259
Views
0
CrossRef citations to date
0
Altmetric
Review

Nanotechnology and Mri Contrast Enhancement

&
Pages 491-502 | Published online: 17 Mar 2010

Bibliography

  • Leff HS , RexAF. Maxwell’s demon 2: entropy, classical and quantum information, computing Institute of Physics, Bristol, PA, USA (2003).
  • Muller EW . Study of atomic structure of metal surfaces in the field ion microscope.J. Appl. Phys.28, 1–6 (1957).
  • Eigler DM , SchweizerEK. Positioning single atoms with a scanning tunneling microscope.Nature344, 524–526 (1990).
  • Ferrari M . Cancer nanotechnology: opportunities and challenges.Nat. Rev. Cancer5, 161–171 (2005).
  • Hartman KB , LausS, BolskarRDet al. Gadonanotubes as ultrasensitive pH-smart probes for magnetic resonance imaging. Nano. Lett. 8, 415–419 (2008).
  • Hämisch Y . Molecular Imaging with PET: new insights into the molecular basis of health and disease.Medicamundi47, 18–27 (2003).
  • Månsson SB . Physical principles of magnetic imaging by nuclear magnetic resonance. In: The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging. Merbach A, Toth E (Eds). John Wiley & Sons, Chichester, UK, 1–43 (2001).
  • de Bazelaire CM , DuhamelGD, RofskyNM, AlsopDC. MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. Radiology230, 652–659 (2004).
  • Hendrick RE , HaackeEM. Basic physics of MR contrast agents and maximization of image-contrast.J. Magn. Reson. Imaging3, 137–148 (1993).
  • Bean CP , LivingstonJD. Superparamagnetism.J. Appl. Phys.30, 120–129 (1959).
  • Cacheris WP , QuaySC, RocklageSM. The relationship between thermodynamics and the toxicity of gadolinium complexes.Magn. Reson. Imaging8, 467–481 (1990).
  • Olsvik O , PopovicT, SkjerveEet al. Magnetic separation techniques in diagnostic microbiology. Clin. Microbiol. Rev. 7, 43–54 (1994).
  • Månsson S . Physical principles of magnetic imaging by nuclear magnetic resonance. In: The Chemistry of Contrast Agents in Medical Magnetic Resonance Imaging. Merbach A, Toth E (Eds). Wiley, NY, USA, 1–43 (2001).
  • Bulte JWM , KraitchmanDL. Iron oxide MR contrast agents for molecular and cellular imaging.NMR Biomed.17, 484–499 (2004).
  • Liu W , FrankJA. Detection and quantification of magnetically labeled cells by cellular MRI.Eur. J. Radiol.70, 258–264 (2009).
  • Ferrucci JT , StarkDD. Iron-oxide enhanced MR-imaging of the liver and spleen – review of the 1st–5 years.Am. J. Roentgenol.155, 943–950 (1990).
  • Pratten MK , LloydJB. Pinocytosis and phagocytosis – the effect of size of a particulate substrate on its mode of capture by rat peritoneal-macrophages cultured in vitro. Biochim. Biophys. Acta881, 307–313 (1986).
  • Rogers WJ , BasuP. Factors regulating macrophage endocytosis of nanoparticles: implications for targeted magnetic resonance plaque imaging.Atherosclerosis178, 67–73 (2005).
  • Weissleder R , StarkDD, EngelstadBLet al. Superparamagnetic iron-oxide - pharmacokinetics and toxicity. Am. J. Roentgenol. 152, 167–173 (1989).
  • Saini S , StarkDD, HahnPFet al. Ferrite particles – a superparamagnetic MR contrast agent for enhanced detection of liver-carcinoma. Radiology 162, 217–222 (1987).
  • Lu AH , SalabasEL, SchuthF. Magnetic nanoparticles: Synthesis, protection, functionalization, and application.Angew. Chem. Int. Ed. Engl.46, 1222–1244 (2007).
