatiN. Anti-infectives: clinical progress of HIV-1 integrase inhibitors.Expert Opin. Emerg. Drugs13(2), 213–225 (2008).
  • Anker M , CoralesRB. Raltegravir (MK-0518), a novel integrase inhibitor for the treatment of HIV infection.Expert Opin. Investig. Drugs17(1), 97–103 (2008).
  • Summa V , PetrocchiA, BonelliFet al. Discovery of raltegravir, a potent, selective orally bioavailable HIV-integrase inhibitor for the treatment of HIV-AIDS infection. J. Med. Chem. 51(18), 5843–5855 (2008).
  • Sato M , MotomuraT, AramakiHet al. Novel HIV-1 integrase inhibitors derived from quinolone antibiotics. J. Med. Chem. 49(5), 1506–1508 (2006).
  • Shimura K , KodamaE, SakagamiYet al. Broad antiretroviral activity and resistance profile of the novel human immunodeficiency virus integrase inhibitor elvitegravir (JTK-303/GS-9137). J. Virol. 82(2), 764–774 (2008).
  • Johns BA , SvoltoAC. Advances in two-metal chelation inhibitors of HIV integrase.Expert Opin. Ther. Pat18(11), 1225–1237 (2008).
  • Liao C , NicklausMC. Tautomerism and magnesium chelation of HIV-1 integrase inhibitors: a theoretical study.ChemMedChem.5, 1053–1066 (2010).
  • Liao C , MarchandC, BurkeTR Jr et al. Authentic HIV-1 integrase inhibitors. Future Med. Chem.2(7), 1107–1122 (2010).
  • Young DC . Computational Drug Design: A Guide for Computational and Medicinal Chemists. John Wiley & Sons, Inc., NY, USA (2009).
  • Skjevik ÅA, Teigen K, Martinez A. Overview of computational methods employed in early-stage drug discovery. Future Med. Chem.1(1), 49–63 (2009).
  • Tanrikulu Y , SchneiderG. Pseudoreceptor models in drug design: bridging ligand- and receptor-based virtual screening.Nat. Rev. Drug Discov.7(8), 667–677 (2008).
  • Tuccinardi T . Docking-based virtual screening: recent developments.Comb. Chem. High. Throughput Screen.12(3), 303–314 (2009).
  • Clark DE . What has computer-aided molecular design ever done for drug discovery?Expert Opin. Drug Discov.1(2), 103–110 (2006).
  • Schneider G , FechnerU. Computer-based de novo design of drug-like molecules. Nat. Rev. Drug Discov.4(8), 649–663 (2005).
  • Potemkin V , GrishinaM. Principles for 3D/4D QSAR classification of drugs.Drug Discov. Today13(21–22), 952–959 (2008).
  • Debnath AK . Quantitative structure–activity relationship (QSAR) paradigm–Hansch era to new millennium.Mini. Rev. Med. Chem.1(2), 187–195 (2001).
  • Nicklaus MC , NeamatiN, HongHet al. HIV-1 integrase pharmacophore: discovery of inhibitors through three-dimensional database searching. J. Med. Chem. 40(6), 920–929 (1997).
  • Hong H , NeamatiN, WangSet al. Discovery of HIV-1 integrase inhibitors by pharmacophore searching. J. Med. Chem. 40(6), 930–936 (1997).
  • Neamati N , HongH, MazumderAet al. Depsides and depsidones as inhibitors of HIV-1 integrase: discovery of novel inhibitors through 3D database searching. J. Med. Chem. 40(6), 942–951 (1997).
  • Neamati N , HongH, SunderSet al. Potent inhibitors of human immunodeficiency virus type 1 integrase: identification of a novel four-point pharmacophore and tetracyclines as novel inhibitors. Mol. Pharmacol. 52(6), 1041–1055 (1997).
  • Hong H , NeamatiN, WinslowHEet al. Identification of HIV-1 integrase inhibitors based on a four-point pharmacophore. Antivir. Chem. Chemother. 9(6), 461–472 (1998).
