144
Views
0
CrossRef citations to date
0
Altmetric
Research Article

SSAO Substrates Exhibiting Insulin-Like Effects in Adipocytes as a Promising Treatment Option for Metabolic Disorders

, , , , , , , , & show all
Pages 1735-1749 | Published online: 07 Dec 2010

Bibliography

  • Medda R , BellelliA, PecP, FedericoR, ConaA, FlorisG. Copper amine oxidases from plants. In: Copper Amine Oxidases: Structures, Catalytic Mechanisms and Role in Pathophysiology. Floris G, Mondovì B (Eds). CRC Press, FL, USA 39–50 (2009).
  • Pietrangeli P , MorpurgoL, MondovìB, Di Paolo ML, Rigo A. Soluble Copper amine oxidases from mammals. In: Copper Amine Oxidases: Structures, Catalytic Mechanisms and Role in Pathophysiology. Floris G, Mondovì B (Eds). CRC Press, FL, USA 51–68 (2009).
  • Boyce S , TiptonKF, O‘SullivanMIet al. Nomenclature and potential functions of copper amine oxidases. In: Copper Amine Oxidases: Structures, Catalytic Mechanisms and Role in Pathophysiology. Floris G & Mondovì B (Eds). CRC Press, FL, USA 5–18 (2009).
  • Boomsma F , DerkxFH, van den Meiracker AH, Man in‘t Veld AJ, Schalekamp MA. Plasma semicarbazide-sensitive amine oxidase activity is elevated in diabetes mellitus and correlates with glycosylated hemoglobin. Clin. Sci. (Lond.)88, 675–679 (1995).
  • Boomsma F , van den MeirackerAH, WinkelSet al. Circulating semicarbazide-sensitive amine oxidase is raised both in Type I (insulin-dependent), in Type II (non-insulin-dependent) diabetes mellitus and even in childhood Type I diabetes at first clinical diagnosis. Diabetologia42, 233–237 (1999).
  • Garpenstrand H , EkblomJ, BacklundLB, OrelandL, RosenqvistU. Elevated plasma semicarbazide-sensitive amine oxidase (SSAO) activity in Type 2 diabetes mellitus complicated by retinopathy.Diabet. Med.16, 514–521 (1999).
  • Meszaros Z , SzombathyT, RaimondiL, KaradiI, RomicsL, MagyarK. Elevated serum semicarbazide-sensitive amine oxidase activity in non-insulin-dependent diabetes mellitus: correlation with body mass index and serum triglyceride.Metabolism48, 113–117 (1999).
  • Boomsma F , Pedersen-BjergaardU, Agerholm-LarsenBet al. Association between plasma activities of semicarbazide-sensitive amine oxidase and angiotensin-converting enzyme in patients with Type 1 diabetes mellitus. Diabetologia 48, 1002–1007 (2005).
  • Gokturk C , NordquistJ, SugimotoH, Forsberg-NilssonK, NilssonJ, OrelandL. Semicarbazide-sensitive amine oxidase in transgenic mice with diabetes.Biochem. Biophys. Res. Commun.325, 1013–1020 (2004).
  • Visentin V , BourS, BoucherJet al. Glucose handling in streptozotocin-induced diabetic rats is improved by tyramine but not by the amine oxidase inhibitor semicarbazide. Eur. J. Pharmacol. 522, 139–146 (2005).
  • Somfai GM , KnippelB, RuzicskaEet al. Soluble semicarbazide-sensitive amine oxidase (SSAO) activity is related to oxidative stress and subchronic inflammation in streptozotocin-induced diabetic rats. Neurochem. Int. 48, 746–752 (2006).
  • Cioni L , De SienaG, GhelardiniCet al. Activity and expression of semicarbazide-sensitive benzylamine oxidase in a rodent model of diabetes: interactive effects with methylamine and α-aminoguanidine. Eur. J. Pharmacol.529, 179–187 (2006).
  • Ekblom J . Potential therapeutic value of drugs inhibiting semicarbazide-sensitive amine oxidase: vascular cytoprotection in diabetes mellitus.Pharmacol. Res.37, 87–92 (1998).
