236
Views
1
CrossRef citations to date
0
Altmetric
Review

Recent Advances in the Design and Synthesis of Heterocycles as Anti-Tubercular Agents

, &
Pages 1469-1500 | Published online: 13 Sep 2010

Bibliography

  • Ducati RG , Ruffino-NettoA, BassoLA, SantosDS. The resumption of consumption – a review on tuberculosis.Mem. Inst. Oswaldo Cruz101(7), 697–714 (2006).
  • Loddenkemper R , SagebielD, BrendelA. Strategies against multidrug-resistant tuberculosis.Eur. Respir. J.20(36), 66s–77s (2002).
  • Perri GD , BonoraS. Which agents should we use for the treatment of multidrug-resistant Mycobacterium tuberculosis?J. Antimicrob. Chemother.54(3), 593–602 (2004).
  • Bishai WR , ChaissonRE. Short-course chemoprophylaxis for tuberculosis.Clin. Chest Med.18(1), 115–122 (1997).
  • Smith PG , MossAR. Epidemiology of Tuberculosis. In: Tuberculosis: Pathogenesis, Protection, and Control. Bloom B (Ed.). ASM Press, Washington, DC, USA, 47–59 (1994).
  • Hopewell PC . Overview of clinical tuberculosis. In: Tuberculosis: Pathogenesis, Protection, and Control. Bloom B (Ed.), ASM Press, Washington, DC, USA, 25–46 (1994).
  • Snider DE Jr, Raviglione M, Kochi A. Global burden of tuberculosis. In: Tuberculosis: Pathogenesis, Protection, and Control. Bloom B (Ed.), ASM Press, Washington, DC, USA, 3–11 (1994).
  • Bastian I , ColebundersR. Treatment and prevention of multidrug-resistant tuberculosis.Drugs58(4), 633–661 (1999).
  • Barry CE 3rd, Slayden RA, Sampson AE, Lee RE. Use of genomics and combinatorial chemistry in the development of new antimycobacterial drugs. Biochem. Pharmacol.59(3), 221–231 (2000).
  • Joshi R , ReingoldAL, MenziesD, PaiM. Tuberculosis among health-care workers in low- and middle-income countries: a systematic review.PLoS Med.3(12), 2376–2391 (2006).
  • Rattan A , KaliaA, AhmadN. Multidrug-resistant Mycobacterium tuberculosis: molecular perspectives. Emerg. Infect. Dis4(2), 195–203 (1998).
  • Gray MA . Tuberculosis drugs.Orthop. Nurs.16(4), 64–69 (1997).
  • Gutierrez-Lugo M -T, Bewley CA. Natural products, small molecules, and genetics in tuberculosis drug development. J. Med. Chem.51(9), 2606–2612 (2008).
  • Janin YL . Antituberculosis drugs: ten years of research.Bioorg. Med. Chem.15, 2479–2513 (2007).
  • Bhowruth V , BrownAK, ReynoldsRCet al. Symmetrical and unsymmetrical analogues of isoxyl; active agents against Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett. 16, 4743–4747 (2006).
  • Pichota A , DuraiswamyJ, YinZet al. Peptide deformylase inhibitors of Mycobacterium tuberculosis: synthesis, structural investigations, and biological results. Bioorg. Med. Chem. Lett. 18(24), 6568–6572 (2008).
  • Faugeroux V , GenissonY, SalmaY, ConstantP, BaltasaM. Synthesis and biological evaluation of conformationally constrained analogues of the antitubercular agent ethambutol.Bioorg. Med. Chem.15(17), 5866–5876 (2007).
  • Kumar RR , PerumalS, SenthilkumarP, YogeeswariP, SriramD. A facile synthesis and antimycobacterial evaluation of novel spiro-pyrido-pyrrolizines and pyrrolidines.Eur. J. Med. Chem.44(9), 3821–3829 (2009).
  • Kumar RR , PerumalS, ManjuSC, BhattP, YogeeswariP, SriramD. An atom economic synthesis and antitubercular evaluation of novel spiro-cyclohexanones.Bioorg. Med. Chem. Lett.19(13), 3461–3465 (2009).
  • Nefzi A , AppelJ, ArutyunyanS, HoughtenRA. Parallel synthesis of chiral pentaamines and pyrrolidine containing bis-heterocyclic libraries. Multiple scaffolds with multiple building blocks: a double diversity for the identification of new antitubercular compounds.Bioorg. Med. Chem. Lett.19(17), 5169–5175 (2009).
  • He X , AlianA, StroudR, de Montellano PRO. Pyrrolidine carboxamides as a novel class of inhibitors of enoyl acyl carrier protein reductase from Mycobacterium tuberculosis. J. Med. Chem.49(21), 6308–6323 (2006).
  • Yendapally R , HurdleJG, CarsonEI, LeeRB, LeeRE. N-substituted 3-acetyltetramic acid derivatives as antibacterial agents. J. Med. Chem.51(5), 1487–1491 (2008).
  • Biava M , PorrettaGC, DeiddaD, PompeiR, TafiA, ManettiF. Importance of the thiomorpholine introduction in new pyrrole derivatives as antimycobacterial agents analogues of BM 212.Bioorg. Med. Chem.11(4), 515–520 (2003).
  • Biava M , PorrettaGC, DeiddaD, PompeiR, TafiA, ManettiF. Antimycobacterial compounds. New pyrrole derivatives of BM212.Bioorg. Med. Chem.12(6), 1453–1458 (2004).
  • Biava M , PorrettaGC, PoceGet al. Antimycobacterial compounds. Optimization of the BM212 structure, the lead compound for a new pyrrole derivative class. Bioorg. Med. Chem. 13(4), 1221–1230 (2005).
  • Biava M , PorrettaGC, PoceGet al. 1,5-diphenylpyrrole derivatives as antimycobacterial agents. Probing the influence on antimycobacterial activity of lipophilic substituents at the phenyl rings. J. Med. Chem. 51(12), 3644–3648 (2008).
  • Biava M , PorrettaGC, PoceGet al. Antimycobacterial agents. Novel diarylpyrrole derivatives of BM212 endowed with high activity toward Mycobacterium tuberculosis and low cytotoxicity. J. Med. Chem. 49(16), 4946–4952 (2006).
  • Biava M , PorrettaGC, PoceGet al. 1,5-Diaryl-2-ethyl pyrrole derivatives as antimycobacterial agents: design, synthesis, and microbiological evaluation. Eur. J. Med. Chem. 44(11), 4734–4738 (2009).
  • Ragno R , MarshallGR, SantoRDet al. Antimycobacterial pyrroles: synthesis, anti-mycobacterium tuberculosis activity and QSAR studies. Bioorg. Med. Chem. 8(6), 1423–1432 (2000).
  • Joshi SD , VagdeviHM, VaidyaVP, GadaginamathGS. Synthesis of new 4-pyrrol-1-yl benzoic acid hydrazide analogs and some derived oxadiazole, triazole and pyrrole ring systems: a novel class of potential antibacterial and antitubercular agents.Eur. J. Med. Chem.43(9), 1989–1996 (2008).
  • Tangallapally RP , YendapallyR, LeeREet al. Synthesis and evaluation of nitrofuranylamides as novel antituberculosis agents. J. Med. Chem. 47(21), 5276–5283 (2004).
  • Hurdle JG , LeeRB, BudhaNRet al. A microbiological assessment of novel nitrofuranylamides as anti-tuberculosis agents. J. Antimicrob. Chemother. 62(5), 1037–1045 (2008).
  • Tangallapally RP , LeeRB, LenaertsAJ, LeeRE. Synthesis of new and potent analogues of anti-tuberculosis agent 5-nitro-furan-2-carboxylic acid 4-(4-benzyl-piperazin-1-yl)-benzylamide with improvedbioavailability.Bioorg. Med. Chem. Lett.16(10), 2584–2589 (2006).
  • Tangallapally RP , YendapallyR, DanielsAJ, LeeRB, LeeRE. Nitrofurans as novel anti-tuberculosis agents: identification, development and evaluation.Curr. Top. Med. Chem.7(5), 509–526 (2007).
  • Tangallapally RP , YendapallyR, LeeRE, LenaertsAJM, LeeRE. Synthesis and evaluation of cyclic secondary amine substituted phenyl and benzyl nitrofuranyl amides as novel antituberculosis agents.J. Med. Chem.48(26), 8261–8269 (2005).
  • Stephens CE , TaniousF, KimSet al. Diguanidino and ‘reversed’ diamidino 2,5-diarylfurans as antimicrobial agents. J. Med. Chem. 44(11), 1741–1748 (2001).
  • Kücükgüzel SG , RollasS. Synthesis characterization of novel coupling products and 4-aryl hydrazono-2-pyrazoline-5-ones as potential antimycobacterial agents.Farmaco57(7), 583–587 (2002).
