209
Views
1
CrossRef citations to date
0
Altmetric
Review

GABA Transporters as Targets for New Drugs

&
Pages 211-222 | Published online: 11 Feb 2011

Bibliography

  • Gajcy K , LochynskiS, LibrowskiT. A role of GABA analogues in the treatment of neurological diseases.Curr. Med. Chem.17, 2338–2347 (2010).
  • Soudijn W , van Wijngaarden I. The GABA transporter and its inhibitors. Curr. Med. Chem.7, 1063–1079 (2000).
  • Czuczwar SJ , PatsalosPN. The new generation of GABA enhancers. Potential in the treatment of epilepsy.CNS Drugs15, 339–350 (2001).
  • Magnaghi V . GABA and neuroactive steroid interactions in glia: new roles for old players?Curr. Neuropharmacol.5, 47–64 (2007).
  • Bowery NG , SmartTG. GABA and glycine as neurotransmitters: a brief history.Br. J. Pharmacol.147, S109–S119 (2006).
  • Jasmin L , WuMV, OharaPT. GABA puts a stop to pain.Curr. Drug Targets CNS Neurol. Disord.3, 487–505 (2004).
  • Sarup A , LarssonOM, SchousboeA. GABA transporters and GABA-transaminase as drug targets.Curr. Drug Targets CNS Neurol. Disord.2, 269–277 (2003).
  • During MJ , RyderKM, SpencerDD. Hippocampal GABA transporter function in temporal lobe epilepsy.Nature376, 174–177 (1995).
  • Handbook of Neurochemistry and Molecular Biology. Neural Membranes and Transport . LajthaA, ReithMEA (Eds). Springer Science+Business Media, LLC (2007).
  • Schousboe A , SarupA, LarssonOM, WhiteHS. GABA transporters as drug targets for modulation of GABAergic activity.Biochem. Pharmacol.68, 1557–1563 (2004).
  • Clausen RP , Fr⊘lundB, LarssonOM, SchousboeA, Krogsgaard-LarsenP, WhiteHS. A novel selective γ-aminobutyric acid transport inhibitor demonstrated a functional role for GABA transporter subtype GAT2/BGT-1 in the CNS.Neurochem. Int.48, 637–642 (2006).
  • Dalby NO , ThomsenCH, Fink-JensenAet al. Anticonvulsant properties of two GABA uptake inhibitors NNC 05–2045 and NNC 05–2090, not acting preferentially on GAT-1. Epilepsy Res. 28, 51–61 (1997).
  • Dalby NO . GABA-level increasing and anticonvulsant effects of three different GABA uptake inhibitors.Neuropharmacology39, 2399–2407 (2000).
  • Meldrum BS , RogawskiMA. Molecular targets for antiepileptic drug development.Neurotherapeutics4, 18–61 (2007).
  • Wu Y , WangW, Diez-SampedroA, RichersonGB. Nonvesicular inhibitory neurotransmission via reversal of the GABA transporter GAT-1.Neuron56, 851–865 (2007).
  • Sadock BJ , SadockVA. Kaplan and Sadock’s Concise Textbook of Clinical Psychiatry. 3rd Edition. WoltersKluwer, Lippincott Williams & Wilkins, PA, USA (2008).
  • Dalby NO . Inhibition of γ-aminobutyric acid uptake: anatomy, physiology and effects against epileptic seizures.Eur. J. Pharmacol.479, 127–137 (2003).
  • Madsen KK , ClausenRP, LarssonOM, Krogsgaard-Larsen, Schousboe A, White HS. Synaptic and extrasynaptic GABA transporters as targets for anti-epileptic drugs. J. Neurochem.109, 139–144 (2009).
  • Thoeringer CK , RipkeS, UnschuldPGet al. The GABA transporter 1 (SLC6A1): a novel candidate gene for anxiety disorders. J. Neural Transm. 116, 649–657 (2009).
  • Chiu CS , BrickleyS, JensenKet al. GABA transporter deficiency causes tremor, ataxia, nervousness, and increased GABA-induced tonic conductance in cerebellum. J. Neurosci. 25, 3234–3245 (2005).
