103
Views
1
CrossRef citations to date
0
Altmetric
Review

Hiv Microbicides: State-Of-The-Art and New Perspectives on the Development of Entry Inhibitors

, , &
Pages 1141-1159 | Published online: 12 Jul 2010

Bibliography

  • Buchbinder SP , MehrotraDV, DuerrAet al. Efficacy assessment of a cell-mediated immunity HIV-1 vaccine (the step study): a double-blind, randomised, placebo-controlled, test-of-concept trial. Lancet 372(9653), 1881–1893 (2008).
  • Rerks-Ngarm S , PitisuttithumP, NitayaphanSet al. Vaccination with ALVAC and AIDSVAX to prevent HIV-1 infection in Thailand. New Engl. J. Med. 361(23), 2209–2220 (2009).
  • Balzarini J , Van Damme L. Microbicide drug candidates to prevent HIV infection. Lancet369(9563), 787–797 (2007).
  • Cutler B , JustmanJ. Vaginal microbicides and the prevention of HIV transmission.Lancet Infect. Dis.8(11), 685–697 (2008).
  • Klasse PJ , ShattockR, MooreJP. Antiretroviral drug-based microbicides to prevent HIV-1 sexual transmission.Annu. Rev. Med.59, 455–471 (2008).
  • Grant RM , HamerD, HopeTet al. Whither or wither microbicides? Science 321(5888), 532–534 (2008).
  • Buckeit RW Jr, Watson KM, Morrow KM, Ham AS. Development of topical microbicides to prevent the sexual transmission of HIV. Antiviral Res.85(1), 142–158 (2010).
  • Klasse PJ , ShattockRJ, MooreJP. Which topical microbicides for blocking HIV-1 transmission will work in the real world?PLoS Med.3(9), e351 (2006).
  • van de Wijgert JH , ShattockRJ. Vaginal microbicides: moving ahead after an unexpected setback.AIDS21(18), 2369–2376 (2007).
  • McGowan I . Microbicides for HIV prevention: reality or hope?Curr. Opin. Infect. Dis.23(1), 26–31 (2010).
  • Geijtenbeek TBH , KwonDS, TorensmaRet al. DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100(5), 587–597 (2000).
  • Shan M , KlassePJ, BanerjeeKet al. HIV-1 gp120 mannose induce immunosupresive responses from dendritic cells. PLoS Pathogens 3(11), e169 (2007).
  • van Kooyk Y . C-type lectins on dendritic cells: key modulators for the induction of immune responses.Biochem. Soc. Trans.36(6), 1478–1481 (2008).
  • den Dunnen J , GringhuisSI, GeijtenbeekTBH. Innate signaling by the C-type lectin DC-SIGN dictates immune responses.Cancer Immunol. Immunother.58(7), 1149–1157 (2009).
  • Geijtenbeek TBH , den Dunnen J, Gringhuis SI. Pathogen recognition by DC-SIGN shapes adaptive immunity. Future Microbiol.4(7), 879–890 (2009).
  • Gringhuis SI , den Dunnen J, Litjens M, van der Vlist M, Geijtenbeek TBH. Carbohydrate-specific signaling through the DC-SIGN signalosome tailors immunity to Mycobacterium tuberculosis, HIV-1 and Helicobacter pylori. Nat. Immunol.10(10), 1081–1089 (2010).
  • den Dunnen J , GringhuisSI, GeijtenbeekTBH. Dusting the sugar fingerprint: C-type lectin signaling in adaptive immunity.Immunol. Lett.128(1), 12–16 (2010).
  • Ugoli S , MondorI, SattentauQJ. HIV-1 attachment: another look.Trends Microbiol.7(4), 144–149 (1999).
  • Pöhlmann S , DomsRW. Evaluation of current approaches to inhibit HIV entry.Curr. Drug Targ. Infect. Disor.2(1), 9–16 (2002).
  • McKnight A , WeissRA. Blocking the docking of HIV-1.Proc. Natl Acad. Sci. USA100(19), 10581–10582 (2003).
  • Esté JA , TelentiA. HIV entry inhibitors.Lancet370(9581), 81–88 (2007).
  • Qian K , Morris-NatschkeSL, Lee K-H. HIV entry inhibitors and their potential in HIV therapy. Med. Res. Rev.29(2), 369–393 (2009).