  • Sriram D , YogeeswariP, DhaklaP, SenthilkumarP, BanerjeeD, ManjashettyTH. 5-Nitrofuran-2-yl derivatives: synthesis and inhibitory activities against growing and dormant mycobacterium species.Bioorg. Med. Chem. Lett.19(4), 1152–1154 (2009).
  • Rando DG , SatoDN, SiqueiraLet al. Potential tuberculostatic agents. Topliss application on benzoic acid [(5-nitro-thiophen-2-yl)-methylene]-hydrazide series. Bioorg. Med. Chem. 10(3), 557–560 (2002).
  • Lourenco MCS , VicenteFR, HenriquesMGMOet al. Synthesis and biological evaluation of N-(aryl)-2-thiophen-2-ylacetamides series as a new class of antitubercular agents. Bioorg. Med. Chem. Lett. 17(24), 6895–6898 (2007).
  • Senior SJ , IllarionovPA, GurchaSSet al. Biphenyl-based analogues of thiolactomycin, active against Mycobacterium tuberculosis mtFabH fatty acid condensing enzyme. Bioorg. Med. Chem. Lett. 13(21), 3685–3688 (2003).
  • Senior SJ , IllarionovPA, GurchaSSet al. Acetylene-based analogues of thiolactomycin, active against Mycobacterium tuberculosis mtFabH fatty acid condensing enzyme. Bioorg. Med. Chem. Lett. 14(2), 373–376 (2004).
  • Bhowruth V , BrownAK, SeniorSJ, SnaithJS, BesraGS. Synthesis and biological evaluation of a C5-biphenyl thiolactomycin library.Bioorg. Med. Chem. Lett.17(20), 5643–5646 (2007).
  • Kamal A , ShaikAA, SinhaR, YadavJS, AroraSK. Antitubercular agents. Part 2: new thiolactomycin analogues active against Mycobacterium tuberculosis.Bioorg. Med. Chem. Lett.15(7), 1927–1929 (2005).
  • Balamurugan K , PerumalS, ReddyASK, YogeeswariP, SriramD. A facile domino protocol for the regioselective synthesis and discovery of novel 2-amino-5-arylthieno-[2,3-b]thiophenes as antimycobacterial agents.Tetrahedron Lett.50(45), 6191–6195 (2009).
  • Manetti F , MagnaniM, CastagnoloDet al. Ligand-based virtual screening, parallel solution-phase and microwave-assisted synthesis as tools to identify and synthesize new inhibitors of Mycobacterium tuberculosis. ChemMedChem 1(9), 973–989 (2006).
  • Castagnolo D , LoguAD, RadiMet al. Synthesis, biological evaluation and SAR study of novel pyrazole analogues as inhibitors of Mycobacterium tuberculosis. Bioorg. Med. Chem. 16(18), 8587–8591 (2008).
  • Castagnolo D , ManettiF, RadiMet al. Synthesis, biological evaluation, and SAR study of novel pyrazole analogues as inhibitors of Mycobacterium tuberculosis: part 2. Synthesis of rigid pyrazolones. Bioorg. Med. Chem. 17(15), 5716–5721 (2009).
  • Mamolo MG , ZampierD, FalagianiV, VioL, BanfiE. Synthesis and antimycobacterial activity of 5-aryl-1-isonicotinoyl-3-(pyridin-2-yl)-4,5-dihydro-1H-pyrazole derivatives. Farmaco56(8), 593–599 (2001).
  • Ali MA , YarMS. Synthesis and antimycobacterial activity of novel 4-[5-(substitutedphenyl)-1-phenyl-4,5-dihydro-1H-3-pyrazolyl]-2-methylphenol derivatives. Med. Chem. Res.15(9), 463–470 (2007).
  • Kini SG , BhatAR, BryantB, WilliamsonJS, DayanFE. Synthesis, antitubercular activity and docking study of novel cyclic azole substituted diphenyl ether derivatives.Eur. J. Med. Chem.44(2), 492–500 (2009).
  • da Silva PEA , RamosaDF, BonacorsoHGet al. Synthesis and in vitro antimycobacterial activity of 3-substituted 5-hydroxy-5-trifluoro[chloro]methyl-4,5-dihydro-1H-1-(isonicotinoyl) pyrazoles. Int. J. Antimicrob. Agents 32(2), 139–144 (2008).
  • Yar MS , SiddiquiAA, AliMA. Synthesis and evaluation of phenoxy acetic acid derivatives as a anti-mycobacterial agents.Bioorg. Med. Chem. Lett.16(17), 4571–4574 (2006).
  • Ali MA , YarMS, SiddiquiAA, HusainA, AbdullahM. Synthesis and in-vitro antimycobacterial activity of amino-5-[(substituted)phenyl]-3-(4-hydroxy-3-Methylphenyl)-4,5-dihydro-1H-1-pyrazolylmethanethione. Acta Pol. Pharm. Drug Res.63(5), 435–439 (2007).
  • Ali MA , ShaharyarM. Discovery of novel phenoxyacetic acid derivatives as antimycobacterial agents.Bioorg. Med. Chem.15(5), 1896–1902(2007).
  • Stirrett KL , FerrerasJA, JayaprakashV, SinhaBN, RenT, QuadriaLEN. Small molecules with structural similarities to siderophores as novel antimicrobials against Mycobacterium tuberculosis and Yersinia pestis. Bioorg. Med. Chem. Lett.18(8), 2662–2668 (2008).
  • Kücükgüzel SG , RollasS, ErdenizH, KirazM, EkinciAC, VidinA. Synthesis characterisation and pharmacological properties of some 4-aryl hydrazono-2-pyrazoline-5-one derivatives obtained from heterocyclic amines.Eur. J. Med. Chem.35(7–8), 761–771 (2000).
  • Khan A , SarkarS, SarkarD. Bactericidal activity of 2-nitroimidazole against the active replicating stage of Mycobacterium bovis BCG and Mycobacterium tuberculosis with intracellular efficacy in THP-1 macrophages. Int. J. Antimicrob. Agents32(1), 40–45 (2008).
  • Li X , ManjunathaUH, GoodwinMBet al. Synthesis and antitubercular activity of 7-(R)- and 7-(S)-methyl-2-nitro-6-(S)-(4-(trifluoromethoxy)benzyloxy)-6,7-dihydro-5H-imidazo[2,1-b][1,3]oxazines, analogues of PA-824. Bioorg. Med. Chem. Lett. 18(7), 2256–2262 (2008).
  • Kim P , ZhangL, ManjunathaUHet al. Structure–activity relationships of antitubercular nitroimidazoles. 1. Structural features associated with aerobic and anaerobic activities of 4- and 5-nitroimidazoles. J. Med. Chem. 52(5), 1317–1328 (2009).
  • Kim P , KangS, BoshoffHIet al. Structure–activity relationships of antitubercular nitroimidazoles. 2. Determinants of aerobic activity and quantitative structure–activity relationships. J. Med. Chem. 52(5), 1329–1344 (2009).
  • Thompson AM , BlaserA, AndersonRFet al. Synthesis, reduction potentials, and antitubercular activity of ring a/b analogues of the bioreductive drug (6S)-2-nitro-6-{[4-(trifluoromethoxy)benzyl]oxy}-6,7-dihydro-5H-imidazo[2,1-b] [1,3]oxazine (PA-824). J. Med. Chem. 52(3), 637–645 (2009).
  • Chhabria MT , JaniMH. Design, synthesis and antimycobacterial activity of some novel imidazo[1,2-c]pyrimidines.Eur. J. Med. Chem.44(10), 3837–3844 (2009).
  • Ozdemir A , Turan-ZitouniG, KaplancikliZA, TunaliY. Synthesis and biological activities of new hydrazide derivatives.J. Enzyme Inhib. Med. Chem.24(3), 825–831 (2009).
  • Zampieri D , MamoloMG, VioLet al. Synthesis, antifungal and antimycobacterial activities of new bis-imidazole derivatives, and prediction of their binding to P45014DM by molecular docking and MM/PBSA method. Bioorg. Med. Chem. 15(23), 7444–7458 (2007).
  • Pandey J , TiwariVK, VermaSSet al. Synthesis and antitubercular screening of imidazole derivatives. Eur. J. Med. Chem. 44(8), 3350–3355 (2009).
  • Sriram D , YogeeswariP, ThirumuruganR, PavanaRK. Discovery of new antitubercular oxazolyl thiosemicarbazones.J. Med. Chem.49(12), 3448–3450 (2006).
