170
Views
0
CrossRef citations to date
0
Altmetric
Review

Applications of Molecular Mri and Optical Imaging in Cancer

, , , , , & show all
Pages 975-988 | Published online: 14 Jun 2010

Bibliography

  • Hanahan D , WeinbergRA. The hallmarks of cancer.Cell100, 57–70 (2000).
  • Loberg RD , BradleyDA, TomlinsSA, ChinnaiyanAM, PientaKJ. The lethal phenotype of cancer: the molecular basis of death due to malignancy.CA Cancer J. Clin.57, 225–241 (2007).
  • Gambhir SS . Molecular imaging of cancer with positron emission tomography.Nat. Rev. Cancer2, 683–693 (2002).
  • Ambrosini V , QuartaC, NanniCet al. Small animal PET in oncology: the road from bench to bedside. Cancer Biother. Radiopharm. 24, 277–285 (2009).
  • Wester HJ . Nuclear imaging probes: from bench to bedside.Clin. Cancer Res.13, 3470–3481 (2007).
  • Plathow C , WeberWA. Tumor cell metabolism imaging.J. Nucl. Med.49(Suppl. 2), 43S–63S (2008).
  • Poeppel TD , KrauseBJ, HeusnerTAet al. PET/CT for the staging and follow-up of patients with malignancies. Eur. J. Radiol. 70, 382–392 (2009).
  • Mariani G , BruselliL, KuwertTet al. A review on the clinical uses of SPECT/CT. Eur. J. Nucl. Med. Mol. Imaging DOI: 10.1007/s00259-010-1390-8 (2010) (Epub ahead of print).
  • Frangioni JV . New technologies for human cancer imaging.J. Clin. Oncol.26, 4012–4021 (2008).
  • Cai W , ChenX. Multimodality molecular imaging of tumor angiogenesis.J. Nucl. Med.49(Suppl. 2), 113S–128S (2008).
  • Reubi JC , MaeckeHR. Peptide-based probes for cancer imaging.J. Nucl. Med.49, 1735–1738 (2008).
  • Mees G , DierckxR, VangestelC, Van de Wiele C. Molecular imaging of hypoxia with radiolabelled agents. Eur. J. Nucl. Med. Mol. Imaging36, 1674–1686 (2009).
  • Waerzeggers Y , MonfaredP, VielTet al. Methods to monitor gene therapy with molecular imaging. Methods 48, 146–160 (2009).
  • De L eon-Rodriguez LM, Lubag AJ, Malloy CR et al. Responsive MRI agents for sensing metabolism in vivo. Acc. Chem. Res.42(7), 948–957 (2009).
  • Glunde K , PathakAP, BhujwallaZM. Molecular-functional imaging of cancer: to image and imagine.Trends Mol. Med.13, 287–297 (2007).
  • Bremer C , NtziachristosV, WeisslederR. Optical-based molecular imaging: contrast agents and potential medical applications.Eur. Radiol.13, 231–243 (2003).
  • Montet X , NtziachristosV, GrimmJ, WeisslederR. Tomographic fluorescence mapping of tumor targets.Cancer Res.65, 6330–6336 (2005).
  • Hielscher AH . Optical tomographic imaging of small animals.Curr. Opin. Biotechnol.16, 79–88 (2005).
  • Shaner NC , SteinbachPA, TsienRY. A guide to choosing fluorescent proteins.Nat. Methods2, 905–909 (2005).
  • Shcherbo D , MerzlyakEM, ChepurnykhTVet al. Bright far-red fluorescent protein for whole-body imaging. Nat. Methods 4, 741–746 (2007).
  • Parungo CP , OhnishiS, KimSWet al. Intra-operative identification of esophageal sentinel lymph nodes with near-infrared fluorescence imaging. J. Thorac. Cardiovasc. Surg. 129, 844–850 (2005).
  • Brown RM Jr, Millard AC, Campagnola PJ. Macromolecular structure of cellulose studied by second-harmonic generation imaging microscopy. Opt. Lett.28, 2207–2209 (2003).
  • Mohler W , MillardAC, CampagnolaPJ. Second harmonic generation imaging of endogenous structural proteins.Methods29, 97–109 (2003).
