12,815
Views
0
CrossRef citations to date
0
Altmetric
Review

Protein Tyrosine Phosphatases as Drug Targets: Strategies and Challenges of Inhibitor Development

Pages 1563-1576 | Published online: 13 Oct 2010

Bibliography

  • Soulsby M , BennettAM. Physiological signaling specificity by protein tyrosine phosphatases.Physiology (Bethesda)24, 281–289 (2009).
  • Manning G , WhyteDB, MartinezR, HunterT, SudarsanamS. The protein kinase complement of the human genome.Science298(5600), 1912–1934 (2002).
  • Alonso A , SasinJ, BottiniNet al. Protein tyrosine phosphatases in the human genome. Cell 117(6), 699–711 (2004).
  • Shi Y . Serine/threonine phosphatases: mechanism through structure.Cell139(3), 468–484 (2009).
  • Genome-wide association study of 14,000 cases of seven common diseases and 3000 shared controls. Nature447(7145), 661–678 (2007).
  • Tautz L , PellecchiaM, MustelinT. Targeting the PTPome in human disease.Expert Opin. Ther. Targets10(1), 157–177 (2006).
  • Easty D , GallagherW, BennettDC. Protein tyrosine phosphatases, new targets for cancer therapy.Curr. Cancer Drug Targets6(6), 519–532 (2006).
  • Ostman A , HellbergC, BohmerFD. Protein-tyrosine phosphatases and cancer.Nat. Rev. Cancer, 6(4), 307–320 (2006).
  • Wang Z , ShenD, ParsonsDWet al. Mutational analysis of the tyrosine phosphatome in colorectal cancers. Science304(5674), 1164–1166 (2004).
  • Bottini N , MusumeciL, AlonsoAet al. A functional variant of lymphoid tyrosine phosphatase is associated with Type I diabetes. Nat. Genet. 36(4), 337–338 (2004).
  • Stanford SM , MustelinTM, BottiniN. Lymphoid tyrosine phosphatase and autoimmunity: human genetics rediscovers tyrosine phosphatases.Semin. Immunopathol.32(2), 127–136 (2010).
  • Muise AM , WaltersT, WineEet al. Protein-tyrosine phosphatase sigma is associated with ulcerative colitis. Curr. Biol. 17(14), 1212–1218 (2007).
  • Elchebly M , PayetteP, MichaliszynEet al. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 283(5407), 1544–1548 (1999).
  • Blaskovich MA . Drug discovery and protein tyrosine phosphatases.Curr. Med. Chem.16(17), 2095–2176 (2009).
  • Bentires-Alj M , NeelBG. Protein-tyrosine phosphatase 1B is required for HER2/Neu-induced breast cancer.Cancer Res.67(6), 2420–2424 (2007).
  • Julien SG , DubeN, ReadMet al. Protein tyrosine phosphatase 1B deficiency or inhibition delays ErbB2-induced mammary tumorigenesis and protects from lung metastasis. Nature Genet. 39(3), 338–346 (2007).
  • Tonks NK , MuthuswamySK. A brake becomes an accelerator: PTP1B – a new therapeutic target for breast cancer.Cancer Cell11(3), 214–216 (2007).
  • Liu G . Technology evaluation: ISIS-113715, Isis.Curr. Opin. Mol. Ther.6(3), 331–336 (2004).
  • Zinker BA , RondinoneCM, TrevillyanJMet al. PTP1B antisense oligonucleotide lowers PTP1B protein, normalizes blood glucose, and improves insulin sensitivity in diabetic mice. Proc. Natl Acad. Sci. USA 99(17), 11357–11362 (2002).
  • Czernilofsky AP , LevinsonAD, VarmusHE, BishopJM, TischerE, GoodmanHM. Nucleotide sequence of an avian sarcoma virus oncogene (src) and proposed amino acid sequence for gene product. Nature287(5779), 198–203 (1980).
  • Guan KL , HaunRS, WatsonSJ, GeahlenRL, DixonJE. Cloning and expression of a protein-tyrosine-phosphatase.Proc. Natl Acad. Sci.USA87(4), 1501–1505 (1990).