  • Sriram D , YogeeswariP, DinakaranM, ThirumuruganR. Antimycobacterial activity of novel 1-(5-cyclobutyl-1,3-oxazol-2-yl)-3-(sub)phenyl/pyridylthiourea compounds endowed with high activity toward multidrug-resistant Mycobacterium tuberculosis. J. Antimicrob. Chemother.59(6), 1194–1196 (2007).
  • Mai A , ArticoM, EspositoM, RagnoR, SbardellaG, MassaS. Synthesis and biological evaluation of enantiomerically pure pyrrolyl-oxazolidinones as a new class of potent and selective monoamine oxidase type A inhibitors.Farmaco58(3), 231–241 (2003).
  • Das J , RaoCVL, SastryTVRSet al. Effects of positional and geometrical isomerism on the biological activity of some novel oxazolidinones. Bioorg. Med. Chem. Lett. 15(2), 337–343 (2005).
  • Tangallapally RP , SunD, Rakesh et al. Discovery of novel isoxazolines as anti-tuberculosis agents. Bioorg. Med. Chem. Lett.17(23), 6638–6642 (2007).
  • Rakesh , SunD, LeeRB, TangallapallyRP, LeeRE. Synthesis, optimization and structure–activity relationships of 3,5-disubstituted isoxazolines as new anti-tuberculosis agents.Eur. J. Med. Chem.44(2), 460–472 (2009).
  • Kini SG , BhatAR, BryantB, WilliamsonJS, DayanFE. Synthesis, antitubercular activity and docking study of novel cyclic azole substituted diphenyl ether derivatives.Eur. J. Med. Chem.44(2), 492–500 (2009).
  • Pieroni M , LilienkampfA, WanB, WangY, FranzblauSG, KozikowskiAP. Synthesis, biological evaluation, and structure–activity relationships for 5-[(E)-2-arylethenyl]-3-isoxazolecarboxylic acid alkyl ester derivatives as valuable antitubercular chemotypes. J. Med. Chem.52(20), 6287–6296 (2009).
  • Huang Q , MaoJ, WanBet al. Searching for new cures for tuberculosis: design, synthesis, and biological evaluation of 2-methylbenzothiazoles. J. Med. Chem. 52(21), 6757–6767 (2009).
  • Turan-Zitouni G , OzdemirA, KaplancikliZA, BenkliK, ChevalletP, AkalinG. Synthesis and antituberculosis activity of new thiazolylhydrazone derivatives.Eur. J. Med. Chem.43(5), 981–985 (2008).
  • Mallikarjuna BP , SastryBS, KumarGVS, RajendraprasadY, ChandrashekarSM, SathishaK. Synthesis of new 4-isopropylthiazole hydrazide analogs and some derived clubbed triazole, oxadiazole ring systems – a novel class of potential antibacterial, antifungal and antitubercular agents.Eur. J. Med. Chem.44(11), 4739–4746 (2009).
  • Al-Balas Q , AnthonyNG, Al-JaidiBet al. Identification of 2-aminothiazole-4-carboxylate derivatives active against Mycobacterium tuberculosis H37Rv and the β-ketoacyl-ACP synthase mtFabH. PLoS ONE 4(5), e5617 (2009).
  • de Carvalho LPS , LinG, JiangX, NathanC. Nitazoxanide kills replicating and nonreplicating Mycobacterium tuberculosis and evades resistance. J. Med. Chem.52(19), 5789–5792 (2009).
  • Japelj B , RecnikS, CebašekP, StanovnikB, SveteJ. Synthesis and antimycobacterial activity of alkyl 1-heteroaryl-1H-1,2,3-triazole-4-carboxylates. J. Heterocycl. Chem.42(6), 1167–1173 (2005).
  • Wilkinson BL , BornaghiLF, WrightAD, HoustonTA, Poulsena S-A. Anti-mycobacterial activity of a bis-sulfonamide. Bioorg. Med. Chem. Lett.17(5), 1355–1357(2007).
  • Gill C , JadhavG, ShaikhMet al. Clubbed [1,2,3] triazoles by fluorine benzimidazole: a novel approach to H37Rv inhibitors as a potential treatment for tuberculosis. Bioorg. Med. Chem. Lett. 18(23), 6244–6247 (2008).
  • Castagnolo D , RadiM, DessiFet al. Synthesis and biological evaluation of new enantiomerically pure azole derivatives as inhibitors of Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett. 19(8), 2203–2205 (2009).
  • Kucukguzel I , KucukguzelSG, RollasS, KirazM. Some 3-thioxo/alkylthio-1,2,4-triazoles with a substituted thiourea moiety as possible antimycobacterials.Bioorg. Med. Chem. Lett.11(13), 1703–1707 (2001).
  • Klimešová V , ZahajskáL, WaisserK, KaustováJ, MöllmannU. Synthesis and antimycobacterial activity of 1,2,4-triazole 3-benzylsulfanyl derivatives.Farmaco59(4), 279–288 (2004).
  • Gülerman NN , DoganHN, RollasS, JohanssonC, CelikC. Synthesis and structure elucidation of some new thioether derivatives of 1,2,4 triazoline -3-thiones and their antimicrobial activity.Farmaco56(12), 953–958 (2001).
  • Shiradkar MR , MurahariKK, GangadasuHRet al. Synthesis of new S-derivatives of clubbed triazolyl thiazole as anti-Mycobacterium tuberculosis agents. Bioorg. Med. Chem. 15(12), 3997–4008 (2007).
  • Shiradkar M , KumarGVS, DasariV, TatikondaS, AkulaKC, ShahR. Clubbed triazoles: a novel approach to antitubercular drugs.Eur. J. Med. Chem.42(6), 807–816 (2007).
  • Jadhav GR , ShaikhMU, KaleRP, ShiradkarMR, GillCH. SAR study of clubbed [1,2,4]-triazolyl with fluorobenzimidazoles as antimicrobial and antituberculosis agents.Eur. J. Med. Chem.44(7), 2930–2935 (2009).
  • Tyrkov AG , UrlyapovaNG, DaudovaAD. Synthesis and antimycobacterial activity of substituted 2-nitro-1-(4-tolylsulfonyl)-2-(3-methylphenyl-1,2,4-oxadiazol-5-yl)ethanes.Pharmaceut. Chem. J.40(7), 377–379 (2006).
  • Mamolo MG , ZampieriD, VioLet al. Antimycobacterial activity of new 3-substituted 5-(pyridin-4-yl)-3H-1,3,4-oxadiazol-2-one and 2-thione derivatives. Preliminary molecular modeling investigations. Bioorg. Med. Chem. 13(11), 3797–3809 (2005).
  • Zampieri D , MamoloMG, LauriniEet al. Antimycobacterial activity of new 3,5-disubstituted 1,3,4-oxadiazol-2(3H)-one derivatives. Molecular modeling investigations. Bioorg. Med. Chem. 17(13), 4693–4707 (2009).
  • Ali MA , ShaharyarM. Oxadiazole mannich bases: synthesis and antimycobacterial activity.Bioorg. Med. Chem. Lett.17(12), 3314–3316 (2007).
  • Foroumadi A , AsadipourA, MirzaeiM, KarimiJ, EmamiS. Antituberculosis agents. V. Synthesis evaluation of in vitro antituberculosis activity and cytotoxicity of some 2-(5-nitro-2-furyl)-1,3,4 thiadiazole derivatives. Farmaco57(9), 765–769 (2002).
  • Foroumadi A , MirzaeiM, ShafieeA. Antituberculosis agents II evaluation of in vitro antituberculosis activity and cytotoxicity of some 2-(1-methyl-5-nitro-2-imidazolyl)-1,3,4 thiadiazole derivatives. Farmaco56(8), 621–623 (2001).
  • Foroumadi A , KianiZ, SoltaniF. Antituberculosis agents VIII Synthesis and in vitro antimycobacterial activity of alkyl a-[5-(5-nitro-2-thienyl)-1,3,4-thiadiazole-2-ylthio]acetates. Farmaco58(11), 1073–1076 (2003).
  • Foroumadi A , MirzaeiM, ShafieeA. Antituberculosis agents: synthesis and antituberculosis activity of 2-aryl-1,3,4 thiadiazole derivatives.Pharmazie56(8), 610–612 (2001).
  • Foroumadi A , KargarZ, SakhtemanAet al. Synthesis and antimycobacterial activity of some alkyl [5-(nitroaryl)-1,3,4-thiadiazol-2-ylthio]propionates. Bioorg. Med. Chem. Lett. 16(5), 1164–1167 (2006).
  • Karakus S , RollasS. Synthesis and antitubercular activity of new N-phenyl-N´- [4-(5-alkyl/aryl amino- 1,3,4- thiadiazole-2-yl) phenyl]thiourea.Farmaco57(7), 577–581 (2002).
