105
Views
1
CrossRef citations to date
0
Altmetric
Review

Use of Multicomponent Reactions in Developing Small-Molecule Tools to Study GABAA Receptor Mechanism and Function

, &
Pages 243-250 | Published online: 11 Feb 2011

Bibliography

  • The GABA Receptors (3rd Edition) . EnnaSJ, HannsM (Eds). Humana Press, NJ, USA (2007).
  • Inhibitory Regulation of Excitatory Neurotransmission, Vol. 44 . DarlisonMG (Ed.). Springer, Heidelberg, Germany (2008).
  • Mohler H . GABAA receptors in central nervous system disease: anxiety, epilepsy, and insomnia. J. Recept. Signal Transduct. Res.26, 731–740 (2006).
  • Sperk G , FurtingerS, SchwarzerC, PirkerS. GABA and its receptors in epilepsy.Adv. Exp. Med. Biol.548, 92–103 (2004).
  • Sunderhaus JD , MartinSF. Applications of multicomponent reactions to the synthesis of diverse heterocyclic scaffolds.Chemistry15, 1300–1308 (2009).
  • Ganem B . Strategies for innovation in multicomponent reaction design.Acc. Chem. Res.42, 463–472 (2009).
  • Ramon DJ , YusM. Asymmetric multicomp-onent reactions (AMCRs): the new frontier.Angew. Chem. Int. Ed. Engl.44, 1602–1634 (2005).
  • Wang K , DomlingA. Design of a versatile multicomponent reaction leading to 2-amino-5-ketoaryl pyrroles.Chem. Biol. Drug. Des.75, 277–283 (2010).
  • Kumar A , SharmaS, MauryaRA. A novel multi-component reaction of indole, formaldehyde, and tertiary aromaticamines.Tetrahedron Lett.50, 5937–5940 (2009).
  • Olsen RW , SieghartW. GABAA receptors: subtypes provide diversity of function and pharmacology. Neuropharmacology56, 141–148 (2009).
  • Picton AJ , FisherJL. Effect of the α subunit subtype on the macroscopic kinetic properties of recombinant GABA(A) receptors.Brain Res.1165, 40–49 (2007).
  • Prenosil GA , Schneider Gasser EM, Rudolph U, Keist R, Fritschy JM, Vogt KE. Specific subtypes of GABAA receptors mediate phasic and tonic forms of inhibition in hippocampal pyramidal neurons. J. Neurophysiol.96, 846–857 (2006).
  • Glykys J , MannEO, ModyI. Which GABA(A) receptor subunits are necessary for tonic inhibition in the hippocampus?J. Neurosci.28, 1421–1426 (2008).
  • Gao B , FritschyJM, BenkeD, MohlerH. Neuron-specific expression of GABAA-receptor subtypes: differential association of the α1- and α3-subunits with serotonergic and GABAergic neurons. Neuroscience54, 881–892 (1993).
  • Glykys J , PengZ, ChandraD, HomanicsGE, HouserCR, ModyI. A new naturally occurring GABA(A) receptor subunit partnership with high sensitivity to ethanol.Nat. Neurosci.10, 40–48 (2007).
  • Pirker S , SchwarzerC, WieselthalerA, SieghartW, SperkG. GABA(A) receptors: immunocytochemical distribution of 13 subunits in the adult rat brain.Neuroscience101, 815–850 (2000).
  • Williams CA , BellSV, JenkinsA. A residue in loop 9 of the β2-subunit stabilizes the closed state of the GABAA receptor. J. Biol. Chem.285, 7281–7287 (2010).
  • Padgett CL , HanekAP, LesterHA, DoughertyDA, LummisSC. Unnatural amino acid mutagenesis of the GABA(A) receptor binding site residues reveals a novel cation-pi interaction between GABA and β2Tyr97.J. Neurosci.27, 886–892 (2007).
  • Hosie AM , WilkinsME, da Silva HM, Smart TG. Endogenous neurosteroids regulate GABAA receptors through two discrete transmembrane sites. Nature444, 486–489 (2006).