  • Eckstein-Ludwig U , FeiJ, SchwarzW. Inhibition of uptake, steady-state currents and transient charge movements generated by the neuronal GABA transporter by various anticonvulsant drugs.Br. J. Pharmacol.128, 92–102 (1999).
  • Smith CGS , BoweryNG, WhiteheadKJ. GABA transporter type 1 (GAT-1) uptake inhibition reduces stimulated aspartate and glutamate release in the dorsal spinal cord in vivo via different GABAergic mechanisms. Neuropharmacology53, 975–981 (2007).
  • Thomsen CH , SorensenPO, EgebjergJ. 1-(3-(9H-carbazol-9-yl)-1-propyl)-4-(2-methoxyphenyl)-4-piperidinol, a novel subtype selective inhibitor of the mouse type II GABA-transporter.Br. J. Pharmacol.120, 983–985 (1997).
  • Liu GX , CaiGQ, CaiYQet al. Reduced anxiety and depression-like behaviors in mice lacking GABA transporter subtype I. Neuropsychopharmacology 32, 1531–1539 (2007).
  • Hu J , QuickMW. Substrate-mediated regulation of γ-aminobutyric acid transporter 1 in rat brain.Neuropharmacology54, 309–318 (2008).
  • Hull C , LiGL, von Gersdorff H. GABA transporters regulate a standing GABAC receptor-mediated current at a retinal presynaptic terminal. J. Neurosci.26, 6979–6984 (2006).
  • Iversen L . Neurotransmitter transporters and their impact on the development of psychopharmacology.Br. J. Pharmacol.147, S82–88 (2006).
  • Vaz SH , Cristovao-FerreiraS, RibeiroJA, SebastiaoAM. Brain-derived neurotrophic factor inhibits GABA uptake by the rat hippocampal nerve terminals.Brain Res.1219, 19–25 (2008).
  • Iversen LL , KellyJS. Uptake and metabolism of γ-aminobutyric acid by neurons and glial cells.Biochem. Pharmacol.24, 933–938 (1975).
  • Iversen LL , NealMJ. The uptake of [3H] GABA by slices of rat cerebral cortex.J. Neurochem.15, 1141–1149 (1968).
  • Madsen KK , WhiteHS, SchousboeA. Neuronal and non-neuronal GABA transporters as targets for antiepileptic drugs.Pharmacol. Ther.125, 394–401 (2010).
  • Czapinski P , BlaszczykB, CzuczwarSJ. Mechanisms of action of antiepileptic drugs.Curr. Top. Med. Chem.5, 3–14 (2005).
  • Luszczki JJ , SwiaderM, Parada-TurskaJ, CzuczwarSJ. Tiagabine synergistically interacts with gabapentin in the electroconvulsive threshold test in mice.Neuropsychopharmacology28, 1817–1830 (2003).
  • Perucca E . An introduction to antiepileptic drugs.Epilepsia46, 31–37 (2005).
  • Rogawski MA . Molecular targets versus models for new antiepileptic drug discovery.Epilepsy Res.68, 22–28 (2006).
  • Ipponi A , LambertiC, MedicaA, BartoliniA, Malmberg-AielloP. Tiagabine antinociception in rodents depends on GABAB receptor activation: parallel antinociception testing and medial thalamus GABA microdialysis. Eur. J. Pharmacol.368, 205–211 (1999).
  • Laughlin TM , TramKV, WilcoxGL, BirnbaumAK. Comparison of antiepileptic drugs tiagabine, lamotrigine, and gabapentin in mouse models of acute, prolonged and chronic nociception.J. Pharmacol. Exp. Ther.302, 1168–1175 (2002).
  • Luszczki JJ . Third-generation antiepileptic drugs: mechanisms of action, pharmacokinetics and interactions.Pharmacol. Rep.61, 197–216 (2009).