  • Mátyus P , Dajka-HalászB, FöldiA, HaiderN, BarloccoD, MagyarK. Semicarbazide-sensitive amine oxidase: current status and perspectives.Curr. Med. Chem.11, 1285–1298 (2004).
  • Yu P , ZuoD. Aminoguanidine inhibits semicarbazide-sensitive amine oxidase activity: implications for advanced glycation and diabetic complications.Diabetologia40, 1243–1250 (1997).
  • Gubisne-Haberlé D , HillW, KazachkovM, RichardsonJS, YuPH. Protein cross-linkage induced by formaldehyde derived from semicarbazide-sensitive amine oxidase-mediated deamination of methylamine.J. Pharmacol. Exp. Ther.310, 1125–1132 (2004).
  • Yu PH , WangM, FanH, DengY, Gubisne-HaberléD. Involvement of SSAO-mediated deamination in adipose glucose transport and weight gain in obese diabetic KKAy mice.Am. J. Physiol. Endocrinol. Metab.286, E634–E641 (2004).
  • Prévot D , SolteszZ, AbelloVet al. Prolonged treatment with aminoguanidine strongly inhibits adipocyte semicarbazide-sensitive amine oxidase and slightly reduces fat deposition in obese Zucker rats. Pharmacol. Res. 56, 70–79 (2007).
  • Masini E , RaimondiL. Pharmacological applications of copper amine oxidases. In: Copper Amine Oxidases: Structures, Catalytic Mechanisms and Role in Pathophysiology. Floris G, Mondovì B (Eds). CRC Press, FL, USA 239–252 (2009).
  • Kazachkov M , ChenK, BabiyS, YuPH. Evidence for in vivo scavenging by aminoguanidine of formaldehyde produced via SSAO-mediated deamination. J. Pharmacol. Exp. Ther.322, 1201–1207 (2007).
  • Yu PH , WangM, DengYL, FanH, Shira-BockL. Involvement of semicarbazide-sensitive amine oxidase-mediated deamination in atherogenesis in KKAy diabetic mice fed with high cholesterol diet.Diabetologia45, 1255–1262 (2002).
  • Mercier N , El HadriK, Osborne-PellegrinMet al. Modifications of arterial phenotype in response to amine oxidase inhibition by semicarbazide. Hypertension50, 234–241 (2007).
  • Mercier N , KakouA, ChallandeP, LacolleyP, Osborne-PellegrinM. Comparison of the effects of semicarbazide and β-aminopropionitrile on the arterial extracellular matrix in the Brown Norway rat.Toxicol. Appl. Pharmacol.239, 258–267 (2009).
  • Carpéné C , BourS, VisentinVet al. Amine oxidase substrates for impaired glucose tolerance correction. J. Physiol. Biochem. 61, 405–420 (2005).
  • Moldes M , FèveB, PairaultJ. Molecular cloning of a major mRNA species in murine 3T3 adipocyte lineage. Differentiation-dependent expression, regulation, and identification as semicarbazide-sensitive amine oxidase.J. Biol. Chem.274, 9515–9523. (1999).
  • Bour S , DaviaudD, GrèsSet al. Adipogenesis-related increase of semicarbazide-sensitive amine oxidase and monoamine oxidase in human adipocytes. Biochimie 89, 916–925 (2007).
  • Morris NJ , DucretA, AebersoldR, RossSA, KellerSR, LienhardGE. Membrane amine oxidase cloning and identification as a major protein in the adipocyte plasma membrane.J. Biol. Chem.272, 9388–9392 (1997).
  • Morin N , LizcanoJM, FontanaEet al. Semicarbazide-sensitive amine oxidase substrates stimulate glucose transport and inhibit lipolysis in human adipocytes. J. Pharmacol. Exp. Ther. 297, 563–572 (2001).
  • Zorzano A , AbellaA, MartiL, CarpénéC, PalacinM, TestarX. Semicarbazide-sensitive amine oxidase activity exerts insulin-like effects on glucose metabolism and insulin-signaling pathways in adipose cells.Biochim. Biophys. Acta1647, 3–9 (2003).