  • Derry JM , DunnSM, DaviesM. Identification of a residue in the γ-aminobutyric acid type A receptor α subunit that differentially affects diazepam-sensitive and -insensitive benzodiazepine site binding.J. Neurochem.88, 1431–1438 (2004).
  • Knabl J , ZeilhoferUB, CrestaniF, RudolphU, ZeilhoferHU. Genuine antihyperalgesia by systemic diazepam revealed by experiments in GABAA receptor point-mutated mice. Pain141, 233–238 (2009).
  • Jensen ML , TimmermannDB, JohansenTH, SchousboeA, VarmingT, AhringPK. The β subunit determines the ion selectivity of the GABAA receptor. J. Biol. Chem.277, 41438–41447 (2002).
  • Baulac S , HuberfeldG, Gourfinkel-AnIet al. First genetic evidence of GABA(A) receptor dysfunction in epilepsy: a mutation in the γ2-subunit gene. Nat. Genet. 28, 46–48 (2001).
  • Dibbens LM , FengHJ, RichardsMCet al. GABRD encoding a protein for extra- or peri-synaptic GABAA receptors is a susceptibility locus for generalized epilepsies. Hum. Mol. Genet. 13, 1315–1319 (2004).
  • Wallace RH , MariniC, PetrouSet al. Mutant GABA(A) receptor γ2-subunit in childhood absence epilepsy and febrile seizures. Nat. Genet. 28, 49–52 (2001).
  • Ramakrishnan L , HessGP. On the mechanism of a mutated and abnormally functioning γ-aminobutyric acid (A) receptor linked to epilepsy.Biochemistry43, 7534–7540 (2004).
  • Hales TG , TangH, BollanKAet al. The epilepsy mutation, γ2(R43Q) disrupts a highly conserved inter-subunit contact site, perturbing the biogenesis of GABAA receptors. Mol. Cell. Neurosci. 29, 120–127 (2005).
  • Kang JQ , ShenW, MacdonaldRL. Why does fever trigger febrile seizures? GABAA receptor γ2 subunit mutations associated with idiopathic generalized epilepsies have temperature-dependent trafficking deficiencies. J. Neurosci.26, 2590–2597 (2006).
  • Martinez-Torres A , MilediR. Expression of γ-aminobutyric acid ρ1 and ρ1 Δ450 as gene fusions with the green fluorescent protein. Proc. Natl Acad. Sci. USA98, 1947–1951 (2001).
  • Korpi ER , GrunderG, LuddensH. Drug interactions at GABA(A) receptors.Prog. Neurobiol.67, 113–159 (2002).
  • Olsen RW , SieghartW. International Union of Pharmacology. LXX. Subtypes of γ-aminobutyric acid(A) receptors: classification on the basis of subunit composition, pharmacology, and function. Update.Pharmacol. Rev.60, 243–260 (2008).
  • Rudolph U , MohlerH. GABA-based therapeutic approaches: GABAA receptor subtype functions. Curr. Opin. Pharmacol.6, 18–23 (2006).
  • Savic MM , MajumderS, HuangSet al. Novel positive allosteric modulators of GABAA receptors: do subtle differences in activity at α1 plus α5 versus α2 plus α3 subunits account for dissimilarities in behavioral effects in rats? Prog. Neuropsychopharmacol. Biol. Psychiatry 34, 376–386 (2010).
  • Rudolph U , CrestaniF, BenkeDet al. Benzodiazepine actions mediated by specific γ-aminobutyric acid(A) receptor subtypes. Nature 401, 796–800 (1999).
  • Carling RW , MadinA, GuiblinAet al. 7-(1,1-dimethylethyl)-6-(2-ethyl-2H-1,2,4-triazol-3-ylmethoxy)-3-(2-fluoro phenyl)-1,2,4-triazolo[4,3-b]pyridazine: a functionally selective γ-aminobutyric acid(A) (GABA(A)) α2/α3-subtype selective agonist that exhibits potent anxiolytic activity but is not sedating in animal models. J. Med. Chem. 48, 7089–7092 (2005).