  • Mustata GI , BrigoA, BriggsJM. HIV-1 integrase pharmacophore model derived from diverse classes of inhibitors.Bioorg. Med. Chem. Lett.14(6), 1447–1454 (2004).
  • Barreca ML , RaoA, De Luca L et al. Efficient 3D database screening for novel HIV-1 IN inhibitors. J. Chem. Inf. Comput. Sci.44(4), 1450–1455 (2004).
  • Barreca ML , FerroS, RaoAet al. Pharmacophore-based design of HIV-1 integrase strand-transfer inhibitors. J. Med. Chem. 48(22), 7084–7088 (2005).
  • Dayam R , SanchezT, ClementOet al. β-diketo acid pharmacophore hypothesis. 1. Discovery of a novel class of HIV-1 integrase inhibitors. J. Med. Chem. 48(1), 111–120 (2005).
  • Dayam R , SanchezT, NeamatiN. Diketo acid pharmacophore. 2. Discovery of structurally diverse inhibitors of HIV-1 integrase.J. Med. Chem.48(25), 8009–8015 (2005).
  • Deng J , SanchezT, Al-MawsawiLQet al. Discovery of structurally diverse HIV-1 integrase inhibitors based on a chalcone pharmacophore. Bioorg. Med. Chem. 15(14), 4985–5002 (2007).
  • De Luca L , BarrecaML, FerroSet al. A refined pharmacophore model for HIV-1 integrase inhibitors: optimization of potency in the 1H-benzylindole series. Bioorg. Med. Chem. Lett. 18(9), 2891–2895 (2008).
  • Dayam R , Al-MawsawiLQ, ZawahirZet al. Quinolone 3-carboxylic acid pharmacophore: design of second generation HIV-1 integrase inhibitors. J. Med. Chem. 51(5), 1136–1144 (2008).
  • Milne GW , NicklausMC, DriscollJSet al. National Cancer Institute drug information system 3D database. J. Chem. Inf. Comput. Sci. 34(5), 1219–1224 (1994).
  • Kawasuji T , YoshinagaT, SatoAet al. A platform for designing HIV integrase inhibitors. Part 1: 2-hydroxy-3-heteroaryl acrylic acid derivatives as novel HIV integrase inhibitor and modeling of hydrophilic and hydrophobic pharmacophores. Bioorg. Med. Chem. 14(24), 8430–8445 (2006).
  • Kawasuji T , FujiM, YoshinagaTet al. A platform for designing HIV integrase inhibitors. Part 2: a two-metal binding model as a potential mechanism of HIV integrase inhibitors. Bioorg. Med. Chem. 14(24), 8420–8429 (2006).
  • Hazuda DJ , AnthonyNJ, GomezRPet al. A naphthyridine carboxamide provides evidence for discordant resistance between mechanistically identical inhibitors of HIV-1 integrase. Proc. Natl Acad. Sci. 101(31), 11233–11238 (2004).
  • Jorgensen WL , Tirado-RivesJ. Molecular modeling of organic and biomolecular systems using BOSS and MCPRO.J. Comput. Chem.26(16), 1689–1700 (2005).
  • Carlson HA , MasukawaKM, RubinsKet al. Developing a dynamic pharmacophore model for HIV-1 integrase. J. Med. Chem. 43(11), 2100–2114 (2000).
  • Deng J , LeeKW, SanchezTet al. Dynamic receptor-based pharmacophore model development and its application in designing novel HIV-1 integrase inhibitors. J. Med. Chem. 48(5), 1496–1505 (2005).
  • Deng J , SanchezT, NeamatiN, BriggsJM. Dynamic pharmacophore model optimization: identification of novel HIV-1 integrase inhibitors.J. Med. Chem.49(5), 1684–1692 (2006).
  • Lins RD , BriggsJM, StraatsmaTPet al. Molecular dynamics studies on the HIV-1 integrase catalytic domain. Biophys. J. 76(6), 2999–3011 (1999).
  • Kier LB , HallLH. An electrotopological-state index for atoms in molecules.Pharm. Res.7(8), 801–807 (1990).