  • Pierce MC , JavierDJ, Richards-KortumR. Optical contrast agents and imaging systems for detection and diagnosis of cancer.Int. J. Cancer123, 1979–1990 (2008).
  • Brown E , McKeeT, di Tomaso E et al. Dynamic imaging of collagen and its modulation in tumors in vivo using second-harmonic generation. Nat. Med.9, 796–800 (2003).
  • Fujimoto JG , PitrisC, BoppartSA, BrezinskiME. Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy.Neoplasia2, 9–25 (2000).
  • DaCosta RS , WilsonBC, MarconNE. Optical techniques for the endoscopic detection of dysplastic colonic lesions.Curr. Opin. Gastroenterol.21, 70–79 (2005).
  • Zuluaga AF , FollenM, BoikoI, MalpicaA, Richards-KortumR. Optical coherence tomography: a pilot study of a new imaging technique for noninvasive examination of cervical tissue.Am. J. Obstet. Gynecol.193, 83–88 (2005).
  • Wilder-Smith P , KrasievaT, JungWGet al. Noninvasive imaging of oral premalignancy and malignancy. J. Biomed. Opt. 10, 051601 (2005).
  • Towner RA , SmithN, DoblasSet al. In vivo detection of c-Met expression in a rat C6 glioma model. J. Cell Mol. Med.12, 174–186 (2008).
  • Artemov D , MoriN, RaviR, BhujwallaZM. Magnetic resonance molecular imaging of the HER-2/neu receptor.Cancer Res.63, 2723–2727 (2003).
  • Geninatti C rich S, Bussolati B, Tei L et al. Magnetic resonance visualization of tumor angiogenesis by targeting neural cell adhesion molecules with the highly sensitive gadolinium-loaded apoferritin probe. Cancer Res.66, 9196–9201 (2006).
  • van T ilborg GA, Mulder WJ, van der Schaft DW et al. Improved magnetic resonance molecular imaging of tumor angiogenesis by avidin-induced clearance of nonbound bimodal liposomes. Neoplasia10, 1459–1469 (2008).
  • Gilad AA , McMahonMT, WalczakPet al. Artificial reporter gene providing MRI contrast based on proton exchange. Nat. Biotechnol. 25, 217–219 (2007).
  • McMahon MT , GiladAA, DeLisoMAet al. New ‘multicolor’ polypeptide diamagnetic chemical exchange saturation transfer (DIACEST) contrast agents for MRI. Magn. Reson. Med. 60, 803–812 (2008).
  • Woods M , WoessnerDE, SherryAD. Paramagnetic lanthanide complexes as PARACEST agents for medical imaging.Chem. Soc. Rev.35, 500–511 (2006).
  • Kelly KA , SetlurSR, RossRet al. Detection of early prostate cancer using a hepsin-targeted imaging agent. Cancer Res. 68, 2286–2291 (2008).
  • McIntyre JO , MatrisianLM. Molecular imaging of proteolytic activity in cancer.J. Cell Biochem.90, 1087–1097 (2003).
  • Steeg PS . Tumor metastasis: mechanistic insights and clinical challenges.Nat. Med.12, 895–904 (2006).
  • Koblinski JE , AhramM, SloaneBF. Unraveling the role of proteases in cancer.Clin. Chim. Acta.291, 113–135 (2000).
  • Mazooz G , MehlmanT, LaiTSet al. Development of magnetic resonance imaging contrast material for in vivo mapping of tissue transglutaminase activity. Cancer Res. 65, 1369–1375 (2005).
  • Shiftan L , IsraelyT, CohenMet al. Magnetic resonance imaging visualization of hyaluronidase in ovarian carcinoma. Cancer Res. 65, 10316–10323 (2005).
  • Weissleder R , PittetMJ. Imaging in the era of molecular oncology.Nature452, 580–589 (2008).
  • Grimm J , KirschDG, WindsorSDet al. Use of gene expression profiling to direct in vivo molecular imaging of lung cancer. Proc. Natl Acad. Sci. USA 102, 14404–14409 (2005).
  • McCann CM , WatermanP, FigueiredoJLet al. Combined magnetic resonance and fluorescence imaging of the living mouse brain reveals glioma response to chemotherapy. Neuroimage 45, 360–369 (2009).