  • Kuritzkes DR . HIV-1 entry inhibitors: an overview.Curr. Opin. HIV AIDS4(2), 82–87 (2009).
  • Chisembele M , CrookA, GafosMet al. PRO2000 is ineffective in preventing HIV infection: results of the MDP301 Phase III Microbicide trial (Abstract 87LB). Presented at: CROI. San Francisco, CA, USA, 16–19 February 2010.
  • Moore JP , SattentauQJ, KlassePJ, BurklyLC. A monoclonal antibody to CD4 domain 2 blocks soluble CD4-induced conformational changes in the envelope glycoproteins of human immunodeficiency virus type 1 (HIV-1) and HIV-1 infection of CD4+ cells. J. Virol.66(8), 4784–4793 (1992).
  • Kuritzkes DR , JacobsonJ, PowderlyWGet al. Antiretroviral activity of the anti-CD4 monoclonal antibody TNX-355 in patients infected with HIV type 1. J. Infect. Dis. 189(2), 286–291 (2004).
  • Ji C , KopetzkiE, JekleAet al. CD4- anchoring HIV-1 fusion inhibitor with enhanced potency and in vivo stability. J. Biol. Chem. 284(8), 5175–5185 (2009).
  • Ford SL , ReddyYS, AndersonMTet al. Single-dose safety and pharmacokinetics of brecanavir, a novel human immunodeficiency virus protease inhibitor. Antimicrob. Agents Chemother. 50(6), 2201–2206 (2006).
  • Donzella GA , ScholsD, LinSWet al. AMD3100, a small molecule inhibitor of HIV-1 entry via the CXCR4 co-receptor. Nat. Med. 4(1), 72–77 (1998).
  • Ichiyama K , Yokoyama-KumakuraS, TanakaYet al. A duodenally absorbable CXC chemokine receptor 4 antagonist, KRH-1636, exhibits a potent and selective anti-HIV-1 activity Proc. Natl Acad. Sci. USA 100(7), 4185–4190 (2003).
  • De Clercq E . Antiviral drug discovery: ten more compounds, and ten more stories (Part B).Med. Res. Rev.29(4), 571–610 (2009).
  • Khan A , NicholsonG, GreenmanJet al. Binding optimization through coordination chemistry: CXCR4 chemokine receptor antagonists from ultrarigid metal complexes. J. Am. Chem. Soc. 131(10), 3416–3417 (2009).
  • Skerlj RT , BridgerGJ, KallerAet al. Discovery of novel small molecule orally bioavailable C-X-C chemokine receptor 4 antagonists that are potent inhibitors of T-tropic (X4) HIV-1 replication. J. Med. Chem. 53(8), 3376–3388 (2010).
  • Gudmundsson KS , SebaharPR, RichardsonLDet al. Amine substituted N-(1H-benzimidazol-2ylmethyl)-5,6,7,8-tetrahydro-8-quinolinamines as CXCR4 antagonists with potent activity against HIV-1. Bioorg. Med. Chem. Lett. 19(17), 5048–5052 (2009).
  • Maeda K , NakataH, OgataHet al. The current status of, and challenges in, the development of CCR5 inhibitors as therapeutics for HIV-1 infection. Curr. Opin. Pharmacol. 4(5), 447–452 (2004).
  • Wang T , DuanY. HIV co-receptor CCR5: structure and interactions with inhibitors.Infect. Disord. Drug Targets9(3), 279–288 (2009).
  • Pulley SR . CCR5 antagonists: from discovery to clinical efficacy. In: Chemokine Biology - Basic Research and Clinical Application (Volume. 2). Kuldeep N, Gordon LL, Bernhard M (Eds.). Birkhauser Basel, Switzerland, 145–163 (2007).
  • Baba M , NishimuraO, KanzakiNet al. A small-molecule, nonpeptide CCR5 antagonist with highly potent and selective anti-HIV-1 activity. Proc. Natl Acad. Sci. USA 96(10), 5698–5703 (1999).
  • Dragic T , TrkolaA, ThompsonDAet al. A binding pocket for a small molecule inhibitor of HIV-1 entry within the transmembrane helices of CCR5. Proc. Natl Acad. Sci. USA 97(10), 5639–5644 (2000).