  • Rogers D , HopfingerAJ. Application of genetic function approximation to quantitative structure–activity relationships and quantitative structure-property relationships.J. Chem. Inf. Comput. Sci.34(4), 854–866 (2002).
  • Ponce YM . Total and local quadratic indices of the molecular pseudograph’s atom adjacency matrix: applications to the prediction of physical properties of organic compounds.Molecules8(9), 687–726 (2003).
  • Consonni V , TodeschiniR, PavanM. Structure/response correlations and similarity/diversity analysis by GETAWAY descriptors. 1. Theory of the novel 3D molecular descriptors.J. Chem. Inf. Comput. Sci.42(3), 682–692 (2002).
  • Specht DF . Probabilistic neural networks.Neural Networks3(1), 109–118 (1990).
  • Cramer RD , PattersonDE, BunceJD. Comparative molecular field analysis (CoMFA). 1. Effect of shape on binding of steroids to carrier proteins.J. Am. Chem. Soc.110(18), 5959–5967 (2002).
  • Klebe G , AbrahamU, MietznerT. Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity.J. Med. Chem.37(24), 4130–4146 (1994).
  • Ferguson AM , HeritageT, JonathonPet al. EVA: a new theoretically based molecular descriptor for use in QSAR/QSPR analysis. J. Comput. Aided Mol. Des. 11(2), 143–152 (1997).
  • Polanski J , WalczakB. The comparative molecular surface analysis (COMSA): a novel tool for molecular design.Comput. Chem.24(5), 615–625 (2000).
  • Goodford PJ . A computational procedure for determining energetically favorable binding sites on biologically important macromolecules.J. Med. Chem.28(7), 849–857 (1985).
  • Baroni M , CostantinoG, CrucianiGet al. Generating optimal linear PLS estimations (GOLPE): an advanced chemometric tool for handling 3D-QSAR problems. Quant. Struct. Act. Relat. 12(1), 9–20 (1993).
  • Datar PA , KhedkarSA, MaldeAK, CoutinhoEC. Comparative residue interaction analysis (CoRIA): a 3D-QSAR approach to explore the binding contributions of active site residues with ligands.J. Comput. Aided Mol. Des.20(6), 343–360 (2006).
  • Duca JS , HopfingerAJ. Estimation of molecular similarity based on 4D-QSAR analysis: formalism and validation.J. Chem. Inf. Comput. Sci.41(5), 1367–1387 (2001).
  • Raghavan K , BuolamwiniJK, FesenMRet al. Three-dimensional quantitative structure–activity relationship (QSAR) of HIV integrase inhibitors: a comparative molecular field analysis (CoMFA) study. J Med. Chem. 38(6), 890–897 (1995).
  • Buolamwini JK , RaghavanK, FesenMRet al. Application of the electrotopological state index to QSAR analysis of flavone derivatives as HIV-1 integrase inhibitors. Pharm. Res. 13(12), 1892–1895 (1996).
  • Makhija MT , KulkarniVM. Eigen value analysis of HIV-1 integrase inhibitors.J. Chem. Inf. Comput. Sci.41(6), 1569–1577 (2001).
  • Buolamwini JK , AssefaH. CoMFA and CoMSIA 3D QSAR and docking studies on conformationally-restrained cinnamoyl HIV-1 integrase inhibitors: exploration of a binding mode at the active site.J. Med. Chem.45(4), 841–852 (2002).
  • Makhija MT , KulkarniVM. QSAR of HIV-1 integrase inhibitors by genetic function approximation method.Bioorg. Med. Chem.10(5), 1483–1497 (2002).
  • Makhija MT , KulkarniVM. Molecular electrostatic potentials as input for the alignment of HIV-1 integrase inhibitors in 3D QSAR.J. Comput. Aided Mol. Des.15(11), 961–978 (2001).
  • Makhija MT , KulkarniVM. 3D-QSAR and molecular modeling of HIV-1 integrase inhibitors.J. Comput. Aided Mol. Des.16(3), 181–200 (2002).