  • Patri A , DobrovolskaiaM, SternS, McNeilS. Preclinical characterization of engineered nanoparticles intended for cancer therapeutics. In: Nanotechnology for cancer therapy. Amiji MM (Ed.). CRC/Taylor & Francis, Boca Raton, USA, 817 (2007).
  • Stark DD , WeisslederR, ElizondoGet al. Superparamagnetic iron-oxide – clinical-application as a contrast agent for MR imaging of the liver. Radiology 168, 297–301 (1988).
  • Reimer P , BalzerT. Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications.Eur. Radiol.13, 1266–1276 (2003).
  • Gruttner C , TellerJ. New types of silica-fortified magnetic nanoparticles as tools for molecular biology applications.J. Magn. Magn. Mater.194, 8–15 (1999).
  • Taupitz M , WagnerS, SchnorrJ. Phase I clinical evaluation of citrate-coated monocrystalline very small superparamagnetic iron oxide particles as a new contrast medium for magnetic resonance imaging.Invest. Radiol.39, 625–625 (2004).
  • Li W , TuttonS, VuATet al. First-pass contrast-enhanced magnetic resonance angiography in humans using ferumoxytol, a novel ultrasmall superparamagnetic iron oxide (USPIO)-based blood pool agent. J. Magn. Reson. Imaging 21, 46–52 (2005).
  • Schulze E , FerrucciJT, PossK, LapointeL, BogdanovaA, WeisslederR. Cellular uptake and trafficking of a prototypical magnetic iron-oxide label in-vitro. Invest. Radiol.30, 604–610 (1995).
  • Huang HC , ChangPY, ChangKet al. Formulation of novel lipid-coated magnetic nanoparticles as the probe for in vivo imaging. J. Biomed. Sci. 16(1), 86 (2009).
  • Kim D , HongKS, SongJ. The present status of cell tracking methods in animal models using magnetic resonance imaging technology.Mol. Cell23, 132–137 (2007).
  • Vogl TJ , HammerstinglR, SchwarzWet al. Superparamagnetic iron oxide-enhanced versus gadolinium-enhanced MR imaging for differential diagnosis of focal liver lesions. Radiology 198, 881–887 (1996).
  • Zheng WW , ZhouKR, ChenZW, ShenJZ, ChenCZ, ZhangSJ. Characterization of focal hepatic lesions with SPIO-enhanced MRI.World J. Gastroenterol.8, 82–86 (2002).
  • Harisinghani MG , SainiS, WeisslederRet al. MR lymphangiography using ultrasmall superparamagnetic iron oxide in patients with primary abdominal and pelvic malignancies: radiographic-pathologic correlation. Am. J. Roentgenol. 172, 1347–1351 (1999).
  • Michel SCA , KellerTM, FrohlichJMet al. Preoperative breast cancer staging: MR imaging of the axilla with ultrasmall superparamagnetic iron oxide enhancement. Radiology 225, 527–536 (2002).
  • Lee JM , KimIH, KwakHS, YoukJH, HanYM, KimCS. Detection of small hypervascular hepatocellular carcinomas in cirrhotic patients: comparison of superparamagnetic iron oxide-enhanced MR imaging with dual-phase spiral CT.Korean J. Radiol.4, 1–8 (2003).
  • Tanimoto A , WakabayashiG, ShinmotoH, NakatsukaS, OkudaS, KuribayashiS. Superparamagnetic iron oxide-enhanced MR imaging for focal hepatic lesions: a comparison with CT during arterioportography plus CT during hepatic arteriography.J. Gastroenterol.40, 371–380 (2005).
  • Nakamura H , ItoN, KotakeF, MizokamiY, MatsuokaT. Tumor-detecting capacity and clinical usefulness of SPIO-MRI in patients with hepatocellular carcinoma.J. Gastroenterol.35, 849–855 (2000).
  • Kudo M . Imaging diagnosis of hepatocellular carcinoma and premalignant/borderline lesions.Semin. Liver Dis.19, 297–309 (1999).
  • Araki T . SPIO-MRI in the detection of hepatocellular carcinoma.J. Gastroenterol.35, 874–876 (2000).