  • Veazey RS , KlassePJ, SchaderSMet al. Protection of macaques from vaginal SHIV challenge by vaginally delivered inhibitors of virus-cell fusion. Nature 438(3), 99–102 (2005).
  • Schröder C , PiersonRN, Nguyen B-NH et al. CCR5 blockade modulates inflammation and alloimmunity in primates. J. Immunol.179(4), 2289–2299 (2007).
  • Wood A , ArmourD. The discovery of the CCR5 receptor antagonist, UK-427,857, a new agent for the treatment of HIV infection and AIDS.Prog. Med. Chem.43, 239–271 (2005).
  • Sayana S , KhanlouH. Maraviroc: a new CCR5 antagonist.Expert Rev. Anti Infect. Ther.7(1), 9–19 (2009).
  • Taga JR , SteensmaRW, McCombieSWet al. Piperazine-based CCR5 antagonists as HIV-1 inhibitors. II. Discovery of 1-[(2,4-dimethyl-3-pyridinyl)carbonyl]-4- methyl-4-[3(S)-methyl-4-[1(S)-[4-(trifluoro-methyl)phenyl]ethyl]-1-piperazinyl]- piperidine N1-oxide (Sch-350634), an orally bioavailable, potent CCR5 antagonist. J. Med. Chem. 44(21), 3343–3346 (2001).
  • Strizki JM . Tremblay C, Xu S et al. Discovery and characterization of vicriviroc (SCH 417690), a CCR5 antagonist with potent activity against human immunodeficiency virus type 1. Antimicrob. Agents Chemother.49(12), 4911–4919 (2005).
  • Maeda K , NakataH, KohYet al. Spirodiketopiperazine-based CCR5 inhibitor which preserves CC-chemokine/CCR5 interactions and exerts potent activity against R5 human immunodeficiency virus type 1 in vitro. J. Virol. 78(16), 8654–8662 (2004).
  • Latinovic O , HerediaA, GalloRC, ReitzM, LeN, RedfieldRR. Rapamycin enhances aplaviroc anti-HIV activity: implications for the clinical development of novel CCR5 antagonists.Antiviral Res.83(1), 86–89 (2009).
  • Nishizawa R , NishiyamaT, HisaichiKet al. Spirodiketopiperazine-based CCR5 antagonists: improvement of their pharmacokinetic profiles. Bioorg. Med. Chem. Lett. 20(2), 763–766 (2010).
  • Barber CG , BlakemoreDC, Chiva J-Y, Eastwood RL, Middleton DS, Paradowski KA. 1-amido-1-phenyl-3-piperidinylbutanes – CCR5 antagonists for the treatment of HIV: Part 1. Bioorg. Med. Chem. Lett.19(4), 1075–1079 (2009).
  • Barber CG , BlakemoreDC, Chiva J-Y, Eastwood RL, Middleton DS, Paradowski KA. 1-amido-1-phenyl-3-piperidinylbutanes - CCR5 antagonists for the treatment of HIV: Part 2. Bioorg. Med. Chem. Lett.19(5), 1499–1503 (2009).
  • Pryde DC , CorlessM, FenwickDRet al. The design and discovery of novel amide CCR5 antagonists. Bioorg. Med. Chem. Lett. 19(4), 1084–1088 (2009).
  • Duan M , AquinoC, FerrisRet al. [2-(4-phenyl-4-piperidinyl)ethyl]amine based CCR5 antagonists: derivatizations at the N-terminal of the piperidine ring. Bioorg. Med. Chem. Lett. 19(6), 1610–1613 (2009).
  • Duan M , AquinoC, DorseyGF, FerrisR, KazmierskiWM. 4,4-disubstituted cyclohexylamine based CCR5 chemokine receptor antagonists as anti-HIV-1 agents.Bioorg. Med. Chem. Lett.19(17), 4988–4992 (2009).
  • Rotstein DM , GabrielSD, MakraFet al. Spiropiperidine CCR5 antagonists. Bioorg. Med. Chem. Lett. 19(18), 5401–5406 (2009).
  • Lemoine RC , PetersenAC, SettiLet al. Evaluation of secondary amide replacements in a series of CCR5 antagonists as a means to increase intrinsic membrane permeability. Part 1: optimization of gem-disubstituted azacycles. Bioorg. Med. Chem. Lett. 20(2), 704–708 (2010).