  • Mamolo MG , FalgianiV, ZampieriD, VioL, BanfiE. Synthesis and antimycobacterial activity of [5-(pyridin-2-yl)-1,3,4-thiadiazol-2-yl-thio] acetic acid arylidene-hydrazide derivatives.II Farmaco56(8), 587–592 (2001).
  • Mamolo MG , FalagianiV, ZampieriD, VioL, BanfiE, ScialinoG. Synthesis and antimycobacterial activity of (3,4-diaryl-3H-thiazol-2-ylidene)-hydrazide derivatives.Farmaco58(9), 631–637 (2003).
  • Oruc EE , RollasS, KandemirliF, ShvetsN, DimogloAS. 1,3,4-thiadiazole derivatives. Synthesis, structure elucidation, and structure–antituberculosis activity relationship investigation.J. Med. Chem.47(27), 6760–6767 (2004).
  • Hearn MJ , WebsterER, CynamonMH. Preparation and properties of antitubercular 1-piperidino-3-arylthioureas.J. Heterocyclic Chem.42(6), 1225–1229 (2005).
  • Weis R , FaistJ, di Vora U et al. Antimycobacterial activity of diphenylpyraline derivatives. Eur. J. Med. Chem.43(4), 872–879 (2008).
  • Weis R , SchweigerK, FaistJet al. Antimycobacterial and H1-antihistaminic activity of 2-substituted piperidine derivatives. Bioorg. Med. Chem. 16(24), 10326–10331 (2008).
  • Sun D , SchermanMS, JonesVet al. Discovery, synthesis, and biological evaluation of piperidinol analogs with anti-tuberculosis activity. Bioorg. Med. Chem. 17(10), 3588–3594 (2009).
  • Bogatcheva E , HanrahanC, ChenPet al. Discovery of dipiperidines as new antitubercular agents. Bioorg. Med. Chem. Lett. 20(1), 201–205 (2010).
  • Aridoss G , AmirthaganesanS, KumarNAet al. A facile synthesis, antibacterial, and antitubercular studies of some piperidin-4-one and tetrahydropyridine derivatives. Bioorg. Med. Chem. Lett. 18(24), 6542–6548 (2008).
  • Das U , DasS, BandyB, StablesJP, DimmockJR. N-aroyl-3,5-bis(benzylidene)-4-piperidones: a novel class of antimycobacterial agents. Bioorg. Med. Chem.16(7), 3602–3607 (2008).
  • Kumar RR , PerumalS, SenthilkumarP, YogeeswariP, SriramD. Discovery of antimycobacterial spiro-piperidin-4-ones: an atom economic, stereoselective synthesis, and biological intervention.J. Med. Chem.51(18), 5731–5735 (2008).
  • Pagani G , PregnolatoM, UbialiDet al. Synthesis and in vitro anti-Mycobacterium activity of N-alkyl-1,2-dihydro-2-thioxo-3-pyridinecarbothioamides. Preliminary toxicity and pharmacokinetic evaluation. J. Med. Chem. 43(2), 199–204 (2000).
  • Banfi E , MamoloMG, ZampieriD, VioL, BragadinCM. Antimycobacterial activity of N1-{1-[3-aryl-1-(pyridin-2-, 3- or 4-yl)-3-oxo] propyl}-2-pyridinecarboxamidrazones.J. Antimicrob. Chemother.48(5), 705–707 (2001).
  • Desai B , SurejaD, NaliaparaY, ShahaA, SaxenaAK. Synthesis and QSAR studies of 4-substituted phenyl-2,6-dimethyl-3, 5-bis-N-(substituted phenyl)carbamoyl-1,4-dihydropyridines as potential antitubercular agents. Bioorg. Med. Chem.9(8), 1993–1998 (2001).
  • Gezginci MH , MartinAR, FranzblauSG. Antimycobacterial activity of substituted isosteres of pyridine- and pyrazinecarboxylic acids. 2.J. Med. Chem.44(10), 1560–1563 (2001).
  • Maccari R , OttanaR, MonforteF, VigoritaMG. In vitro antimycobacterial activities of 2´-monosubstituted isonicotinohydrazides and their cyanoborane adducts. Antimicrob. Agents Chemother.46(2), 294–299 (2002).
  • Hearn MJ , CynamonMH, ChenMFet al. Preparation and antitubercular activities in vitro and in vivo of novel Schiff bases of isoniazid. Eur. J. Med. Chem. 44(10), 4169–4178 (2009).
  • Jaju S , PalkarM, MaddiVet al. Synthesis and antimycobacterial activity of a novel series of isonicotinylhydrazide derivatives. Arch. Pharm. Chem. Life Sci. 342(12), 723–731 (2009).
  • Herzigova P , KlimesovsV, PalatK, KaustovaJ, Dahse H-M, Mollmann U. Preparation and in vitro evaluation of 4-benzylsulfanylpyridine-2-carbohydrazides as potential antituberculosis agents. Arch. Pharm. Chem. Life Sci.342(7), 394–404 (2009).
  • Gaveriya H , DesaiB, VoraV, ShahA. Synthesis of some new unsymmetrical 1,4-dihydropyridine derivatives as potent antitubercular agents.Heterocyclic Commun.5(5), 481–484 (2001).
  • Kharkar PS , DesaiB, GaveriaHet al. Three dimensional quantitative structure–activity relationship of 1,4-dihydropyridines as antitubercular agents. J. Med. Chem. 45(22), 4858–4867 (2002).
  • Khoshneviszadeh M , EdrakiN, JavidniaKet al. Synthesis and biological evaluation of some new 1,4-dihydropyridines containing different ester substitute and diethyl carbamoyl group as anti-tubercular agents. Bioorg. Med. Chem. 17(4), 1579–1586 (2009).
  • Fassihi A , AzadpourZ, DelbariNet al. Synthesis and antitubercular activity of novel 4-substituted imidazolyl-2,6-dimethyl-N3,N5-bisaryl-1,4-dihydropyridine-3,5-dicarboxamides. Eur. J. Med. Chem. 44(8), 3253–3258 (2009).
  • Lin Y -M, Zhou Y, Flavin MT, Zhou L-M, Nie W, Chen F-C. Chalcones and flavonoids as anti-tuberculosis agents. Bioorg. Med. Chem.10(8), 2795–2802 (2002).
  • Waisser K , DraškováK, KunešJ, KlimešováV, KaustováJ. Antimycobacterial N-pyridinylsalicylamides, isosters of salicylamides. Farmaco59(8), 615–625 (2004).
  • Sriram D , YogeeswariP, MadhuK. Synthesis and in vitro and in vivo antimycobacterial activity of isonicotinoyl hydrazones. Bioorg. Med. Chem. Lett.15(20), 4502–4505 (2005).
  • Sriram D , YogeeswariP, MadhuK. Synthesis and in vitro antitubercular activity of some 1-[(4-sub)phenyl]-3-(4-{1-[(pyridine-4-carbonyl) hydrazono]ethyl}phenyl)thiourea. Bioorg. Med. Chem. Lett.16(4), 876–878 (2006).
  • Carvalho SA , da Silva EF, de Souza MVN, Lourenco MCS, Vicente FR. Synthesis and antimycobacterial evaluation of new trans-cinnamic acid hydrazide derivatives. Bioorg. Med. Chem. Lett.18(2), 538–541 (2008).
  • Imramovsky A , PolancS, VinsovaJet al. A new modification of anti-tubercular active molecules. Bioorg. Med. Chem. 15(7), 2551–2559 (2007).
  • Lourenco MCS , FerreiraML, de Souza MVN, Peralta MA, Vasconcelos TRA, Henriques MGMO. Synthesis and anti-mycobacterial activity of (E)-N´-(monosubstituted-benzylidene)isonicotinohydrazide derivatives. Eur. J. Med. Chem.43(6), 1344–1347 (2008).
  • Bijev A . New heterocyclic hydrazones in the search for antitubercular agents: synthesis and in vitro evaluations. Lett. Drug Des. Discov.3(7), 506–512 (2006).
  • Kumar A , SinhaS, ChauhanPMS. Synthesis of novel antimycobacterial combinatorial libraries of structurally diverse substituted pyrimidines by three-component solid-phase reactions.Bioorg. Med. Chem. Lett.12(4), 667–669 (2002).
  • Agarwal A , SrivastavaK, PuriSK, SinhaS, ChauhanPMS. Solid support synthesis of 6-aryl-2-substituted pyrimidin-4-yl phenols as anti-infective agents.Bioorg. Med. Chem. Lett.15(22), 4923–4926 (2005).
  • Agarwal A , SrivastavaK, PuriSK, SinhaS, ChauhanPMS. A small library of trisubstituted pyrimidines as antimalarial and antitubercular agents.Bioorg. Med. Chem. Lett.15(23), 5218–5221 (2005).