  • Kvist T , ChristiansenB, JensenAA, Bräuner-OsborneH. The four human γ-aminobutyric acid (GABA) transporters: pharmacological characterization and validation of a highly efficient screening assay.Comb. Chem. High Throughput Screen.12, 241–249 (2009).
  • Borden LA . GABA transporter heterogeneity: pharmacology and cellular localization.Neurochem. Int.29(4), 335–356 (1996).
  • Krogsgaard-Larsen P . γ-aminobutyric acid agonists, antagonists, and uptake inhibitors. Design and therapeutic aspects.J. Med. Chem.24(12), 1377–1383 (1981).
  • Kragel A , HöfnerG, WannerKT. Novel parent structures for inhibitors of the murine GABA transporters mGAT3 and mGAT4.Eur. J. Pharmacol.519(1), 43–47 (2005).
  • Falch E , Krogsgaard-LarsenP. GABA uptake inhibitors. Syntheses and structure–activity studies on GABA analogues containg diarylbutenyl and diarylmethoxyalkyl N-substituents. Eur. J. Med. Chem.26(1), 69–78 (1991).
  • H⊘g S , GreenwoodJR, MadsenKBet al. Structure–activity relationships of selective GABA uptake inhibitors. Curr. Topics Med. Chem. 6, 1861–1882 (2006).
  • Bolving T , LarssonOM, PickeringDSet al. Action of bicyclic isoxazole GABA analogues on GABA transporters and its relation to anticonvulsant activity. Eur. J. Pharmacol. 375, 367–374 (1999).
  • Sarup A , LarssonOM, BolvingT, Fr⊘lundB, Krogsgaard-LarsenP, SchousboeA. Effects of 3-hydroxy-4-amino-4, 5, 6, 7-tetrahydro-1,2-benzisoxazol (exo-THPO) and its N-substituted analogs on GABA transport in cultured neurons and astrocytes and by the four cloned mouse GABA transporters. Neurochem. Inter.43, 445–451 (2003).
  • Falch E , PerregaardJ, Fr⊘lundBet al. Selective inhibitory of glial GABA uptake: synthesis, absolute stereochemistry, and pharmacology of the enantiomers of 3-hydroxy-4-amino-4,5,6,7-tetrahydro-1,2-benzisoxazole (exo-THPO) and analogues. J. Med. Chem. 42, 5402–5414 (1999).
  • White HS , SarupA, BolvigTet al. Correlation between anticonvulsant activity and inhibitory action on glial γ-aminobutyric acid uptake transporter 1 inhibitor 3-hydroxy-4-amino-4,5,6,7-tetrahydro-1,2-benzisoxazole and its N-alkylated analogs. J. Pharmacol. Exp. Ther. 302(2), 636–644 (2002).
  • Clausen RP , MoltzenEK, PerregaardJet al. Selective inhibitors of GABA uptake: synthesis and molecular pharmacology of 4-N-methylamino-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol analogues. Bioorg. Med. Chem. 13, 895–908 (2005).
  • Ali FE , BondinellWE, DandridgePAet al. Orally active and potent inhibitors of γ-aminobutyric acid uptake. J. Med. Chem. 28, 653–660 (1985).
  • Andersen KE , BraestrupC, GroenwaldFCet al. The synthesis of novel GABA uptake inhibitors. 1. Elucidation of the structure-activity studies leading tot he choice of (R)-1-[4,4-bis(3-methyl-2-thienyl)-3-butenyl]-3-piperidinecarboxylic acid (tiagabine) as an anticonvulsant drug candidate. J. Med. Chem. 36, 1716–1725 (1993).
  • Bialer M , JohannessenSI, KupferbergHJ, LevyRH, PeruccaE, TomsonT. Progress report on new antiepileptic drugs: a summary of the Eighth Eilat Conference (EILAT VIII)Epilepsy Res.73, 1–52 (2007).
  • Kwan P , SillsGJ, BrodieMJ. The mechanism of action of commonly used drugsPharmacol. Ther.90, 21–34 (2001).
  • Pavia MR , LobbestaelSJ, NugielDet al. Structure–activity studies on benzhydrol-containig nipecotic acid and guvacine derivatives as potent, orally-active inhibitors of GABA uptake. J. Med. Chem. 35, 4238–4248 (1992).