  • Maeda K , DasD, Ogata-AokiHet al. Structural and molecular interactions of CCR5 inhibitors with CCR5. J. Biol. Chem. 281(18), 12688–12698 (2006).
  • Kondru R , ZhangJ, JiCet al. Molecular interactions of CCR5 with major classes of small-molecule anti-HIV CCR5 antagonists. Mol. Pharmacol. 73(3), 789–800 (2008).
  • Wang T , DuanY. Binding modes of CCR5-targeting HIV entry inhibitors: partial and full antagonists.J. Mol. Graph. Model.26(8), 287–295 (2008).
  • Hartley O , GaertnerH, WilkenJet al. Medicinal chemistry applied to a synthetic protein: development of highly potent HIV entry inhibitors. Proc. Natl Acad. Sci. USA 101(47), 16460–16465 (2004).
  • Trkola A , KetasTJ, NagashimaKAet al. Potent, broad-spectrum inhibition of human immunodeficiency virus type 1 by the CCR5 monoclonal antibody PRO 140. J. Virol. 75(2), 579–588 (2001).
  • Murga JD , FrantiM, PevearDCet al. Potent antiviral synergy between monoclonal antibody and small-molecule CCR5 inhibitors of human immunodeficiency virus type 1. Antimicrob. Agents Chemother. 50(10), 3289–3296 (2006).
  • Ji C , ZhangJ, DioszegiMet al. CCR5 Small-molecule antagonists and monoclonal antibodies exert potent synergistic antiviral effects by cobinding to the receptor. Mol. Pharmacol. 72(1), 18–28 (2007).
  • Geijtenbeek TBH , TorensmaR, Van Vliet SJ et al. Identification of DC-SIGN, a novel dendritic cell-specific ICAM-3 receptor that supports primary immune responses. Cell100(5), 575–585 (2000).
  • Feinberg H , MitchellDA, DrickamerK, WeisW. Structural basis for selective recognition of oligosaccharides by DC-SIGN and DC-SIGNR.Science294(5549), 2163–2166 (2001).
  • Mitchell DA , FaddenAJ, DrickamerK. A novel mechanism of carbohydrate recognition by the C-type Lectins DC-SIGN and DC-SIGNR.J. Biol. Chem.276(31), 28939–28945 (2001).
  • van Kooyk Y , GeijtenbeekTBH. DC-SIGN: escape mechanism for pathogens.Nat. Rev. Immunol.3(9), 697–709 (2003).
  • Reina JJ , SattinS, InvernizziDet al. 1,2-mannobioside mimic: synthesis, DC-SIGN interaction by NMR and docking, and antiviral activity. ChemMedChem 2(7), 1030–1036 (2007).
  • Borrok MJ , KiesslingLL. Non-carbohydrate inhibitors of the lectin DC-SIGN.J. Am. Chem. Soc.129(42), 12780–12785 (2007).
  • Mitchell DA , JonesNA, HunterSJet al. Synthesis of 2-C-branched derivatives of D-mannose: 2-C-aminomethyl-D-mannose binds to the human C-type lectin DC-SIGN with affinity greater than an order of magnitude compared with that of D-mannose. Tetrahedron: Asymmetry 18(12), 1502–1510 (2007).
  • Timpano G , TabaraniG, AnderluhMet al. Synthesis of novel DC-SIGN ligands with an α-fucosylamide anchor. ChemBioChem 9(12), 1921–1930 (2008).
  • Ernst B , MagnaniJL. From carbohydrate leads to glycomimetic drugs.Nat. Rev. Drug Discovery8(8), 661–677 (2009).
  • Turville SG , SantosJJ, FrankIet al. Immunodeficiency virus uptake, turnover, and 2-phase transfer in human dendritic cells. Blood 103(6), 2170–2179 (2004).
  • de Witte L , NabatovA, GeijtenbeekTBH. Distinct roles for DC-SIGN+-dendritic cells and langerhans cells in HIV-1 transmission. Trends Mol. Med.14(1), 12–19 (2008).