  • Enrique-Tarancon G , CastanI, MorinNet al. Substrates of semicarbazide-sensitive amine oxidase cooperate with vanadate to stimulate tyrosine phosphorylation of IRS proteins, phosphatidylinositol 3-kinase activity and GLUT4 translocation in adipose cells. Biochem. J. 350, 171–180 (2000).
  • Lu B , EnnisD, LaiRet al. Enhanced sensitivity of insulin-resistant adipocytes to vanadate is associated with oxidative stress and decreased reduction of vanadate (±5) to vanadyl (±4). J. Biol. Chem. 276, 35589–35598 (2001).
  • Huyer G , LiuS, KellyJet al. Mechanism of inhibition of protein-tyrosine phosphatases by vanadate and pervanadate. J. Biol. Chem. 272, 843–851 (1997).
  • Shisheva A , ShechterY. Mechanism of pervanadate stimulation and potentiation of insulin-activated glucose transport in rat adipocytes: dissociation from vanadate effect.Endocrinology133, 1562–1568 (1993).
  • Nolte LA , HanDH, HansenPA, HuckerKA, HolloszyJO. A peroxovanadium compound stimulates muscle glucose transport as powerfully as insulin and contractions combined.Diabetes52, 1918–1925 (2003).
  • Abella A , MartiL, CampsMet al. Semicarbazide-sensitive amine oxidase/vascular adhesion protein-1 activity exerts an antidiabetic action in Goto–Kakizaki rats. Diabetes 52, 1004–1013 (2003).
  • Marti L , AbellaA, CarpénéC, PalacinM, TestarX, ZorzanoA. Combined treatment with benzylamine and low dosages of vanadate enhances glucose tolerance and reduces hyperglycemia en streptozotocin-induced diabetic rats.Diabetes50, 2061–2068 (2001).
  • Nilsson J , DegermanE, HaukkaMet al. Bis- and tris(pyridyl)amine-oxidovanadium complexes: characteristics and insulin-mimetic potential. Dalton Trans.38, 7902–7911 (2009).
  • Yraola F , Garcia-VicenteS, MartiL, AlbericioF, ZorzanoA, RoyoM. Understanding the mechanism of action of the novel SSAO substrate (C7NH10)6(V10O28).2H2O, a prodrug of peroxovanadate insulin mimetics. Chem. Biol.Drug Des.69, 423–428 (2007).
  • Zorzano A , PalacínM, MartiL, García-VicenteS. Arylalkylamine vanadium salts as new anti-diabetic compounds.J. Inorg. Biochem.103, 559–566 (2009).
  • Soltesz Z , TabiT, HalaszASet al. Studies on the insulinomimetic effects of benzylamine, exogenous substrate of semicarbazide-sensitive amine oxidase enzyme, in streptozotocin induced diabetic rtas. J. Neural Transm. 114, 851–855 (2007).
  • Iffiú-Soltész Z , PrévotD, GrèsSet al. Influence of benzylamine acute and chronic administration of benzylamine on glucose tolerance in diabetic and obese mice fed on very high-fat diet. J. Physiol. Biochem. 63, 305–316 (2007).
  • Iffiú-Soltészv Z , WanecqE, LombaAet al. Chronic benzylamine administration in the drinking water improves glucose tolerance, reduces body weight gain and circulating cholesterol in high-fat diet-fed mice. Pharmacol. Res. 61, 355–363 (2010).
  • El Hadri K , MoldesM, MercierN, AndreaniM, PairaultJ, FèveB. Semicarbazide-sensitive amine oxidase in vascular smooth muscle cells: differentiation-dependent expression and role in glucose uptake.Arterioscler. Thromb. Vasc. Biol.22, 89–94 (2002).
  • Stolen CM , MadanatR, MartiLet al. Semicarbazide sensitive amine oxidase overexpression has dual consequences: insulin mimicry and diabetes-like complications. FASEB J. 18, 702–704 (2004).
  • Boucher J , MasriB, DaviaudDet al. Apelin, a newly identified adipokine up-regulated by insulin and obesity. Endocrinology 146, 1764–1771 (2005).
  • Yraola F , Garcia-VicenteS, Fernandez-RecioJet al. New efficient substrates for semicarbazide-sensitive amine oxidase/VAP-1 enzyme: analysis by SARs and computational docking. J. Med. Chem. 49, 6197–6208 (2006).