  • Yuan H , ParrillAL. QSAR studies of HIV-1 integrase inhibition.Bioorg. Med. Chem.10(12), 4169–4183 (2002).
  • Costi R , SantoRD, ArticoMet al. 2,6-bis(3,4,5-trihydroxybenzylydene) derivatives of cyclohexanone: novel potent HIV-1 integrase inhibitors that prevent HIV-1 multiplication in cell-based assays. Bioorg. Med. Chem. 12(1), 199–215 (2004).
  • Makhija MT , KasliwalRT, KulkarniVM, NeamatiN. de novo design and synthesis of HIV-1 integrase inhibitors. Bioorg. Med. Chem.12(9), 2317–2333 (2004).
  • Kuo CL , AssefaH, KamathSet al. Application of CoMFA and CoMSIA 3D-QSAR and docking studies in optimization of mercaptobenzenesulfonamides as HIV-1 integrase inhibitors. J. Med. Chem. 47(2), 385–399 (2004).
  • Daeyaert FFD , VinkersHM, JongeMRDet al. Ligand–based computation of HIV-1 integrase inhibition strength within a series of b-ketoamide derivatives. internet electron. J. Mol. Des. 3(9), 528–543 (2004).
  • Marrero-Ponce Y . Linear indices of the “molecular pseudograph’s atom adjacency matrix”: definition, significance-interpretation, and application to QSAR analysis of flavone derivatives as HIV-1 integrase inhibitors.J. Chem. Inf. Comput. Sci.44(6), 2010–2026 (2004).
  • Di Santo R , CostiR, ArticoMet al. Design, synthesis and biological evaluation of heteroaryl diketohexenoic and diketobutanoic acids as HIV-1 integrase inhibitors endowed with antiretroviral activity. Farmaco 60(5), 409–417 (2005).
  • Yuan H , ParrillA. Cluster analysis and three-dimensional QSAR studies of HIV-1 integrase inhibitors.J. Mol. Graph. Model.23(4), 317–328 (2005).
  • Nunthaboot N , TonmunpheanS, ParasukVet al. Three-dimensional quantitative structure: activity relationship studies on diverse structural classes of HIV-1 integrase inhibitors using CoMFA and CoMSIA. Eur. J. Med. Chem. 41(12), 1359–1372 (2006).
  • Niedbala H , PolanskiJ, GieleciakRet al. Comparative molecular surface analysis (CoMSA) for virtual combinatorial library screening of styrylquinoline HIV-1 blocking agents. Comb. Chem. High. Throughput Screen. 9(10), 753–770 (2006).
  • Vilar S , SantanaL, UriarteE. Probabilistic neural network model for the in silico evaluation of anti-HIV activity and mechanism of action. J. Med. Chem.49(3), 1118–1124 (2006).
  • Saiz-Urra L , GonzalezMP, FallY, GomezG. Quantitative structure–activity relationship studies of HIV-1 integrase inhibition. 1. GETAWAY descriptors.Eur. J. Med. Chem.42(1), 64–70 (2007).
  • Leonard JT , RoyK. Exploring molecular shape analysis of styrylquinoline derivatives as HIV-1 integrase inhibitors.Eur. J. Med. Chem.43(1), 81–92 (2008).
  • Iyer M , HopfingerAJ. Treating chemical diversity in QSAR analysis: modeling diverse HIV-1 integrase inhibitors using 4D fingerprints.J. Chem. Inf. Model.47(5), 1945–1960 (2007).
  • Dhaked DK , VermaJ, SaranA, CoutinhoEC. Exploring the binding of HIV-1 integrase inhibitors by comparative residue interaction analysis (CoRIA).J. Mol. Model.15(3), 233–245 (2009).
  • Dessalew N . Investigation of the structural requirement for inhibiting HIV integrase: QSAR study.Acta. Pharm.59(1), 31–43 (2009).
  • de Melo EB , FerreiraMM. Multivariate QSAR study of 4,5-dihydroxypyrimidine carboxamides as HIV-1 integrase inhibitors.Eur. J. Med. Chem.44(9), 3577–3583 (2009).