  • Kwon DS , GregorioG, BittonNet al. DC-SIGN-mediated internalization of HIV is required for trans-enhancement of T cell infection. Immunity 16(1), 135–144 (2002).
  • Burleigh L , Lozach P-Y, Schiffer C et al. Infection of dendritic cells (DCs), not DC-SIGN-mediated internalization of human immunodeficiency virus, is required for long-term transfer of virus to T cells. J. Virol.80(6), 2949–2957 (2006).
  • Boggiano C , ManelN, LittmanDR. Dendritic cell-mediated trans-enhancement of human immunodeficiency virus type 1 infectivity is independent of DC-SIGN. J. Virol.81(5), 2519–2523 (2007).
  • Moris A , NobileC, BuseyneF, PorrotF, AbastadoJP, SchwartzO. DC-SIGN promotes exogenous MHC-I-restricted HIV-1 antigen presentation.Blood103(7), 2648–2654 (2004).
  • Moris A , PajotA, BlanchetF, Guivel-BenhassineF, SalcedoM, SchwartzO. Dendritic cells and HIV-specific CD4+ T cells: HIV antigen presentation, T-cell activation, and viral transfer. Blood108(5), 1643–1651(2006).
  • Hodges A , SharrocksK, EdelmannMet al. Activation of the lectin DC-SIGN induces an immature dendritic cell phenotype triggering Rho-GTPase activity required for HIV-1 replication. Nat. Immunol. 8(6), 569–577 (2007).
  • Steffen I , TsegayeTS, PoehlmannS. Lectin-like interactions in virus-cell recognition: human immunodeficiency virus and C-type lectin interactions. In: Microbial Glycobiology, Structures, Relevance and Applications. Moran A, Holst O, Brennan P, von Itzstein M (Eds). Elsevier, NY, USA, 567–584 (2009).
  • Tabarani G , ReinaJJ, EbelCet al. Mannose hyperbranched dendritic polymers interact with clustered organization of DC-SIGN and inhibit gp120 binding. FEBS Lett. 580(10), 2402–2408 (2006).
  • Rojo J , DelgadoR. Glycodendritic structures: promising new antiviral drugs.J. Antimicrob. Chemother.54(3), 579–581 (2004).
  • Lasala F , ArceE, OteroJRet al. Mannosyl glycodendritic structure inhibits DC-SIGN-mediated Ebola virus infection in cis and in trans. Antimicrob. Agents Chemother. 47(12), 3970–3972 (2003).
  • Wang S -K, Liang P-H, Astronomo RD et al. Targeting the carbohydrates on HIV-1: interaction of oligomannose dendrons with human monoclonal antibody 2G12 and DC-SIGN. Proc. Natl Acad. Sci. USA105(10), 3690–3695 (2008).
  • Martinez-Avila O , BedoyaLM, MarradiMet al. Multivalent manno-glyconanoparticles inhibit DC-SIGN-mediated HIV-1 trans-infection of human T cells. ChemBioChem 10(11), 1806–1809 (2009).
  • Sattin S , DaghettiA, ThépautMet al. Inhibition of DC-SIGN-mediated HIV infection by a linear trimannoside mimic in a tetravalent presentation. ACS Chem. Biol. 5(3), 301–312 (2010).
  • O‘Loughlin J , MillwoodIY, McDonaldHM, PriceCF, KaldorJM, PaullJR. Safety, tolerability, and pharmacokinetics of SPL7013 gel (VivaGel): a dose ranging, Phase I study.Sex. Transm. Dis.37(2), 100–104 (2010).
  • Fletcher PS , WallaceGS, MesquitaPMM, ShattockRJ. Candidate polyanion microbicides inhibit HIV-1 infection and dissemination pathways in human cervical explants.Retrovirology3, 46 (2006).
  • Van Damme L , GovindenR, MirembeFMet al. Lack of effectiveness of cellulose 21 sulfate gel for the prevention of vaginal HIV transmission. N. Engl. J. Med. 359(5), 463–472 (2008).
  • Skoler-Karpoff S , RamjeeG, AhmedKet al. Efficacy of Carraguard for prevention of HIV infection in women in South Africa: a randomized, double-blind, placebo-controlled trial. Lancet 372(9654), 1977–1987 (2008).