  • Iversen LF , MollerKB, PedersenAKet al. Structure determination of T cell protein-tyrosine phosphatase. J. Biol. Chem. 277(22), 19982–19990 (2002).
  • You-Ten KE , MuiseES, ItieAet al. Impaired bone marrow microenvironment and immune function in T cell protein tyrosine phosphatase-deficient mice. J. Exp. Med. 186(5), 683–693 (1997).
  • Hassan SW , DoodyKM, HardyS, UetaniN, CournoyerD, TremblayML. Increased susceptibility to dextran sulfate sodium induced colitis in the T cell protein tyrosine phosphatase heterozygous mouse.PloS ONE5(1), e8868 (2010).
  • Tautz L , MustelinT. Strategies for developing protein tyrosine phosphatase inhibitors.Methods42(3), 250–260 (2007).
  • McGovern SL , CaselliE, GrigorieffN, ShoichetBK. A common mechanism underlying promiscuous inhibitors from virtual and high-throughput screening.J. Med. Chem.45(8), 1712–1722 (2002).
  • Guertin KR , SettiL, QiLet al. Identification of a novel class of orally active pyrimido[5,4–3][1,2,4]triazine-5,7-diamine-based hypoglycemic agents with protein tyrosine phosphatase inhibitory activity. Bioorg. Med. Chem. Lett. 13(17), 2895–2898 (2003).
  • Wang Q , DubeD, FriesenRWet al. Catalytic inactivation of protein tyrosine phosphatase CD45 and protein tyrosine phosphatase 1B by polyaromatic quinones. Biochemistry 43(14), 4294–4303 (2004).
  • Montalibet J , SkoreyKI, KennedyBP. Protein tyrosine phosphatase: enzymatic assays.Methods35(1), 2–8 (2005).
  • Perrin D , FremauxC, BessonD, SauerWH, ScheerA. A microfluidics-based mobility shift assay to discover new tyrosine phosphatase inhibitors. .J Biomol. Screen11(8), 996–1004 (2006).
  • Byon JC , KusariAB, KusariJ. Protein-tyrosine phosphatase-1B acts as a negative regulator of insulin signal transduction.Mol. Cell. Biochem.182(1–2), 101–108 (1998).
  • Walchli S , CurchodML, GobertRP, ArkinstallS, Hooft van Huijsduijnen R. Identification of tyrosine phosphatases that dephosphorylate the insulin receptor. A brute force approach based on ‘substrate-trapping’ mutants. J. Biol. Chem.275(13), 9792–9796 (2000).
  • Salmeen A , AndersenJN, MyersMP, TonksNK, BarfordD. Molecular basis for the dephosphorylation of the activation segment of the insulin receptor by protein tyrosine phosphatase 1B.Mol. Cell6(6), 1401–1412 (2000).
  • Bence KK , DelibegovicM, XueBet al. Neuronal PTP1B regulates body weight, adiposity and leptin action. Nat. Med. 12(8), 917–924 (2006).
  • Delibegovic M , BenceKK, ModyNet al. Improved glucose homeostasis in mice with muscle-specific deletion of protein-tyrosine phosphatase 1B. Mol. Cell. Biol. 27(21), 7727–7734 (2007).
  • Puius YA , ZhaoY, SullivanM, LawrenceDS, AlmoSC, ZhangZY. Identification of a second aryl phosphate-binding site in protein-tyrosine phosphatase 1B: a paradigm for inhibitor design.Proc. Natl Acad. Sci. USA94(25), 13420–13425 (1997).
  • Andersen HS , IversenLF, JeppesenCBet al. 2-(Oxalylamino)-benzoic acid is a general, competitive inhibitor of protein-tyrosine phosphatases. J. Biol. Chem. 275(10), 7101–7108 (2000).
  • Burke TR Jr. Design and synthesis of phosphonodifluoromethyl phenylalanine (F2Pmp): a useful phosphotyrosyl mimetic. Curr. Top. Med. Chem.6(14), 1465–1471 (2006).