  • Carling RW , MooreKW, StreetLJet al. 3-phenyl-6-(2-pyridyl)methyloxy-1,2,4-triazolo[3,4-a]phthalazines and analogues: high-affinity γ-aminobutyric acid-A benzodiazepine receptor ligands with α2, α3, and α5-subtype binding selectivity over α1. J. Med. Chem. 47, 1807–1822 (2004).
  • Atack JR , WaffordKA, TyeSJet al. TPA023 [7-(1,1-dimethylethyl)-6-(2-ethyl-2H-1,2,4-triazol-3-ylmethoxy)-3-(2-fluor ophenyl)-1,2,4-triazolo[4,3-b]pyridazine], an agonist selective for α2- and α3-containing GABAA receptors, is a nonsedating anxiolytic in rodents and primates. J. Pharmacol. Exp. Ther. 316, 410–422 (2006).
  • Mirza NR , LarsenJS, MathiasenCet al. NS11394 [3´-[5-(1-hydroxy-1-methyl-ethyl)-benzoimidazol-1-yl]-biphenyl-2-carbonitrile], a unique subtype-selective GABAA receptor positive allosteric modulator: in vitro actions, pharmacokinetic properties and in vivo anxiolytic efficacy. J. Pharmacol. Exp. Ther. 327, 954–968 (2008).
  • Petroski RE , PomeroyJE, DasRet al. Indiplon is a high-affinity positive allosteric modulator with selectivity for α1 subunit-containing GABAA receptors. J. Pharmacol. Exp. Ther. 317, 369–377 (2006).
  • Lewis RW , MabryJ, PolisarJG, EagenKP, GanemB, HessGP. Dihydropyrimidinone positive modulation of δ-subunit-containing γ-aminobutyric acid type a receptors, including an epilepsy-linked mutant variant.Biochemistry49, 4841–4851 (2010).
  • Wafford KA , van NielMB, MaQPet al. Novel compounds selectively enhance δ-subunit containing GABAA receptors and increase tonic currents in thalamus. Neuropharmacology56, 182–189 (2009).
  • Gee KW , TranMB, HogenkampDJet al. Limiting activity at β1-subunit-containing GABAA receptor subtypes reduces ataxia. J. Pharmacol. Exp. Ther. 332, 1040–1053 (2010).
  • Biginelli P . Ueber Aldehyduramide des Acetessigäthers.Berichte der Deutschen Chemischen Gesellschaft24, 1317–1319 (1891).
  • Musonda CC , TaylorD, LehmanJ, GutJ, RosenthalPJ, ChibaleK. Application of multi-component reactions to antimalarial drug discovery. Part 1: parallel synthesis and antiplasmodial activity of new 4-aminoquinoline Ugi adducts.Bioorg. Med. Chem. Lett.14, 3901–3905 (2004).
  • Yehia NA , AntuchW, BeckBet al. Novel nonpeptidic inhibitors of HIV-1 protease obtained via a new multicomponent chemistry strategy. Bioorg. Med. Chem. Lett. 14, 3121–3125 (2004).
  • Sanganee HJ , BaxterA, BarberSet al. Discovery of small molecule human C5a receptor antagonists. Bioorg. Med. Chem. Lett. 19, 1143–1147 (2009).
  • Evdokimov NM , KireevAS, YakovenkoAA, AntipinMY, MagedovIV, KornienkoA. One-step synthesis of heterocyclic privileged medicinal scaffolds by a multicomponent reaction of malononitrile with aldehydes and thiols.J. Org. Chem.72, 3443–3453 (2007).
  • Shaabani A , MalekiA, HajishaabanhaFet al. Novel syntheses of tetrahydrobenzodiazepines and dihydropyrazines via isocyanide-based multicomponent reactions of diamines. J. Comb. Chem. 12, 186–190 (2010).
  • Hawkinson JE , GoeldnerMP, PalmerCJ, CasidaJE. Photoaffinity ligands for the [3H]TBOB binding site of the GABAA receptor. J. Recept. Res.11, 391–405 (1991).