  • Sonza S , JohnsonA, TyssenDet al. Enhancement of human immunodeficiency virus type 1 replication is not intrinsic to all polyanion-based microbicides. Antimicrob. Agents Chemother. 53(8), 3565–3568 (2009).
  • Daar ES , LiXL, MoudgilT, HoDD. High concentrations of recombinant soluble CD4 are required to neutralized primary immunodeficiency virus type 1 isolates.Proc. Natl Acad. Sci. USA87(17), 6574–6578 (1990).
  • Haim H , SiZ, MadaniNet al. Soluble CD4 and CD4-mimetic compounds inhibit HIV-1 infection by induction of a short-lived activated state. PLOS Pathogen 5(4), e1000360 (2009).
  • Fouts T , GodfreyK, BobbKet al. Crosslinked HIV-1 envelope-CD4 receptor complexes elicit broadly cross-reactive neutralizing antibodies in rhesus macaques. Proc. Natl Acad. Sci. USA 99(18), 11842–11847 (2002).
  • Martin L , StricherF, MisséDet al. Rational design of a CD4 mimic that inhibits HIV-1 entry and exposes cryptic neutralization epitopes. Nat. Biotech. 21(1), 71–76 (2003).
  • Baleux F , Loureiro-MoraisL, HersantYet al. A synthetic CD4-heparan sulfate glycoconjugate inhibits CCR5 and CXCR4 HIV-1 attachment and entry. Nat. Chem. Biol. 5(10), 743–748 (2009).
  • Pantophlet R , BurtonDR. Gp120: target for neutralizing HIV-1 antibodies.Annu. Rev. Immunol.24, 739–769 (2006).
  • Phogat S , WyattRT, HedestamGBK. Inhibition of HIV-1 entry by antibodies: potential viral and cellular targets.J. Intern. Med.262(1), 26–43 (2007).
  • Buton DR , PyatiJ, KoduriRet al. Efficient neutralization of primary isolates HIV-1 by a recombinant human monoclonal antibody. Science 266(5187), 1024–1027 (1994).
  • Trkola A , PurtscherM, MusterTet al. Human monoclonal antibody 2G12 defines a distinctive neutralization epitope on the gp120 glycoprotein of human immunodeficiency virus type 1. J. Virol. 70(2), 1100–1108 (1996).
  • Muster T , SteindlF, PurtscherMet al. A conserved neutralizing epitope on gp41 of human immunodeficiency virus type 1. J. Virol. 67(11), 6642–6647 (1993).
  • Kwong PD , WilsonIA. HIV-1 and influenza antibodies: seeing antigens in new ways.Nat. Immunol.10(6), 573–578 (2009).
  • Huber M , OlsonWC, TrkolaA. Antibodies for HIV treatment and prevention: window of opportunity? In: Human Antibody Therapeutics for Viral Disease. Current Topics 39 in Microbiology and Immunology (volume 317). Dessain SK (Ed.) Springer-Verlag, Berlin, Heidelberg, 39–66 (2008).
  • Balzarini J . Inhibition of HIV entry by carbohydrate-binding proteins.Antiviral Res.71(2–3), 237–247 (2006).
  • Balzarini J . Targeting the glycans of glycoproteins: a novel paradigm for antiviral therapy.Nat. Rev. Microbiol.5(8), 583–597 (2007).
  • Boyd MR , GustafsonKR, McMahonJBet al. Discovery of cyanovirin-N, a novel human immunodeficiency virus-inactivating protein that binds viral surface envelop glycoprotein gp120: potential applications to microbicide development. Antimicrob. Agents Chemother. 41(7), 1521–1530 (1997).
  • Mori T , O‘KeefeBR, SowderII RC et al. Isolation and characterization of griffithsin, a novel HIV-inactivating protein, from the red alga Griffithsia sp. J. Biol. Chem.280(10), 9345–9353 (2005).
  • Tsai CC , EmauP, JiangYet al. Cyanovirin-N inhibits AIDS virus infection in vaginal transmission models. AIDS Res. Hum. Retroviruses 20(1), 11–18 (2004).
  • Tsai CC , EmauP, JiangYet al. Cyanovirin-N inhibits AIDS virus infection in vaginal transmission models. AIDS Res. Hum. Retroviruses 19(7), 535–541 (2003).