  • Yraola F , ZorzanoA, AlbericioF, RoyoM. Structure–activity relationships of SSAO/VAP-1 arylalkylamine-based substrates.ChemMedChem.4, 495–503 (2009).
  • Bonaiuto E , LunelliM, ScarpaM, VettorR, MilanG, DiPaoloML. A structure–activity study to identify novel and efficient substrates of the human semicarbazide-sensitive amine oxidase/VAP1 enzyme.Biochimie92, 858–868 (2010).
  • Dray C , KnaufC, DaviaudDet al. Apelin stimulates glucose utilization in normal and obese insulin-resistant mice. Cell Metab. 8, 437–445 (2008).
  • Carpéné C , DrayC, AttanéCet al. Expanding role for the apelin/APJ system in physiopathology. J. Physiol. Biochem. 63, 359–374 (2007).
  • Valente T , SoléM, UnzetaM. SSAO/VAP-1 protein expression during mouse embryonic development.Dev. Dyn.237, 2585–2593 (2008).
  • Wanecq E , PrévotD, CarpénéC. Lack of direct insulin-like action of visfatin/Nampt/PBEF1 in human adipocytes.J. Physiol. Biochem.65, 351–360 (2009).
  • Iglesias-Osma MC , Garcia-BarradoMJ, VisentinVet al. Benzylamine exhibits insulin-like effects on glucose disposal, glucose transport, and fat cell lipolysis in rabbits and diabetic mice. J. Pharmacol. Exp. Ther. 309, 1020–1028 (2004).
  • Bour S , VisentinV, PrévotDet al. Effects of oral administration of benzylamine on glucose tolerance and lipid metabolism in rats. J. Physiol. Biochem. 61, 371–379 (2005).
  • Carpéné C . Amine oxidases in adipose tissue-related disorders. In: Copper Amine Oxidases: Structures, Catalytic Mechanisms and Role in Pathophysiology. Floris G, Mondovì B (Eds). CRC Press, FL, USA 177–194 (2009).
  • Hayes GR , LockwoodDH. Role of insulin receptor phosphorylation in the insulinomimetic effects of hydrogen peroxide.Proc. Natl Acad. Sci. USA84, 8115–8119 (1987).
  • Krieger-Brauer HI , MeddaPK, KatherH. Insulin-induced activation of NADPH-dependent H2O2 generation in human adipocyte plasma membranes is mediated by Gai2. J. Biol. Chem.272, 10135–10143 (1997).
  • Mahadev K , ZilberingA, ZhuL, GoldsteinBJ. Insulin-stimulated hydrogen peroxide reversibly inhibits protein-tyrosine phosphatase 1B in vivo and enhances the early insulin action cascade. J. Biol. Chem.276(24), 21938–61942 (2001).
  • Müller G , WiedS, OverS, FrickW. Inhibition of lipolysis by palmitate, H2O2 and the sulfonylurea drug, glimepiride, in rat adipocytes depends on cAMP degradation by lipid droplets. Biochemistry47, 1259–1273 (2008).
  • Andersen A . Final report on the safety assessment of benzaldehyde.Int. J. Toxicol.25(Suppl. 1), 11–27 (2006).
  • Solé M , Hernandez-GuillamonM, BoadaM, UnzetaM. p53 phosphorylation is involved in vascular cell death induced by the catalytic activity of membrane-bound SSAO/VAP-1.Biochim. Biophys. Acta1783, 1085–1094 (2008).
  • Langford SD , TrentMB, BoorPJ. Cultured rat vascular smooth muscle cells are resistant to methylamine toxicity: no correlation to semicarbazide-sensitive amine oxidase.Cardiovasc. Toxicol.1, 51–60 (2001).
  • Yu PH , ZuoDM. Formaldehyde produced endogenously via deamination of methylamine. A potential risk factor for initiation of endothelial injury.Atherosclerosis120, 189–197 (1996).
  • Dunkel P , GelainA, BarloccoDet al. Semicarbazide-sensitive amine oxidase/vascular adhesion protein 1: recent developments concerning substrates and inhibitors of a promising therapeutic target. Curr. Med. Chem. 15, 1827–1839 (2008).