  • Agarwal N , SrivastavaP, RaghuwanshiSKet al. Upadhyay chloropyrimidines as a new class of antimicrobial agents. Bioorg. Med. Chem. 10(4), 869–874 (2002).
  • Morgan J , HaritakulR, KellerPA. Anilino pyrimidines as novel antituberculosis agents.Bioorg. Med. Chem. Lett.13(10), 1755–1757 (2003).
  • Virsodia V , PissurlenkarRRS, ManvarDet al. Synthesis, screening for antitubercular activity and 3D-QSAR studies of substituted N-phenyl-6-methyl-2-oxo-4-phenyl-1,2,3,4-tetrahydro-pyrimidine-5-carboxamides. Eur. J. Med. Chem. 43(10), 2103–2115 (2008).
  • El-Hamamsy MHRI , SmithAW, ThompsonAS, ThreadgillMD. Structure-based design, synthesis and preliminary evaluation of selective inhibitors of dihydrofolate reductase from Mycobacterium tuberculosis. Bioorg. Med. Chem.15(13), 4552–4576 (2007).
  • Nagaraj A , ReddyCS. Synthesis and biological study of novel methylene-bis-chalcones and substituted methylene-bis-pyrimidines/pyrimidinones J. Heterocycl. Chem.44(5), 1181–1185 (2007).
  • Opletalova V , HartlJ, PatelA, Palat Jr K, Buchta V. Ring substituted 3-phenyl-1-(2 pyrazinyl)-2 propen-1-ones as potential photosynthesis inhibiting, antifungal and antimycobacterial agents. Farmaco57(2), 135–144 (2002).
  • Seitz LE , SulingWJ, ReynoldsRC. Synthesis and antimycobacterial activity of pyrazine and quinoxaline derivatives.J. Med. Chem.45(25), 5604–5606 (2002).
  • Krinkova J , DolezalM, HartlJV, BuchtaV, PourM. Synthesis and biological activity of 5-alkyl-6-alkylsulfanyl or 5-alkyl-6-arylsulfanyl pyrazine-2-carboxamides and corresponding thioamides.Farmaco57(1), 71–78 (2002).
  • Foks H , TrapkowskaI, JanowiecM, ZwolskaZ, Augustynowicz-KopecE. Studies on pyrazine derivatives. 38. Synthesis, reactions, and tuberculostatic activity of pyrazinyl-substituted derivatives of hydrazinocarbodithioic acid.Chem. Heterocyclic Compounds40(9), 1185–1193 (2004).
  • Dolezal M , CmedlovaP, PalekLet al. Synthesis and antimycobacterial evaluation of substituted pyrazinecarboxamides. Eur. J. Med. Chem. 43(5), 1105–1113 (2008).
  • He X , AlianA, de Montellano PRO. Inhibition of the Mycobacterium tuberculosis enoyl acyl carrier protein reductase InhA by arylamides. Bioorg. Med. Chem.15(21), 6649–6658 (2007).
  • Bogatcheva E , HanrahanC, NikonenkoBet al. Identification of new diamine scaffolds with activity against Mycobacterium tuberculosis. J. Med. Chem. 49(11), 3045–3048 (2006).
  • Zhang X , HuY, ChenSet al. Synthesis and evaluation of (S,S)-N,N´-bis-[3-(2,2´,6,6´-tetramethylbenzhydryloxy)-2-hydroxy-propyl]-ethylenediamine (S2824) analogs with anti-tuberculosis activity. Bioorg. Med. Chem. Lett. 19(21), 6074–6077 (2009).
  • Onajole OK , GovenderK, GovenderPet al. Pentacyclo-undecane derived cyclic tetra-amines: synthesis and evaluation as potent anti-tuberculosis agents. Eur. J. Med. Chem. 44(11), 4297–4305 (2009).
  • Velikorodov AV , UrlyapovaNG, DaudovaAD. Synthesis and antimycobacterial activity of carbamate derivatives of 1,2-oxazine.Pharmaceut. Chem. J.40(7), 380–382 (2006).
  • Koketsu M , TanakaK, TakenakaY, KwongCD, IshiharaH. Synthesis of 1,3 thiazine derivatives and their evaluation as potential antimycobacterial agents.Eur. J. Pharm. Sci.15(3), 307–310 (2002).
  • Hughes MA , McFaddenJM, TownsendCA. New a-methylene-c-butyrolactones with antimycobacterial properties.Bioorg. Med. Chem. Lett.15(17), 3857–3859 (2005).
  • Cardona W , QuinonesW, RobledoSet al. Antiparasite and antimycobacterial activity of passifloricin analogues. Tetrahedron 62(17), 4086–4092 (2006).
  • Chande MS , VermaRS, BarvePA, KhanwelkarRR, VaidyaRB, AjaikumarKB. Facile synthesis of active antitubercular, cytotoxic and antibacterial agents: a Michael addition approach.Eur. J. Med. Chem.40(11), 1143–1148 (2005).
  • Sonar VN , CrooksPA. Synthesis and antitubercular activity of a series of hydrazone and nitrovinyl analogs derived from heterocyclic aldehydes.J. Enzyme Inhib. Med. Chem.24(1), 117–124 (2009).
  • Sriram D , YogeeswariP, DhaklaP, SenthilkumarP, BanerjeeD. N-hydroxythiosemicarbazones: synthesis and in vitro antitubercular activity. Bioorg. Med. Chem. Lett.17(7), 1888–1891 (2007).
  • Zampieri D , MamoloMG, LauriniE, ScialinoG, BanfiE, VioL. 2-aryl-3-(1H-azol-1-yl)-1H-indole derivatives: a new class of antimycobacterial compounds-conventional heating in comparison with MW-assisted synthesis.Arch. Pharm. Chem. Life Sci.342(12), 716–722 (2009).
  • Guzel O , MarescaA, ScozzafavaA, SalmanA, BalabanAT, SupuranCT. Discovery of low nanomolar and subnanomolar inhibitors of the Mycobacterial β-carbonic anhydrases Rv1284 and Rv3273. J. Med. Chem.52(13), 4063–4067 (2009).
  • Klimešová V , KocíJ, PourM, StachelJ, WaisserK, KaustováJ. Synthesis and preliminary evaluation of benzimidazole derivatives as antimicrobial agents.Eur. J. Med. Chem.37(5), 409–418 (2002).
  • Klimešová V , KocíJ, WaisserK, KaustovaJ. New benzimidazole derivatives as antimycobacterial agents.Farmaco57(4), 259–265 (2002).
  • Kazimierczuk Z , AndrzejewskaM, KaustovaJ, KlimešovaV. Synthesis and antimycobacterial activity of 2-substituted halogenobenzimidazoles.Eur. J. Med. Chem.40(2), 203–208 (2005).
  • Vinsova J , CermakovaK, TomeckovaAet al. Synthesis and antimicrobial evaluation of new 2-substituted 5,7-di-tert-butylbenzoxazoles. Bioorg. Med. Chem. 14(17), 5850–5865 (2006).
  • Koci J , KlimesovaV, WaisserK, KaustovaJ, Dahse H-M, Mollmann U. Heterocyclic benzazole derivatives with antimycobacterial in vitro activity. Bioorg. Med. Chem. Lett.12(22), 3275–3278 (2002).
  • Guzel O , SalmanA. Synthesis, antimycobacterial and antitumor activities of new (1,1-dioxido-3-oxo-1,2-benzisothiazol-2(3H)-yl)methyl N,N-disubstituted dithiocarbamate/O-alkyldithiocarbonate derivatives. Bioorg. Med. Chem.14(23), 7804–7815 (2006).
  • Konieczny MT , KoniecznyW, SabiszMet al. Synthesis of isomeric, oxathiolone fused chalcones, and comparison of their activity toward various microorganisms and human cancer cells line. Chem. Pharm. Bull. 55(5), 817–820 (2007).
  • Sanna P , CartaA, NikookarMER. Synthesis and antitubercular activity of 3-aryl substituted -2-[(1H(2H) benzotriazol-1(2)-yl] acrylonitrile. Eur. J. Med. Chem.35(5), 535–543 (2000).
  • Sanna P , CartaA, GherardiniL, NikookarMER. Synthesis and antimycobacterial activity of 3 aryl, 3 cyclohexyl and 3-heteroaryl- substituted -2-[1H(2H)-benzotriazol-1(2)-yl) prop-2-enenitriles, prop-2-enamides and propenoic acids II. Farmaco57(1), 79–87 (2002).
  • Bakkestuen AK , GundersenLL, LangliG, LiuF, Nols⊘eJMJ. 9-benzylpurines with inhibitory activity against Mycobacterium tuberculosis. Bioorg. Med. Chem. Lett.10(11), 1207–1210 (2000).