  • Ntziachristos V , BremerC, WeisslederR. Fluorescence imaging with near-infrared light: new technological advances that enable in vivo molecular imaging. Eur. Radiol.13, 195–208 (2003).
  • Pathak AP , ArtemovD, NeemanM, BhujwallaZM. Lymph node metastasis in breast cancer xenografts is associated with increased regions of extravascular drain, lymphatic vessel area, and invasive phenotype.Cancer Res.66, 5151–5158 (2006).
  • Pathak AP , ArtemovD, WardBDet al. Characterizing extravascular fluid transport of macromolecules in the tumor interstitium by magnetic resonance imaging. Cancer Res. 65, 1425–1432 (2005).
  • Daldrup-Link HE , BraschRC. Macromolecular contrast agents for MR mammography: current status.Eur. Radiol.13, 354–365 (2003).
  • Parker GJ , ToftsPS. Pharmacokinetic analysis of neoplasms using contrast-enhanced dynamic magnetic resonance imaging.Top Magn. Reson. Imaging10, 130–142 (1999).
  • Tofts PS , BrixG, BuckleyDLet al. Estimating kinetic parameters from dynamic contrast-enhanced T1-weighted MRI of a diffusable tracer: standardized quantities and symbols. J. Magn. Reson. Imaging. 10, 223–232 (1999).
  • Raman V , ArtemovD, PathakAPet al. Characterizing vascular parameters in hypoxic regions: a combined magnetic resonance and optical imaging study of a human prostate cancer model. Cancer Res. 66, 9929–9936 (2006).
  • Schmieder AH , CaruthersSD, ZhangHet al. Three-dimensional MR mapping of angiogenesis with α5β1(ανβ3)-targeted theranostic nanoparticles in the MDA-MB-435 xenograft mouse model. Faseb J. 22, 4179–4189 (2008).
  • Sipkins DA , ChereshDA, KazemiMRet al. Detection of tumor angiogenesis in vivo by αvβ3-targeted magnetic resonance imaging. Nat. Med. 4, 623–626 (1998).
  • Zhang C , JugoldM, WoenneECet al. Specific targeting of tumor angiogenesis by RGD-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 1.5-T magnetic resonance scanner. Cancer Res. 67, 1555–1562 (2007).
  • Lee KC , SudS, MeyerCRet al. An imaging biomarker of early treatment response in prostate cancer that has metastasized to the bone. Cancer Res. 67, 3524–3528 (2007).
  • Zhang C , YanZ, ArangoME, PainterCL, AnderesK. Advancing bioluminescence imaging technology for the evaluation of anticancer agents in the MDA-MB-435-HAL-Luc mammary fat pad and subrenal capsule tumor models.Clin Cancer Res.15, 238–246 (2009).
  • Burton JB , JohnsonM, SatoMet al. Adenovirus-mediated gene expression imaging to directly detect sentinel lymph node metastasis of prostate cancer. Nat. Med. 14, 882–888 (2008).
  • Winnard PT Jr, Kluth JB, Raman V. Noninvasive optical tracking of red fluorescent protein-expressing cancer cells in a model of metastatic breast cancer. Neoplasia8, 796–806 (2006).
  • Harisinghani MG , BarentszJ, HahnPFet al. Noninvasive detection of clinically occult lymph-node metastases in prostate cancer. N. Engl. J. Med. 348, 2491–2499 (2003).
  • Li C , PenetMF, WinnardP, Jr., Artemov D, Bhujwalla ZM. Image-guided enzyme/prodrug cancer therapy. Clin. Cancer Res.14, 515–522 (2008).
  • Ansiaux R , BaudeletC, CronGOet al. Botulinum toxin potentiates cancer radiotherapy and chemotherapy. Clin. Cancer Res. 12, 1276–1283 (2006).
  • Kato Y , OkollieB, ArtemovD. Noninvasive 1H/13C magnetic resonance spectroscopic imaging of the intratumoral distribution of temozolomide. Magn. Reson. Med.55, 755–761 (2006).
  • Chertok B , MoffatBA, DavidAEet al. Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials 29, 487–496 (2008).
  • Mikhaylova M , StasinopoulosI, KatoY, ArtemovD, BhujwallaZM. Imaging of cationic multifunctional liposome-mediated delivery of COX-2 siRNA.Cancer Gene Ther.16, 217–226 (2009).