  • O‘Sullivan M , MacDougallMB, UnzetaM, LizcanoJM, TiptonKF. Semicarbazide-sensitive amine oxidases in pig dental pulp.Biochim. Biophys. Acta.1647, 333–336 (2003).
  • O‘Sullivan J , O‘SullivanM, TiptonKF, UnzetaM, Del Mar Hernandez M, Davey GP. The inhibition of semicarbazide-sensitive amine oxidase by aminohexoses. Biochim. Biophys. Acta.1647, 367–371 (2003).
  • Kankuri E , VaaliK, KnowlesRGet al. Suppression of acute experimental colitis by a highly selective inducible nitric-oxide synthase inhibitor, N-[3-(aminomethyl)benzyl]acetamidine. J. Pharmacol. Exp. Ther. 298, 1128–1132 (2001).
  • Linscheid P , SeboekD, ZulewskiHet al. Cytokine-induced metabolic effects in human adipocytes are independent of endogenous nitric oxide. Am. J. Physiol. Endocrinol. Metab. 290, E1068–E1077 (2006).
  • Chalon S , TarkiainenJ, GarreauLet al. Pharmacological characterization of N,N-dimethyl-2-(2-amino-4-methylphenyl thio)benzylamine as a ligand of the serotonin transporter with high affinity and selectivity. J. Pharmacol. Exp. Ther. 304, 81–87 (2003).
  • Jakobsson E , NilssonJ, OggD, KleywegtGJ. Structure of human semicarbazide-sensitive amine oxidase/vascular adhesion protein-1.Acta Crystallogr. D Biol. Crystallogr.61, 1550–1562 (2005).
  • Marti L , AbellaA, De La Cruz X et al. Exploring the binding mode of semicarbazide-sensitive amine oxidase/VAP-1: identification of novel substrates with insulin-like activity. J. Med. Chem.47, 4865–4874 (2004).
  • Gallardo-Godoy A , HernandezM, SanzE, UnzetaM. Synthesis of 4-methyl-thio-phenyl-propylamine and the evaluation of its interaction with different amine oxidases.Bioorg. Med. Chem.12, 273–279 (2004).
  • Wang EY , GaoH, Salter-CidLet al. Design, synthesis, and biological evaluation of semicarbazide-sensitive amine oxidase (SSAO) inhibitors with anti-inflammatory activity. J. Med. Chem. 49, 2166–2173 (2006).
  • Stolen CM , Marttila-IchiharaF, KoskinenKet al. Absence of the endothelial oxidase AOC3 leads to abnormal leukocyte traffic in vivo. Immunity 22, 105–115 (2005).
  • Lino CS , SalesTP, GomesPBet al. Anti-diabetic activity of a fraction from Cissus verticillata and tyramine, its main bioactive constituent, in alloxan-induced diabetic rats. Am. J. Pharmacol. Toxicol. 2, 178–188 (2007).
  • Fontana E , BoucherJ, MartiLet al. Amine oxidase substrates mimic several of the insulin effects on adipocyte differentiation in 3T3 F442A cells. Biochem. J. 356, 769–777 (2001).
  • Carpéné C , DaviaudD, BoucherJet al. Short- and long-term insulin-like effects of monoamine oxidase and semicarbazide-sensitive amine oxidase substrates in cultured adipocytes. Metabolism 55, 1397–1405 (2006).
  • Mercier N , MoldesM, El Hadri K, Fève B. Semicarbazide-sensitive amine oxidase activation promotes adipose conversion of 3T3-L1 cells. Biochem. J.358, 335–342 (2001).
  • Subra C , FontanaE, VisentinV, TestarX, CarpénéC. Tyramine and benzylamine partially but selectively mimic insulin action on adipose differentiation in 3T3-L1 cells.J. Physiol. Biochem.59, 209–216 (2003).
  • Bour S , VisentinV, GrèsS, Saulnier-BlacheJS, WabitschM, CarpénéC. Tyramine, benzylamine, and to a lesser extent histamine, partially mimic the adipogenic effect of insulin in a human preadipocyte cell strain.Inflamm. Res.54(Suppl. 1), S60–S61 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.