  • Gundersen LL , Nissen-MeyerJ, SpilsbergB. Synthesis and antimycobacterial activity of 6-aryl purines: the requirement for the N-9 substituent in active antimycobacterial purines.J. Med. Chem.45(6), 1383–1386 (2002).
  • Scozzafava A , MastrolorenzoA, SupuranCT. Antimycobacterial activity of 9-sulphonylated/sulphenylated -6-mercaptopurine derivatives.Bioorg. Med. Chem. Lett.11(13), 1675–1678 (2001).
  • Bakkestuen AK , Gundersen L-L, Utenova BT. Synthesis, biological activity, and SAR of antimycobacterial 9-aryl-, 9-arylsulfonyl-, and 9-benzyl-6-(2-furyl)purines. J. Med. Chem.48(7), 2710–2723 (2005).
  • Pathak AK , PathakV, SeitzLE, SulingWJ, ReynoldsRC. Antimycobacterial agents. 1. Thio analogues of purine.J. Med. Chem.47(1), 273–276 (2004).
  • Bakkestuen AK , Gundersen L-L, Petersen D, Utenova BT, Vik A. Synthesis and antimycobacterial activity of agelasine E and analogs. Org. Biomol. Chem.3(6), 1025–1033 (2005).
  • Braendvang M , Gundersen L-L. Synthesis, biological activity, and SAR of antimycobacterial 2- and 8-substituted 6-(2-furyl)-9-(p-methoxybenzyl)purines. Bioorg. Med. Chem.15(22), 7144–7165 (2007).
  • Braendvang M , BakkencV, Gundersen L-L. Synthesis, structure, and antimycobacterial activity of 6-[1(3H)-isobenzofuranylidenemethyl]purines and analogs. Bioorg. Med. Chem.17(18), 6512–6516 (2009).
  • Moukha-Chafiq O , TahaML, LazrekHBet al. Synthesis and biological evaluation Of some 4-substituted 1-[1-(4-hydroxybutyl)-1,2,3-triazol-(4&5)-ylmethyl]-1h-pyrazolo-[3,4-d]pyrimidines. Nucleosides Nucleotides Nucleic Acids 20(10&11), 1811–1821 (2001).
  • Moukha-Chafiq O , TahaML, LazrekHB, VasseurJJ, ClercqED. Synthesis and biological evaluation of some acyclic a-(1h-pyrazolo-[3,4-d]pyrimidin-4-yl)thioalkylamide nucleosides.Nucleosides Nucleotides Nucleic Acids21(2), 165–176 (2002)
  • Moukha-Chafiq O , TahaML, MounaA. Synthesis and biological evaluation of some α-[6-(1/-carbamoylalkylthio)-1H-pyrazolo[3,4-d]pyrimidin-4-yl]thioalkylcarboxamide acyclonucleosides.Nucleosides Nucleotides Nucleic Acids26(4), 335–345 (2007).
  • Ballell L , FieldRA, ChungGAC, YoungRJ. New thiopyrazolo[3,4-d]pyrimidine derivatives as anti-mycobacterial agents.Bioorg. Med. Chem. Lett.17(6), 1736–1740 (2007).
  • Zhang Y , JinG, IllarionovB, BacherA, FischerM, CushmanM. A new series of 3-alkyl phosphate derivatives of 4,5,6,7-tetrahydro-1-D-ribityl-1H-pyrazolo[3,4-d]pyrimidinedione as inhibitors of lumazine synthase: design, synthesis, and evaluation. J. Org. Chem.72(19), 7176–7184 (2007).
  • Chambhare RV , KhadseBG, BobdeAS, BahekarRH. Synthesis and preliminary evaluation of some N-[5-(2-furanyl)-2-methyl-4-oxo-4H-thieno[2,3-d]pyrimidin-3-yl]-carboxamide and 3-substituted-5-(2-furanyl)-2-methyl-3H-thieno[2,3-d]pyrimidin-4-ones as antimicrobial agents. Eur. J. Med. Chem.38(1), 89–100 (2003).
  • Jain R , VaitilingamB, NayyarA, PaldePB. Substituted 4-methylquinolines as a new class of anti-tuberculosis agents.Bioorg. Med. Chem. Lett.13(6), 1051–1054 (2003).
  • Gaurrand S , DesjardinsS, MeyerCet al. Conformational analysis of R207910, a new drug candidate for the treatment of tuberculosis, by a combined NMR and molecular modeling approach. Chem. Biol. Drug Des. 68(2), 77–84 (2006).
  • Drews SJ , HungF, Av-GayY. A protein kinase inhibitor as an antimycobacterial agent.FEMS Microbiol. Lett.205(2), 369–374 (2001).
  • Savini L , ChiasseriniL, GaetaA, PelleranoC. Synthesis and anti-tubercular evaluation of 4-quinolylhydrazones.Bioorg. Med. Chem.10(7), 2193–2198 (2002).
  • Monga V , NayyarA, VaitilingamBet al. Ring-substituted quinolines. Part 2: synthesis and antimycobacterial activities of ring-substituted quinolinecarbohydrazide and ring-substituted quinolinecarboxamide analogues. Bioorg. Med. Chem. 12(24), 6465–6472 (2004).
  • de Souza MVN , PaisKC, KaiserCR, PeraltaMA, FerreiraML, LourençoMCS. Synthesis and in vitro antitubercular activity of a series of quinoline derivatives.Bioorg. Med. Chem.17(4), 1474–1480 (2009).
  • Upadhayaya RS , VandavasiJK, VasireddyNR, SharmaV, DixitSS, ChattopadhyayaJ. Design, synthesis, biological evaluation and molecular modelling studies of novel quinoline derivatives against Mycobacterium tuberculosis. Bioorg. Med. Chem.17(11), 2830–2841 (2009).
  • Sharma M , ChaturvediV, ManjuYKet al. Substituted quinolinyl chalcones and quinolinyl pyrimidines as a new class of anti-infective agents. Eur. J. Med. Chem. 44(5), 2081–2091 (2009).
  • Gratraud P , SuroliaN, BesraGS, SuroliaA, KremerL. Antimycobacterial activity and mechanism of action of NAS-91.Antimicrob. Agents Chemother.52(3), 1162–1166 (2008).
  • Eswaran S , AdhikariAV, PalNK, ChowdhuryIH. Design and synthesis of some new quinoline-3-carbohydrazone derivatives as potential antimycobacterial agents.Bioorg. Med. Chem. Lett.20(3), 1040–1044 (2010).
  • Gemma S , SaviniL, AltarelliMet al. Development of antitubercular compounds based on a 4-quinolylhydrazone scaffold. Further structure–activity relationship studies. Bioorg. Med. Chem. 17(16), 6063–6072 (2009).
  • Candéa ALP , FerreiraML, PaisKCet al. Synthesis and antitubercular activity of 7-chloro-4-quinolinylhydrazones derivatives. Bioorg. Med. Chem. Lett. 19(22), 6272–6274 (2009).
  • Upadhayaya RS , KulkarniGM, VasireddyNRet al. Design, synthesis and biological evaluation of novel triazole, urea and thiourea derivatives of quinoline against Mycobacterium tuberculosis. Bioorg. Med. Chem. 17(13), 4681–4692 (2009).
  • Nayyar A , PatelSR, ShaikhM, CoutinhoE, JainR. Synthesis, anti-tuberculosis activity and 3D-QSAR study of amino acid conjugates of 4-(adamantan-1-yl) group containing quinolines.Eur. J. Med. Chem.44(5), 2017–2029 (2009).
  • Lilienkampf A , MaoJ, WanB, WangY, FranzblauSG, KozikowskiAP. Structure–activity relationships for a series of quinoline-based compounds active against replicating and nonreplicating Mycobacterium tuberculosis. J. Med. Chem.52(7), 2109–2118 (2009).
  • Mao J , YuanH, WangYet al. From serendipity to rational antituberculosis drug discovery of mefloquine-isoxazole carboxylic acid esters. J. Med. Chem. 52(22), 6966–6978 (2009).
  • Carta A , PagliettiG, NikookarMER, SannaP, SechiL, ZanettiS. Novel substituted quinoxaline 1,4-dioxides with in vitro antimycobacterial and anticandida activity. Eur. J. Med. Chem.37(5), 355–366 (2002).
  • Carta A , LorigaM, PagliettiGet al. Synthesis, anti-mycobacterial, anti-trichomonas and anti-candida in vitro activities of 2-substituted-6,7-difluoro-3-methylquinoxaline 1,4-dioxides. Eur. J. Med. Chem. 39(2), 195–203 (2004).
  • Zarranz B , JasoA, AldanaI, MongeA. Synthesis and antimycobacterial activity of new quinoxaline-2-carboxamide 1,4-di-N-oxide derivatives. Bioorg. Med. Chem.11(10), 2149–2156 (2003).