  • Andersen KE , SoerensenJL, LauJet al. Synthesis of novel γ-aminobutyric acid (GABA) uptake inhibitors. 5. Preparation and structure–activity studies of tricyclic analogues of known GABA uptake inhibitors. J. Med. Chem. 44, 2152–2163 (2001).
  • Zhao X , HoeslCE, HoefnerGC, WannerKT. Synthesis and biological evaluation of new GABA-uptake inhibitors derived from proline and from pyrrolidine-2-acetic acid.Eur. J. Med. Chem.40, 231–247 (2005).
  • Fuelep G , HoeslCE, HoefnerG, WannerKT. New highly potent GABA uptake inhibitors selective for GAT-1 and GAT-3 derived from (R)- and (S)-proline and homologous pyrrolidine-2-alkanoic acid. Eur. J. Med. Chem.41, 809–824 (2006).
  • Faust MR , HoefnerG, PabelJ, WannerKT. Azetidine derivatives as novel γ-aminobutyric acid inhibitors: synthesis, biological evaluation, and structure–activity relationship.Eur. J. Med. Chem.45, 2453–2466 (2010).
  • Kragler A , HoefnerG, WannerKT. Synthesis and biological evaluation of aminomethylphenol derivatives as inhibitors of the murine GABA transporters mGAT1-mGAT4.Eur. J. Med. Chem.43, 2404–2411 (2008).
  • Cairrão MAR , RibeiroAM, PizzoABet al. Anticonvulsant and GABA uptake inhibition properties of venom fraction from the spiders Parawixia bistriata and Scaptocasa raptorial. Pharm. Biol. 40, 472–477 (2002).
  • Liberato JL , Siqueira Cunha AO, Mortari MR et al. Anticonvulsant and anxiolytic activity of FrPbAII, a novel GABA uptake inhibitor isolated from the venom of the social spider Parawixia bistriata (Araneidae: Araneae) Brain Res.1124, 19–27 (2006).
  • Schousboe A , LarssonOM, SarupA, WhiteHS. Role of the betaine/GABA transporter (BGT-1/GAT2) for the control of epilepsy.Eur. J. Pharmacol.500, 281–287 (2004).
  • Chroscinska-Krawczyk M , RatnarajN, PatsalosPN, CzuczwarSJ. Effect of caffeine on anticonvulsant effects of oxcarbazepin, lamotrigine and tiagabine in a mouse model of generalized tonic–clonic seizures.Pharmacol. Rep.61, 819–826 (2009).
  • Luszczki JJ , CzuczwarSJ. Isobolographic characterization of interactions between vigabatrin and tiagabine in two experimental models of epilepsy.Prog. Neuropsychopharmacol. Biol. Psychiatry31, 529–538 (2007).
  • Cope DW , Di GiovanniG, FysonSJet al. Enhanced tonic GABAA inhibition in typical absence epilepsy. Nat. Med.15, 1392–1398 (2009).
  • Loescher W , FassbenderCP, NoltingB. The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. II. Maximal electroshock seizure models.Epilepsy Res.8, 79–94 (1991).
  • Dudra-Jastrzebska M , Andres-MachMM, SielskiMet al. Pharmacodynamic and pharmacokinetic interaction profile of levetiracetam in combination with gabapentin, tiagabine and vigabatrin in the mouse pentylenetetrazole-induced seizure model: an isobolographic analysis. Eur. J. Pharmacol. 605, 87–94 (2009).
  • Castelli MP . Multi-faceted aspects of γ-hydroxybutyric acid: a neurotransmitter, therapeutic agent and drug of abuse.Med. Chem.8, 1188–1202 (2008).
  • Luszczki JJ , KolaczA, WojdaE, CzuczwarM, PrzesmyckiK, CzuczwarSJ. Synergistic interaction of gabapentin with tiagabine in the hot-plate test in mice: an isobolographic analysis.Pharmacol. Rep.61, 459–467 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.