  • Buffa V , StiehD, MamhoodN, HuQ, FletcherP, ShattockRJ. Cyanovirin-N potently inhibits human immunodeficiency virus type 1 infection in cellular and cervical explants models.J. Gen. Virol.90(1), 234–243 (2009).
  • Hunskens D , VermeireK, VandemeulebrouckeE, BalzariniJ, ScholsD. Safety concerns for the potential use of cyanovirin-N as a microbicidal anti-HIV agent.Int. J. Biochem. Cell Biol.40(12), 2802–2814 (2008).
  • O‘Keefe BR , VojdaniF, BuffaVet al. Scaleable manufacture of HIV-1 entry inhibitor griffithsin and validation of its safety and efficacy as a topical microbicide component. Proc. Natl Acad. Sci. USA 106(15), 6099–6104 (2009).
  • Jay JI , LaiBE, MyszkaDGet al. Multivalent benzoboroxole functionalized polymers as gp120 glycan targeted microbicide entry inhibitors. Mol. Pharmaceutics 7(1), 116–129 (2010).
  • Balzarini J , Van LaethemK, DaelemansDet al. Pramicidin A, a carbohydrate-binding nonpeptidic lead compound for treatment of infections with viruses with highly glycosylated envelopes, such as human immunodeficiency virus. J. Virol.81(1), 362–373 (2007).
  • Balzarini J , Van LaethemK, FrançoisKet al. Pradimicin S, a highly-soluble non-peptidic small-size carbohydrate-binding antibiotic, is an anti-HIV drug lead for both microbicidal and systemic use. Antimicrob. Agents Chemother.54(4), 1425–1435 (2010).
  • Wang T , ZhangZ, WallaceOBet al. Discovery of 4-benzoyl-1-[(4-methoxy-1H-pyrrolo[2,3-c]-pyridin-3-yl)oxoacetyl]-2-(R)-methylpiperazine (BMS-378806): a novel HIV-1 attachment inhibitor that interferes with CD4-gp120 interactions. J. Med. Chem. 46(20), 4236–4239 (2003).
  • Lin PF , BlairW, WangTet al. A small molecule HIV-1 inhibitor that targets the HIV-1 envelope and inhibits CD4 receptor binding. Proc. Natl Acad. Sci. USA 100(19), 11013–11018 (2003).
  • Wang T , YinZ, ZhangZet al. Inhibitors of human immunodeficiency virus type 1 (HIV-1) attachment. 5. An evolution from indole to azaindoles leading to the discovery of 1-(4-benzoylpiperazin-1-yl)-2-(4,7-dimethoxy-1H-pyrrolo[2,3-c]-pyridin-3-yl)ethane-1,2-dione (BMS-488043), a drug candidate that demonstrate antiviral activity in HIV-1-infected subjects. J. Med. Chem. 52(23), 7778–7787 (2009).
  • Qadir MI , MalikSA. HIV fusion inhibitors.Rev. Med. Virol.20(1), 23–33 (2010).
  • Moore JP , DomsRW. The entry of entry inhibitors: a fusion science and medicine.Proc. Natl Acad. Sci. USA100(19), 10598–10602 (2003).
  • Liu S , JingW, CgeungBet al. HIV gp41 C-terminal heptad repeat contains multifunctional domains. J. Chem. Biol. 282(13), 9612–9620 (2007).
  • Pan C , CaiL, LuH, QiZ, JiangS. Combinations of the first and next generations of human immunodeficiency virus (HIV) fusion inhibitors exhibit a highly potent synergistic effect against enfuvirtide-sensitive and-resistant HIV type 1 strains.J. Virol.83(16), 7862–7872 (2009).
  • Ingallinella P , BianchiE, LadwaNAet al. Addition of a cholesterol group to an HIV-1 peptide fusion inhibitor dramatically increases its antiviral potency. Proc. Natl Acad. Sci. USA 106(14), 5801–5806 (2009).
  • Eckert DM , MalashkevichVN, HongLH, CarrPA, KimPS. Inhibiting HIV-1 entry: discovery of D-peptide inhibitors that target the gp41 coiled-coil pocket. Cell99(1), 103–115 (1999).
  • Welch DB , VanDemarkAP, HerouxA, HillCP, KayMS. Potent D-peptide inhibitors of HIV-1 entry. Proc. Natl Acad. Sci. USA104(43), 16828–16833 (2007).