  • Jaso A , ZarranzB, AldanaI, MongeA. Synthesis of new 2-acetyl and 2-benzoyl quinoxaline 1,4-di-N-oxide derivatives as antimycobacterium tuberculosis agents. Eur. J. Med. Chem.38(9), 791–800 (2003).
  • Villar R , VicenteE, SolanoB et al. In vitro and in vivo antimycobacterial activities of ketone and amide derivatives of quinoxaline 1,4-di-N-oxide. J. Antimicrob. Chemother.62(3), 547–554 (2008).
  • Jaso A , ZarranzB, AldanaI, MongeA. Synthesis of new quinoxaline-2-carboxylate 1,4-dioxide derivatives as antimycobacterium tuberculosis agents.J. Med. Chem.48(6), 2019–2025 (2005).
  • Vicente E , Perez-SilanesS, LimaLMet al. Selective activity against Mycobacterium tuberculosis of new quinoxaline 1,4-di-N-oxides. Bioorg. Med. Chem. 17(1), 385–389 (2009).
  • Sheu J -Y, Chen Y-L, Tzeng C-C, Hsu S-L, Fang K-C, Wang T-C. Synthesis, and antimycobacterial and cytotoxic evaluation of certain fluoroquinolone derivatives. Helv. Chim. Acta86(7), 2481–2489 (2003).
  • Senthilkumar P , DinakaranM, YogeeswariP, ChinaA, NagarajaV, SriramD. Antimycobacterial activities of novel fluoroquinolones.Biomedicine Pharmacother.63(1), 27–35 (2009).
  • Kawakami K , NambaK, TanakaM, MatsuhashiN, SatoK, TakemuraM. Antimycobacterial activities of novel levofloxacin analogues.Antimicrob. Agents Chemother.44(8), 2126–2129 (2000).
  • Alcaide F , CalatayudL, SantínM, MartínR. Comparative in vitro activities of linezolid, telithromycin, clarithromycin, levofloxacin, moxifloxacin, and four conventional antimycobacterial drugs against Mycobacterium kansasii. Antimicrob. Agents Chemother.48(12), 4562–4565 (2004).
  • Sriram D , YogeeswariP, GopalG. Synthesis, anti-HIV and antitubercular activities of lamivudine prodrugs.Eur. J. Med. Chem.40(12), 1373–1376 (2005).
  • Sriram D , YogeeswariP, BashaJS, RadhaDR, NagarajaV. Synthesis and antimycobacterial evaluation of various 7-substituted ciprofloxacin derivatives.Bioorg. Med. Chem.13(20), 5774–5778 (2005).
  • Sriram D , AubryA, YogeeswariP, FisherLM. Gatifloxacin derivatives: synthesis, antimycobacterial activities, and inhibition of Mycobacterium tuberculosis DNA gyrase.Bioorg. Med. Chem. Lett.16(11), 2982–2985 (2006).
  • Sriram D , YogeeswariP, DevakaramRV. Synthesis, in vitro and in vivo antimycobacterial activities of diclofenac acid hydrazones and amides. Bioorg. Med. Chem.14(9), 3113–3118 (2006).
  • Talatha S , GadadAK. Synthesis, antibacterial and antitubercular activities of some 7-[4-(5-amino-[1,3,4]thiadiazole-2-sulfonyl)-piperazin-1-yl] fluoroquinolonic derivatives.Eur. J. Med. Chem.41(8), 918–924 (2006).
  • Arya K , AgarwalM. Microwave prompted multigram synthesis, structural determination, and photo-antiproliferative activity of fluorinated 4-hydroxyquinolinones.Bioorg. Med. Chem. Lett.17(1), 86–93 (2007).
  • Ukrainets IV , MospanovaEV, SidorenkoLV. 4-Hydroxy-2-quinolones. 122. 1-hydroxy-3-oxo-5,6-dihydro-3h-pyrrolo[3,2,1-ij]-quinoline-2-carboxylic acid hetarylamides as potential antitubercular agents. Chem. Heterocycl. Comp.43(7), 863–870 (2007).
  • Dinakaran M , SenthilkumarP, YogeeswariP, ChinaA, NagarajaVM, SriramD. Antimycobacterial activities of novel 2-(sub)-3-fluoro/nitro-5, 12-dihydro-5-oxobenzothiazolo[3,2-a]quinoline-6-carboxylic acid.Bioorg. Med. Chem.16(6), 3408–3418 (2008).
  • Senthilkumar P , DinakaranM, YogeeswariP, SriramD, ChinaA, NagarajaV. Synthesis and antimycobacterial activities of novel 6-nitroquinolone-3-carboxylic acids.Eur. J. Med. Chem.44(1), 345–358 (2009).
  • Carta A , PalombaM, PagliettiGet al. [1,2,3] triazolo[4,5-h]quinolones. A new class of potent antitubercular agents against multidrug resistant Mycobacterium tuberculosis strains. Bioorg. Med. Chem. Lett. 17(17), 4791–4794 (2007).
  • Carta A , PirasS, PalombaM, JabesD, MolicottiP, ZanettiS. Anti-mycobacterial activity of quinolones. Triazoloquinolones a new class of potent anti-mycobacterial agents.Anti-Infective Agents in Med. Chem.7(2), 134–147 (2008).
  • Dinakaran M , SenthilkumarP, YogeeswariP, ChinaA, NagarajaV, SriramD. Novel ofloxacin derivatives: synthesis, antimycobacterial and toxicological evaluation.Bioorg. Med. Chem. Lett.18(3), 1229–1236 (2008).
  • Senthilkumar P , DinakaranM, BanerjeeDet al. Synthesis and antimycobacterial evaluation of newer 1-cyclopropyl-1,4-dihydro-6-fluoro-7-(substituted secondary amino)-8-methoxy-5-(sub)-4-oxoquinoline-3-carboxylic acids. Bioorg. Med. Chem. 16(5), 2558–2569 (2008).
  • Dinakaran M , SenthilkumarP, YogeeswariP, ChinaA, NagarajaV, SriramD. Antimycobacterial and phototoxic evaluation of novel 6-fluoro/nitro-4-oxo-7-(sub)-4H-[1,3]thiazeto[3,2-a]quinoline-3-carboxylic acid. Int. J. Antimicrob. Agents31(4), 337–344 (2008).
  • Senthilkumar P , DinakaranM, ChandraseakaranY, YogeeswariP, SriramD. Synthesis and in vitro antimycobacterial evaluation of 1-(cyclopropyl/2,4-difluorophenyl/tert-butyl)-1,4-dihydro-8-methyl-6-nitro-4-oxo-7-(substituted secondary amino)quinoline-3-carboxylic acids. Arch. Pharm. Chem. Life Sci.342(2), 100–112 (2009).
  • Senthilkumar P , DinakaranM, YogeeswariP, ChinaA, NagarajaV, SriramD. Antimycobacterial activities of novel fluoroquinolones.Biomed. Pharmacother.63(1), 27–35 (2009).
  • de Almeida MV , SaraivaMF, de Souza MVN, da Costa CF, Vicente FRC, Lourenco MCS. Synthesis and antitubercular activity of lipophilic moxifloxacin and gatifloxacin derivatives. Bioorg. Med. Chem. Lett.17(20), 5661–5664 (2007).
  • Sriram D , YogeeswariP, SenchaniG, BanerjeeD. Newer tetracycline derivatives: synthesis, anti-HIV, antimycobacterial activities and inhibition of HIV-1 integrase.Bioorg. Med. Chem. Lett.17(8), 2372–2375 (2007).
  • Andreani A , GranaiolaM, LeoniA, LocatelliA, MorigiR, RambaldiM. Synthesis and antitubercular activity of imidazo[2,1-b]thiazoles. Eur. J. Med. Chem.36(9), 743–746 (2001).
  • Kolavi G , HegdeV, KhaziaIA, GadadP. Synthesis and evaluation of antitubercular activity of imidazo[2,1-b][1,3,4]thiadiazole derivatives.Bioorg. Med. Chem.14(9), 3069–3080 (2006).
  • Zwawiak J , OlenderD, ZwolskaZ, Augustynowicz-KopecE, ZaprutkoL. Synthesis of 2,3-dihydro-7-nitroimidazo[5,1-b]oxazoles as potential tuberculostatic agents.Acta Poloniae Pharmaceutica-Drug Research,65(2), 229–233 (2008).
  • Kamal A , ReddyKS, AhmedSKet al. Anti-tubercular agents. Part 3. Benzothiadiazine as a novel scaffold for anti-Mycobacterium activity. Bioorg. Med. Chem. 14(3), 650–658 (2006).