  • Nikitin S , ZaitsevaN, DeminaOet al. A very large diversity space of synthetically accessible compounds for use with drug design programs. J. Comput. Aided Mol. Des. 19(1), 47–63 (2005).
  • Pommier Y , JohnsonAA, MarchandC. Integrase inhibitors to treat HIV/AIDS.Nat. Rev. Drug Discov.4(3), 236–248 (2005).
  • Heuer TS , BrownPO. Photo-cross-linking studies suggest a model for the architecture of an active human immunodeficiency virus type 1 integrase–DNA complex.Biochemistry37(19), 6667–6678 (1998).
  • Dyda F , HickmanAB, JenkinsTMet al. Crystal structure of the catalytic domain of HIV-1 integrase: similarity to other polynucleotidyl transferases. Science 266(5193), 1981–1986 (1994).
  • Lodi PJ , ErnstJA, KuszewskiJ, HickmanABet al. Solution structure of the DNA binding domain of HIV-1 integrase. Biochemistry 34(31), 9826–9833 (1995).
  • Bujacz G , JaskolskiM, AlexandratosJet al. High-resolution structure of the catalytic domain of avian sarcoma virus integrase. J. Mol. Biol. 253(2), 333–346 (1995).
  • Chen JC , KrucinskiJ, MierckeLJet al. Crystal structure of the HIV-1 integrase catalytic core and C-terminal domains: a model for viral DNA binding. Proc. Natl Acad. Sci. USA 97(15), 8233–8238 (2000).
  • Gao K , ButlerSL, BushmanF. Human immunodeficiency virus type 1 integrase: arrangement of protein domains in active cDNA complexes.EMBO J.20(13), 3565–3576 (2001).
  • Wang JY , LingH, YangW, CraigieR. Structure of a two-domain fragment of HIV-1 integrase: implications for domain organization in the intact protein.EMBO J.20(24), 7333–7343 (2001).
  • Podtelezhnikov AA , GaoK, BushmanFD, McCammonJA. Modeling HIV-1 integrase complexes based on their hydrodynamic properties.Biopolymers68(1), 110–120 (2003).
  • Cai M , ZhengR, CaffreyMet al. Solution structure of the N-terminal zinc binding domain of HIV-1 integrase. Nat. Struct. Biol. 4(7), 567–577 (1997).
  • Goldgur Y , DydaF, HickmanABet al. Three new structures of the core domain of HIV-1 integrase: an active site that binds magnesium. Proc. Natl Acad. Sci. USA 95(16), 9150–9154 (1998).
  • De Luca L , PedrettiA, VistoliGet al. Analysis of the full-length integrase–DNA complex by a modified approach for DNA docking. Biochem. Biophys. Res. Commun. 310(4), 1083–1088 (2003).
  • De Luca L , VistoliG, PedrettiAet al. Molecular dynamics studies of the full-length integrase–DNA complex. Biochem. Biophys. Res. Commun. 336(4), 1010–1016 (2005).
  • Goldgur Y , CraigieR, CohenGHet al. Structure of the HIV-1 integrase catalytic domain complexed with an inhibitor: a platform for antiviral drug design. Proc. Natl Acad. Sci. USA 96(23), 13040–13043 (1999).
  • Karki RG , TangY, BurkeTR Jr, Nicklaus MC. Model of full-length HIV-1 integrase complexed with viral DNA as template for anti-HIV drug design. J. Comput. Aided Mol. Des.18(12), 739–760 (2004).
  • Bujacz G , AlexandratosJ, WlodawerAet al. Binding of different divalent cations to the active site of avian sarcoma virus integrase and their effects on enzymatic activity. J. Biol. Chem. 272(29), 18161–18168 (1997).
  • Wielens J , CrosbyIT, ChalmersDK. A three-dimensional model of the human immunodeficiency virus type 1 integration complex.J. Comput. Aided Mol. Des.19(5), 301–317 (2005).
  • Maignan S , GuilloteauJP, Zhou-LiuQet al. Crystal structures of the catalytic domain of HIV-1 integrase free and complexed with its metal cofactor: high level of similarity of the active site with other viral integrases. J. Mol. Biol. 282(2), 359–368 (1998).