  • Mayaux JF , BousseauA, PauwelsRet al. Triterpene derivatives that block entry of human immunodeficiency virus type 1 into cells. Proc. Natl Acad. Sci. USA 91(9), 3564–3568 (1994).
  • Lai W , HuangL, HoP, LiZ, MontefioriD, ChenCH. Betulinic acid derivatives that target gp120 and inhibit multiple genetic subtypes of human immunodeficiency virus type 1.Antimicrob. Agents Chemother.52(1), 128–136 (2008).
  • Baell JB , HollowayGA. New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays.J. Med. Chem.53(7), 2719–2740 (2010).
  • Qian K , YuD, ChenCHet al. Anti-AIDS agents. 78. Design, synthesis, metabolic stability assessment, and antiviral evaluation of novel betulinic acid derivatives as potent anti-human immunodeficiency virus (HIV) agents. J. Med. Chem. 52(10), 3248–3258 (2009).
  • Jiang S , LuH, LiuS, ZhaoQ, HeY, DebnathAK. N-substituted pyrrole derivatives as novel human immunodeficiency virus type 1 entry inhibitors that interfere with the gp41 six-helix bundle formation and block virus fusion. Antimicrob. Agents Chemother.48(11), 4349–4359 (2004).
  • Liu K , LuH, HouLet al. Design, synthesis, and biological evaluation of N-carboxyphenylpyrrole derivatives as potent HIV fusion inhibitors targeting gp41. J. Med. Chem. 51(24), 7843–7854 (2008).
  • Wang Y , LuH, ZhuQ, JiangS, LiaoY. Structure-based design, synthesis amd biological evaluation of new N-carboxyphenylpyrrole derivatives as HIV fusion inhibitors targeting gp41. Bioorg. Med. Chem. Lett.20(1), 189–192 (2010).
  • Smith PF , OgundeleA, ForrestAet al. Phase I and II study of the safety, virologic effect, and pharmacokinetics/pharmacodynamics of single-dose 3-O-(3´,3´-dimethylsuccinyl)betulinic acid (bevirimat) against human immunodeficiency virus infection. Antimicrob. Agents Chemother. 51(10), 3574–3581 (2007).
  • Stewart KD , HuthJR, NgTIet al. Nonpeptide entry inhibitors of HIV-1 that target the gp41 coiled coil pocket. Bioorg. Med. Chem. Lett. 20(2), 612–617 (2010).
  • Ketas Thomas J , SchaderSM, ZuritaJet al. Entry inhibitor-based microbicides are active in vitro against HIV-1 isolates from multiple genetic subtypes. Virology 364(2), 431–440 (2007).
  • Jenabian MA , SaidiH, CharpentierCet al. In vitro synergistic activity against CCR5-tropic HIV-1 with combinations of potential candidate microbicide molecules HHA, KRV2110 and enfurvitide (T20). J. Antimicrob. Chemother.64(6), 1192–1195 (2009).
  • Auwerx J , FrançoisKO, VanstreelsEet al. Capture and transmission of HIV-1 by the C-type lectin L-SIGN (DC-SIGNR) is inhibited by carbohydrate-binding agents and polyanions. Antiviral Res. 83(1), 61–70 (2009).
  • Gantlett KE , WeberJN, SattentauQJ. Synergistic inhibition of HIV-1 infection by combinations of soluble polyanions with other potential microbicides.Antiviral Res.75, 188–197 (2007).
  • Yeni PG , HammerSM, HirschMSet al. Treatment for adult HIV infection: 2004 recommendations of the International AIDS Society-USA Panel, JAMA 292(2), 251–265 (2004).
  • Seto M , AikawaK, MiyamotoNet al. Highly potent and orally active CCR5 antagonists as anti-HIV-1 agents: synthesis and biological activities of 1-benzazocine derivatives containing a sulfoxide moiety. J. Med. Chem. 49(6), 2037–2048 (2006).
  • Martínez-Ávila O , HijaziK, MarradiMet al. Gold manno-glyconanoparticles: multivalent systems to block HIV-1 gp120 binding to the lectin DC-SIGN. Chem. Eur. J. 15(38), 9874–9888 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.