  • Kamal A , AhmedSK, ReddyKSet al. Anti-tubercular agents. Part IV: synthesis and antimycobacterial evaluation of nitroheterocyclic-based 1,2,4-benzothiadiazines. Bioorg. Med. Chem. Lett. 17(19), 5419–5422 (2007).
  • Kumar RR , PerumalS, SenthilkumarP, YogeeswariP, SriramD. An atom efficient, solvent-free, green synthesis and antimycobacterial evaluation of 2-amino-6-methyl-4-aryl-8-[(E)-arylmethylidene]-5,6,7,8-tetrahydro-4H-pyrano[3,2-c]pyridine-3-carbonitriles. Bioorg. Med. Chem. Lett.17(23), 6459–6462 (2007).
  • Tripathi RP , VermaSS, PandeyJet al. Search of antitubercular activities in tetrahydroacridines: synthesis and biological evaluation. Bioorg. Med. Chem. Lett. 16(19), 5144–5147 (2006).
  • Reddy VM , O‘SullivanJF, GangadharamPR. Antimycobaterial activites of riminophenazines.J. Antimicrob. Chemother.43(5), 615–623 (1999).
  • Matlola NM , SteelHC, AndersonR. Antimycobacterial action of B4128, a novel tetramethylpiperidyl-substituted phenazine.J. Antimicrob. Chemother.47(2), 199–202 (2001).
  • Kamal A , BabuAH, RamanaAV, SinhaR, YadavJS, AroraSK. Antitubercular agents. Part 1: Synthesis of phthalimido- and naphthalimido-linked phenazines as new prototype antitubercular agents.Bioorg. Med. Chem. Lett.15(7), 1923–1926 (2005).
  • De Logu A , PalchykovskaLH, KostinaVHet al. Novel N-aryl- and N-heteryl phenazine-1-carboxamides as potential agents for the treatment of infections sustained by drug-resistant and multidrug-resistant Mycobacterium tuberculosis. Int. J. Antimicrob. Agents 33(3), 223–229 (2009).
  • Madrid PB , PolgarWE, TollL, TangaaMJ. Synthesis and antitubercular activity of phenothiazines with reduced binding to dopamine and serotonin receptors.Bioorg. Med. Chem. Lett.17(11), 3014–3017 (2007).
  • Bate AB , KalinJH, FooksmanEMet al. Synthesis and antitubercular activity of quaternized promazine and promethazine derivatives. Bioorg. Med. Chem. Lett. 17(5), 1346–1348 (2007).
  • Silva RSF , PintoMCFR, GoulartMOFet al. A macrolactone from benzo[a]phenazine with potent activity against Mycobacterium tuberculosis. Eur. J. Med. Chem. 44(5), 2334–2337 (2009).
  • Velezheva VS , BrennanPJ, MarshakovVYet al. Novel pyridazino[4,3-b]indoles with dual inhibitory activity against Mycobacterium tuberculosis and monoamine oxidase. J. Med. Chem. 47(13). 3455–3461 (2004).
  • Karthikeyan SV , PerumalS, ShettyKA, YogeeswariP, SriramD. A microwave-assisted facile regioselective Fischer indole synthesis and antitubercular evaluation of novel 2-aryl-3,4-dihydro-2H-thieno[3,2-b]indoles.Bioorg. Med. Chem. Lett.19(11), 3006–3009 (2009).
  • Guillon J , ReynoldsRC, Leger J-M et al. Synthesis and preliminary in vitro evaluation of antimycobacterial activity of new pyrrolo[1,2-a] quinoxaline-carboxylic acid hydrazide derivatives. J. Enz. Inhib. Med. Chem.19(6), 489–495 (2004).
  • Scozzafava A , MastrolorenzoA, SupuranCT. Antimycobacterial activity of 3,4-dichlorophenyl-ureas, N,N-diphenyl-ureas and related derivatives. J. Enzyme Inhib.16(3), 425–432 (2001).
  • Copp BR , ChristiansenHC, LindsayBS, FranzblauSG. Identification of heteroarylenamines as a new class of antituberculosis lead molecules.Bioorg. Med. Chem. Lett.15(18), 4097–4099 (2005).
  • Prado S , LedeitH, MichelSet al. Benzofuro[3,2-f][1]benzopyrans: a new class of antitubercular agents. Bioorg. Med. Chem. 14(15), 5423–5428 (2006).
  • Prado S , JaninYL, Saint-JoanisBet al. Synthesis and antimycobacterial evaluation of benzofurobenzopyran analogues. Bioorg. Med. Chem. 15(5), 2177–2186 (2007).
  • Alvey L , PradoS, HuteauVet al. A new synthetic access to furo[3,2-f]chromene analogues of an antimycobacterial. Bioorg. Med. Chem. 16(17), 8264–8272 (2008).
  • Alvey L , PradoS, Saint-JoanisBet al. Diversity-oriented synthesis of furo[3,2-f]chromanes with antimycobacterial activity. Eur. J. Med. Chem. 44(6), 2497–2505 (2009).
  • Xu Z -Q, Pupek K, Suling WJ, Enache L, Flavin MT. Pyranocoumarin, a novel anti-TB pharmacophore: synthesis and biological evaluation against Mycobacterium tuberculosis. Bioorg. Med. Chem.14(13), 4610–4626 (2006).
  • Hotoda H , FurukawaM, DaigoMet al. Synthesis and antimycobacterial activity of capuramycin analogues. Part 1: substitution of the azepan-2-one moiety of capuramycin. Bioorg. Med. Chem. Lett. 13(17), 2829–2832 (2003).
  • Hotoda H , DaigoM, FurukawaMet al. Synthesis and antimycobacterial activity of capuramycin analogues. Part 2: acylated derivatives of capuramycin-related compounds. Bioorg. Med. Chem. Lett. 13(17), 2833–2836 (2003).
  • AM Ende CW , KnudsonSE, LiuNet al. Synthesis and in vitro antimycobacterial activity of B-ring modified diaryl ether InhA inhibitors. Bioorg. Med. Chem. Lett. 18(10), 3029–3033 (2008).
  • Jean L , SantosJL, YamasakiPRet al. Synthesis and in vitro anti Mycobacterium tuberculosis activity of a series of phthalimide derivatives. Bioorg. Med. Chem. 17(11), 3795–3799 (2009).
  • Parai MK , PandaG, ChaturvediV, ManjuYK, SinhaS. Thiophene containing triarylmethanes as antitubercular agents.Bioorg. Med. Chem. Lett.18(1), 289–292 (2008).
  • Panda G , ParaiMK, DasSKet al. Effect of substituents on diarylmethanes for antitubercular activity. Eur. J. Med. Chem. 42(3), 410–419 (2007).
  • Karthikeyan SV , BalaBD, RajaVPA, PerumalS, YogeeswariP, SriramD. A highly atom economic, chemo-, regio- and stereoselective synthesis and evaluation of spiro-pyrrolothiazoles as antitubercular agents.Bioorg. Med. Chem. Lett.20(1), 350–353 (2010).
  • Raparti V , ChitreT, BotharaKet al. Novel 4-(morpholin-4-yl)-N´- (arylidene)benzohydrazides: synthesis, antimycobacterial activity and QSAR investigations. Eur. J. Med. Chem. 44(10), 3954–3960 (2009).
  • Odell LR , NilssonMT, GisingJet al. Functionalized 3-amino-imidazo[1,2- a]pyridines: a novel class of drug-like Mycobacterium tuberculosis glutamine synthetase inhibitors. Bioorg. Med. Chem. Lett. 19(16), 4790–4793 (2009).
  • Figueiredo R , MoiteiroC, MedeirosMAet al. Synthesis and evaluation of rifabutin analogs against Mycobacterium avium and H37Rv, MDR and NRP Mycobacterium tuberculosis. Bioorg. Med. Chem. 17(2), 503–511 (2009).
  • Guo S , SongY, HuangQet al. Identification, synthesis, and pharmacological evaluation of tetrahydroindazole based ligands as novel antituberculosis agents. J. Med. Chem. 53(2), 649–659 (2010).
  • Makarov V , ManinaG, MikusovaKet al. Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis. Science 324(5928), 801–804 (2009).
  • Abdel-Rahman HM , El-KoussiNA, HassanHY. Fluorinated 1,2,4-triazolo[1,5-a]pyrimidine-6-carboxylic acid derivatives as antimycobacterial agents.Arch. Pharm. Chem. Life Sci.342(2), 94–99 (2009).
  • Maddry JA , AnanthanS, GoldmanRCet al. Antituberculosis activity of the molecular libraries screening center network library. Tuberculosis. 89(5), 354– 363 (2009).
  • Ananthan S , FaaleoleaER, GoldmanRCet al. High-throughput screening for inhibitors of Mycobacterium tuberculosis H37Rv. Tuberculosis 89(5), 334–353 (2009).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.