  • Shen K , KengYF, WuL, GuoXL, LawrenceDS, ZhangZY. Acquisition of a specific and potent PTP1B inhibitor from a novel combinatorial library and screening procedure.J. Biol. Chem.276(50), 47311–47319 (2001).
  • Sun JP , FedorovAA, LeeSYet al. Crystal structure of PTP1B complexed with a potent and selective bidentate inhibitor. J. Biol. Chem. 278(14), 12406–12414 (2003).
  • Boutselis IG , YuX, ZhangZY, BorchRF. Synthesis and cell-based activity of a potent and selective protein tyrosine phosphatase 1B inhibitor prodrug.J. Med. Chem.50(4), 856–864 (2007).
  • Scapin G , PatelSB, BeckerJWet al. The tructural basis for the selectivity of benzotriazole inhibitors of PTP1B. Biochemistry 42(39), 11451–11459 (2003).
  • Combs AP . Recent advances in the discovery of competitive protein tyrosine phosphatase 1B inhibitors for the treatment of diabetes, obesity, and cancer.J. Med. Chem.53(6), 2333–2344 (2010).
  • Ala PJ , GonnevilleL, HillmanMet al. Structural insights into the design of nonpeptidic isothiazolidinone-containing inhibitors of protein-tyrosine phosphatase 1B. J. Biol. Chem. 281(49), 38013–38021 (2006).
  • Combs AP , ZhuW, CrawleyMLet al. Potent benzimidazole sulfonamide protein tyrosine phosphatase 1B inhibitors containing the heterocyclic (S)-isothiazolidinone phosphotyrosine mimetic. J. Med Chem. 49(13), 3774–3789 (2006).
  • Douty B , WaylandB, AlaPJet al. Isothiazolidinone inhibitors of PTP1B containing imidazoles and imidazolines. Bioorg. Med. Chem. Lett. 18(1), 66–71 (2008).
  • Szczepankiewicz BG , LiuG, HajdukPJet al. Discovery of a potent, selective protein tyrosine phosphatase 1B inhibitor using a linked-fragment strategy. J. Am. Chem. Soc. 125(14), 4087–4096 (2003).
  • Liu G , XinZ, LiangHet al. Selective protein tyrosine phosphatase 1B inhibitors: targeting the second phosphotyrosine binding site with noncarboxylic acid-containing ligands. J. Med. Chem. 46(16), 3437–3440 (2003).
  • Liu G , XinZ, PeiZet al. Fragment screening and assembly: a highly efficient approach to a selective and cell active protein tyrosine phosphatase 1B inhibitor. J. Med. Chem. 46(20), 4232–4235 (2003).
  • Hartshorn MJ , MurrayCW, CleasbyA, FredericksonM, TickleIJ, JhotiH. Fragment-based lead discovery using x-ray crystallography.J. Med. Chem.48(2), 403–413 (2005).
  • Doman TN , McGovernSL, WitherbeeBJet al. Molecular docking and high-throughput screening for novel inhibitors of protein tyrosine phosphatase-1B. J. Med. Chem. 45(11), 2213–2221 (2002).
  • Malamas MS , SredyJ, MoxhamCet al. Novel benzofuran and benzothiophene biphenyls as inhibitors of protein tyrosine phosphatase 1B with antihyperglycemic properties. J. Med. Chem. 43(7), 1293–1310 (2000).
  • Erbe DV , WangS, ZhangYLet al. Ertiprotafib improves glycemic control and lowers lipids via multiple mechanisms. Mol. Pharm. 67(1), 69–77 (2005).
  • Kumar A , AhmadP, MauryaRA, SinghAB, SrivastavaAK. Novel 2-aryl-naphtho[1,2-d]oxazole derivatives as potential PTP-1B inhibitors showing antihyperglycemic activities.Eur. J. Med. Chem.44(1), 109–116 (2009).
  • Wilson DP , WanZK, XuWXet al. Structure-based optimization of protein tyrosine phosphatase 1B inhibitors: from the active site to the second phosphotyrosine binding site. J. Med. Chem. 50(19), 4681–4698 (2007).
  • Ye D , ZhangY, WangFet al. Novel thiophene derivatives as PTP1B inhibitors with selectivity and cellular activity. Bioorg. Med. Chem. 18(5), 1773–1782 (2010).