  • Davies DR , GoryshinIY, ReznikoffWS, RaymentI. Three-dimensional structure of the Tn5 synaptic complex transposition intermediate.Science289(5476), 77–85 (2000).
  • Wang LD , LiuCL, ChenWZ, WangCX. Constructing HIV-1 integrase tetramer and exploring influences of metal ions on forming integrase–DNA complex.Biochem. Biophys. Res. Commun.337(1), 313–319 (2005).
  • Chen A , WeberIT, HarrisonRW, LeisJ. Identification of amino acids in HIV-1 and avian sarcoma virus integrase subsites required for specific recognition of the long terminal repeat Ends.J. Biol. Chem.281(7), 4173–4182 (2006).
  • Savarino A . In silico docking of HIV-1 integrase inhibitors reveals a novel drug type acting on an enzyme/DNA reaction intermediate. Retrovirology4, 21 (2007).
  • Chen X , TsiangM, YuFet al. Modeling, analysis, and validation of a novel HIV integrase structure provide insights into the binding modes of potent integrase inhibitors. J. Mol. Biol. 380(3), 504–519 (2008).
  • Ferro S , De LucaL, BarrecaMLet al. Docking studies on a new human immunodeficiency virus integrase–Mg–DNA complex: phenyl ring exploration and synthesis of 1H-benzylindole derivatives through fluorine substitutions. J. Med. Chem.52(2), 569–573 (2009).
  • Barreca ML , IraciN, De Luca L, Chimirri A. Induced-fit docking approach provides insight into the binding mode and mechanism of action of HIV-1 integrase inhibitors. ChemMedChem.4(9), 1446–1456 (2009).
  • Aishima J , GittiRK, NoahJEet al. A Hoogsteen base pair embedded in undistorted B-DNA. Nucleic Acids Res. 30(23), 5244–5252 (2002).
  • Liao C , NicklausMC. HIV-1 integrase–DNA models. In: HIV-1 Integrase: Mechanism and Inhibitor Design. John Wiley & Sons, Inc. (2010) (In Press).
  • Ren G , GaoK, BushmanFD, YeagerM. Single-particle image reconstruction of a tetramer of HIV integrase bound to DNA.J. Mol. Biol.366(1), 286–294 (2007).
  • Liao C , KarkiRG, MarchandC, PommierY, NicklausMC. Virtual screening application of a model of full-length HIV-1 integrase complexed with viral DNA.Bioorg. Med. Chem. Lett.17(19), 5361–5365 (2007).
  • Di Santo R , CostiR, RouxAet al. Novel bifunctional quinolonyl diketo acid derivatives as HIV-1 integrase inhibitors: design, synthesis, biological activities, and mechanism of action. J. Med. Chem. 49(6), 1939–1945 (2006).
  • Barreca ML , IraciN, De Luca L, Chimirri A. Induced-fit docking approach provides insight into the binding mode and mechanism of action of HIV-1 integrase inhibitors. ChemMedChem.4(9), 1446–1456 (2009).
  • Hazuda DJ , FelockP, WitmerMet al. Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells. Science 287(5453), 646–650 (2000).
  • Frisch MJ , TrucksGW, SchlegelHBet al. Gaussian 03, Revision E.01. Gaussian, Inc. Wallingford, CT, USA (2004).
  • Steiniger-White M , RaymentI, ReznikoffWS. Structure/function insights into Tn5 transposition.Curr. Opin. Struct. Biol.14(1), 50–57 (2004).
  • Flexner C . HIV drug development: the next 25 years.Nat. Rev. Drug Discov.6(12), 959–966 (2007).
  • Hare S , GuptaSS, ValkovE, EngelmanA, CherepanovP. Retroviral intasome assembly and inhibition of DNA strand transfer.Nature464(7286), 232–236 (2010).
  • Sitzmann M , FilippovIV, NicklausMC. Internet resources integrating many small-molecule databases.SAR QSAR Environ. Res.19(1–2), 1–9 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.