  • McKernan RM , FarrarS, CollinsIet al. Photoaffinity labeling of the benzodiazepine binding site of α1β3γ2 γ-aminobutyric acid A receptors with flunitrazepam identifies a subset of ligands that interact directly with His102 of the α subunit and predicts orientation of these within the benzodiazepine pharmacophore. Mol. Pharmacol. 54, 33–43 (1998).
  • Li GD , ChiaraDC, SawyerGW, HusainSS, OlsenRW, CohenJB. Identification of a GABAA receptor anesthetic binding site at subunit interfaces by photolabeling with an etomidate analog. J. Neurosci.26, 11599–11605 (2006).
  • Krivoshein AV , HessGP. On the mechanism of alleviation by phenobarbital of the malfunction of an epilepsy-linked GABAA receptor. Biochemistry45, 11632–11641 (2006).
  • Fan L , LewisRW, HessGP, GanemB. A new synthesis of caged GABA compounds for studying GABAA receptors. Bioorg. Med. Chem. Lett.19, 3932–3933 (2009).
  • Milburn T , MatsubaraN, BillingtonAPet al. Synthesis, photochemistry, and biological activity of a caged photolabile acetylcholine receptor ligand. Biochemistry 28, 49–55 (1989).
  • Matsuzaki M , HayamaT, KasaiH, Ellis-DaviesGC. Two-photon uncaging of γ-aminobutyric acid in intact brain tissue.Nat. Chem. Biol.6, 255–257 (2010).
  • Fino E , ArayaR, PeterkaDS, SaliernoM, EtcheniqueR, YusteR. RuBi-glutamate: two-photon and visible-light photoactivation of neurons and dendritic spines.Front. Neural Circuits3, 2 (2009).
  • Rial Verde EM , ZayatL, EtcheniqueR, YusteR. Photorelease of GABA with visible light using an inorganic caging group.Front. Neural Circuits2, 2 (2008).
  • Mayer G , HeckelA. Biologically active molecules with a ‘light switch’.Angew. Chem. Int. Ed. Engl.45, 4900–4921 (2006).
  • Ramakrishnan L , HessGP. Picrotoxin inhibition mechanism of a γ-aminobutyric acid A receptor investigated by a laser-pulse photolysis technique.Biochemistry44, 8523–8532 (2005).
  • Gee KR , WieboldtR, HessGP. Synthesis and photochemistry of a new photolabile derivative of GABA – neurotransmitter release and receptor activation in the microsecond time region.J. Am. Chem. Soc.116, 8366–8367 (1994).
  • Wieboldt R , RameshD, CarpenterBK, HessGP. Synthesis and photochemistry of photolabile derivatives of γ-aminobutyric acid for chemical kinetic investigations of the γ-aminobutyric acid receptor in the millisecond time region.Biochemistry33, 1526–1533 (1994).
  • Canepari M , NelsonL, PapageorgiouG, CorrieJE, OgdenD. Photochemical pharmacological evaluation of 7-nitroindolinyl-and 4-methoxy-7-nitroindolinyl-amino acids as novel, fast caged neurotransmitters.J. Neurosci. Methods112, 29–42 (2001).
  • Trigo FF , PapageorgiouG, CorrieJE, OgdenD. Laser photolysis of DPNI-GABA,a tool for investigating the properties and distribution of GABA receptors and for silencing neurons in situ.J. Neurosci. Methods181, 159–169 (2009).
  • Curten B , KullmannPH, BierME, KandlerK, SchmidtBF. Synthesis, photophysical, photochemical and biological properties of caged GABA, 4-[[(2H-1-benzopyran-2-one-7-amino-4-methoxy) carbonyl] amino] butanoic acid.Photochem. Photobiol.81, 641–648 (2005).
  • Shembekar VR , ChenY, CarpenterBK, HessGP. A protecting group for carboxylic acids that can be photolyzed by visible light.Biochemistry44, 7107–7114 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.