  • Fukuda S , OhtaT, SakataSet al. Pharmacological profiles of a novel protein tyrosine phosphatase 1B inhibitor, JTT-551. Diabetes, Obes. Metab. 12(4), 299–306 (2010).
  • Colca JR . Discontinued drug in 2007: renal, endocrine and metabolic drugs.Expert Opin Investig. Drugs, 17(11), 1641–1650 (2008).
  • Asante-Appiah E , PatelS, DespontsCet al. Conformation-assisted inhibition of protein-tyrosine phosphatase-1B elicits inhibitor selectivity over T-cell protein-tyrosine phosphatase. J. Biol. Chem. 281(12), 8010–8015 (2006).
  • Wiesmann C , BarrKJ, KungJet al. Allosteric inhibition of protein tyrosine phosphatase 1B. Nat. Struct. Mol. Biol. 11(8), 730–737 (2004).
  • Peng H , XieW, OtternessDMet al. Syntheses and biological activities of a novel group of steroidal derived inhibitors for human Cdc25A protein phosphatase. J. Med. Chem. 44(5), 834–848 (2001).
  • Lantz KA , HartSG, PlaneySLet al. Inhibition of PTP1B by trodusquemine (MSI-1436) causes fat-specific weight loss in diet-induced obese mice. Obesity (Silver Spring) 18(8), 1516–1523 (2010).
  • Swarbrick MM , HavelPJ, LevinAAet al. Inhibition of protein tyrosine phosphatase-1B with antisense oligonucleotides improves insulin sensitivity and increases adiponectin concentrations in monkeys. Endocrinology 150(4), 1670–1679 (2009).
  • Pao LI , BadourK, SiminovitchKA, NeelBG. Nonreceptor protein-tyrosine phosphatases in immune cell signaling.Annu. Rev. Immunol.25, 473–523 (2007).
  • Hof P , PluskeyS, Dhe-PaganonS, EckMJ, ShoelsonSE. Crystal structure of the tyrosine phosphatase SHP-2.Cell92(4), 441–450 (1998).
  • Chan G , KalaitzidisD, NeelBG. The tyrosine phosphatase Shp2 (PTPN11) in cancer.Cancer Metastasis Rev.27(2), 179–192 (2008).
  • Tartaglia M , NiemeyerCM, FragaleAet al. Somatic mutations in PTPN11 in juvenile myelomonocytic leukemia, myelodysplastic syndromes and acute myeloid leukemia. Nat. Genet. 34(2), 148–150 (2003).
  • Xu R , YuY, ZhengSet al. Overexpression of Shp2 tyrosine phosphatase is implicated in leukemogenesis in adult human leukemia. Blood 106(9), 3142–3149 (2005).
  • Zhou X , CoadJ, DucatmanB, AgazieYM. SHP2 is up-regulated in breast cancer cells and in infiltrating ductal carcinoma of the breast, implying its involvement in breast oncogenesis.Histopathology53(4), 389–402 (2008).
  • Hatakeyama M . Oncogenic mechanisms of the Helicobacter pylori CagA protein. Nat. Rev. Cancer4(9), 688–694 (2004).
  • Xu R . SHP2, a novel oncogenic tyrosine phosphatase and potential therapeutic target for human leukemia.Cell Res.17(4), 295–297 (2007).
  • Shultz LD , RajanTV, GreinerDL. Severe defects in immunity and hematopoiesis caused by SHP-1 protein-tyrosine-phosphatase deficiency.Trends Biotechnol.15(8), 302–307 (1997).
  • Chen L , SungSS, YipMLet al. Discovery of a novel shp2 protein tyrosine phosphatase inhibitor. Mol. Pharm. 70(2), 562–570 (2006).
  • Lawrence HR , PiredduR, ChenLet al. Inhibitors of Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2) based on oxindole scaffolds. J. Med. Chem. 51(16), 4948–4956 (2008).
  • Noren-Muller A , Reis-CorreaI Jr, Prinz H et al. Discovery of protein phosphatase inhibitor classes by biology-oriented synthesis. Proc. Natl Acad. Sci. USA103(28), 10606–10611 (2006).