  • Krishnamachary B , GlundeK, WildesFet al. Noninvasive detection of lentiviral-mediated choline kinase targeting in a human breast cancer xenograft. Cancer Res. 69, 3464–3471 (2009).
  • Glunde K , RamanV, MoriN, BhujwallaZM. RNA interference-mediated choline kinase suppression in breast cancer cells induces differentiation and reduces proliferation.Cancer Res.65, 11034–11043 (2005).
  • Medarova Z , PhamW, FarrarC, PetkovaV, MooreA. In vivo imaging of siRNA delivery and silencing in tumors. Nat. Med.13, 372–377 (2007).
  • Gade TP , KoutcherJA, SpeesWMet al. Imaging transgene activity in vivo. Cancer Res. 68, 2878–2884 (2008).
  • Padhani AR , HusbandJE. Dynamic contrast-enhanced MRI studies in oncology with an emphasis on quantification, validation and human studies.Clin. Radiol.56, 607–620 (2001).
  • Galbraith SM . MR in oncology drug development.NMR Biomed.19, 681–689 (2006).
  • Persigehl T , MatuszewskiL, KesslerTet al. Prediction of antiangiogenic treatment efficacy by iron oxide enhanced parametric magnetic resonance imaging. Invest. Radiol. 42, 791–796 (2007).
  • Krishnan AS , NevesAA, de Backer MM et al. Detection of cell death in tumors by using MR imaging and a gadolinium-based targeted contrast agent. Radiology246, 854–862 (2008).
  • Ardenkjaer-Larsen JH , FridlundB, GramAet al. Increase in signal-to-noise ratio of >10,000 times in liquid-state NMR. Proc. Natl Acad. Sci. USA 100, 10158–10163 (2003).
  • Gallagher FA , KettunenMI, HuDEet al. Production of hyperpolarized [1,4-13C2]malate from [1,4-13C2]fumarate is a marker of cell necrosis and treatment response in tumors. Proc. Natl Acad. Sci. USA 106, 19801–19806 (2009).
  • Baker JH , LamJ, KyleAHet al. Irinophore C, a novel nanoformulation of irinotecan, alters tumor vascular function and enhances the distribution of 5-fluorouracil and doxorubicin. Clin. Cancer Res. 14, 7260–7271 (2008).
  • Bauerle T , BartlingS, BergerMet al. Imaging anti-angiogenic treatment response with DCE-VCT, DCE-MRI and DWI in an animal model of breast cancer bone metastasis. Eur. J. Radiol. (2008).
  • Medarova Z , RashkovetskyL, PantazopoulosP, MooreA. Multiparametric monitoring of tumor response to chemotherapy by noninvasive imaging.Cancer Res.69, 1182–1189 (2009).
  • Gimi B , ArtemovD, LeongT, GraciasDH, BhujwallaZM. MRI of regular-shaped cell-encapsulating polyhedral microcontainers.Magn. Reson. Med.58, 1283–1287 (2007).
  • Sawyers CL . The cancer biomarker problem.Nature452, 548–552 (2008).
  • Neuwelt EA , HamiltonBE, VarallyayCGet al. Ultrasmall superparamagnetic iron oxides (USPIOs): a future alternative magnetic resonance (MR) contrast agent for patients at risk for nephrogenic systemic fibrosis (NSF)? Kidney Int. 75, 465–474 (2009).
  • Ledneva E , KarieS, Launay-VacherV, JanusN, DerayG. Renal safety of gadolinium-based contrast media in patients with chronic renal insufficiency.Radiology250, 618–628 (2009).
  • Perazella MA . Current status of gadolinium toxicity in patients with kidney disease.Clin. J. Am. Soc. Nephrol.4, 461–469 (2009).
  • Day SE , KettunenMI, GallagherFAet al. Detecting tumor response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy. Nat. Med. 13, 1382–1387 (2007).
  • Charafe-Jauffret E , MonvilleF, GinestierCet al. Cancer stem cells in breast: current opinion and future challenges. Pathobiology 75, 75–84 (2008).
  • Wicha MS , LiuS, DontuG. Cancer stem cells: an old idea – a paradigm shift.Cancer Res.66, 1883–1890; discussion 1895–1886 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.