  • Hellmuth K , GrosskopfS, LumCTet al. Specific inhibitors of the protein tyrosine phosphatase SHP2 identified by high-throughput docking. Proc. Natl Acad. Sci. USA 105(20), 7275–7280 (2008).
  • Geronikaki A , EleftheriouP, ViciniP, AlamI, DixitA, SaxenaAK. 2-thiazolylimino/heteroarylimino-5-arylidene-4-thiazolidinones as new agents with SHP-2 inhibitory action.J. Med. Chem.51(17), 5221–5228 (2008).
  • Zhang X , HeY, LiuSet al. Salicylic acid based small molecule inhibitor for the oncogenic Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2). J. Med. Chem. 53(6), 2482–2493).
  • Pathak MK , YiT. Sodium stibogluconate is a potent inhibitor of protein tyrosine phosphatases and augments cytokine responses in hemopoietic cell lines.J. Immunol.167(6), 3391–3397 (2001).
  • Kundu S , FanK, CaoMet al. Novel SHP-1 inhibitors tyrosine phosphatase inhibitor-1 and analogs with preclinical anti-tumor activities as tolerated oral agents. J. Immunol. 184(11), 6529–6536 (2010).
  • Vang T , CongiaM, MacisMDet al. Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nat. Genet. 37(12), 1317–1319 (2005).
  • Xie Y , LiuY, GongGet al. Discovery of a novel submicromolar inhibitor of the lymphoid specific tyrosine phosphatase. Bioorg. Med. Chem. Lett. 18(9), 2840–2844 (2008).
  • Yu X , SunJP, HeYet al. Structure, inhibitor, and regulatory mechanism of Lyp, a lymphoid-specific tyrosine phosphatase implicated in autoimmune diseases. Proc. Natl Acad. Sci. USA 104(50), 19767–19772 (2007).
  • Karver MR , KrishnamurthyD, BottiniN, BarriosAM. Gold(I) phosphine mediated selective inhibition of lymphoid tyrosine phosphatase.J. Inorg. Biochem.104(3), 268–273 (2010).
  • Barr AJ , UgochukwuE, LeeWHet al. Large-scale structural analysis of the classical human protein tyrosine phosphatome. Cell 136(2), 352–363 (2009).
  • Wu S , BottiniM, RickertRC, MustelinT, TautzL. In silico screening for PTPN22 inhibitors: active hits from an inactive phosphatase conformation. ChemMedChem4(3), 440–444 (2009).
  • Barr AJ , KnappS. MAPK-specific tyrosine phosphatases: new targets for drug discovery?.Trends Pharmacol Sci.27(10), 525–530 (2006).
  • Braithwaite SP , PaulS, NairnAC, LombrosoPJ. Synaptic plasticity: one STEP at a time.Trends Neurosci.29(8), 452–458 (2006).
  • Eswaran J , von KriesJP, MarsdenBet al. Crystal structures and inhibitor identification for PTPN5, PTPRR and PTPN7: a family of human MAPK-specific protein tyrosine phosphatases. Biochem. J.395(3), 483–491 (2006).
  • Senis YA , TomlinsonMG, EllisonSet al. The tyrosine phosphatase CD148 is an essential positive regulator of platelet activation and thrombosis. Blood 113(20), 4942–4954 (2009).
  • Takahashi T , TakahashiK, MernaughRL, TsuboiN, LiuH, DanielTO. A monoclonal antibody against CD148, a receptor-like tyrosine phosphatase, inhibits endothelial-cell growth and angiogenesis.Blood108(4), 1234–1242 (2006).
  • Kahn SE , HullRL, UtzschneiderKM. Mechanisms linking obesity to insulin resistance and Type II diabetes.Nature444(7121), 840–846 (2006).
  • Delibegovic M , ZimmerD, KauffmanCet al. Liver-specific deletion of protein-tyrosine phosphatase 1B (PTP1B) improves metabolic syndrome and attenuates diet-induced endoplasmic reticulum stress. Diabetes 58(3), 590–599 (2009).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.