  • Rappeport ED , LoftA, BerthelsenAKet al. Contrast-enhanced FDG-PET/CT vs. SPIO-enhanced MRI vs. FDG-PET vs. CT in patients with liver metastases from colorectal cancer: a prospective study with intraoperative confirmation. Acta Radiol. 48, 369–378 (2007).
  • Rogers WJ , MeyerCH, KramerCM. Technology insight: in vivo cell tracking by use of MRI. Nat. Clin. Pract. Cardiovasc. Med.3, 554–562 (2006).
  • Krejci J , PachernikJ, HamplA, DvorakP. In vitro labelling of mouse embryonic stem cells with SPIO nanoparticles. Gen. Physiol. Biophys.27, 164–173 (2008).
  • Gao J . MRI-visible micellar nanomedicine for targeted drug delivery to lung cancer cells.Mol. Pharm.7(1), 32–40 (2010).
  • Huang H , XieQ, KangMet al. Labeling transplanted mice islet with polyvinylpyrrolidone coated superparamagnetic iron oxide nanoparticles for in vivo detection by magnetic resonance imaging. Nanotechnology 20, 365101 (2009).
  • Mulder WJM , StrijkersGJ, van Tilborg GAF, Griffioen AW, Nicolay K. Lipid-based nanoparticles for contrast-enhanced MRI and molecular imaging. NMR Biomed.19, 142–164 (2006).
  • Tang Z , LinN, FangHet al. MRI tracking of the fate of intravascularly injected and SPIO-labeled rat mesenchymal stem cells in the livers of rats with hepatic fibrosis. Dig. Dis. Sci. DOI: 10.1007/s10620-009-0921-2 (2009) (Epub ahead of print).
  • Sykova E , JendelovaP. In vivo tracking of stem cells in brain and spinal cord injury. Prog. Brain Res.161, 367–383 (2007).
  • Nowacek A , GendelmanHE. NanoART, neuroAIDS and CNS drug delivery.Nanomed.4, 557–574 (2009).
  • Toma A , OtsujiE, KuriuYet al. Monoclonal antibody A7-superparamagnetic iron oxide as contrast agent of MR imaging of rectal carcinoma. Br. J. Cancer 93, 131–136 (2005).
  • Tsourkas A , Shinde-PatilVR, KellyKAet al. In vivo imaging of activated endothelium using an anti-VCAM-1 magnetooptical probe. Bioconjug. Chem.16, 576–581 (2005).
  • Bos C , DelmasY, DesmouliereAet al. In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver. Radiology233, 781–789 (2004).
  • Frank JA , MillerBR, ArbabASet al. Clinically applicable labeling of mammalian and stem cells by combining superparamagnetic iron oxides and transfection agents. Radiology 229, 610–610 (2003).
  • Kawahara I , NakamotoM, KitagawaNet al. Potential of magnetic resonance plaque imaging using superparamagnetic particles of iron oxide for the detection of carotid plaque. Neurol. Med. Chir. (Tokyo) 48, 157–162 (2008).
  • Marzelli M , FischerK, KimYBet al. Composite MR contrast agents for conditional cell-labeling. Int. J. Imaging Syst. Technol. 18, 79–84 (2008).
  • Yang F , GuAY, ChenZP, GuN, JiM. Multiple emulsion microbubbles for ultrasound imaging.Mater. Lett.62, 121–124 (2008).
  • Ji XJ , ShaoRP, ElliottAMet al. Bifunctional gold nanoshells with a superparamagnetic iron oxide-silica core suitable for both MR imaging and photothermal therapy. J. Phys. Chem. C Nanomater. Interfaces 111, 6245–6251 (2007).
  • Stuber M , GilsonWD, ScharMet al. Positive contrast visualization of iron oxide-labeled stem cells using inversion-recovery with ON-Resonant water suppression (IRON). Magn. Reson. Med. 58, 1072–1077 (2007).
  • Zurkiya O , HuXP. Off-resonance saturation as a means of generating contrast with superparamagnetic nanoparticles.Magn. Reson. Med.56, 726–732 (2006).
  • Kroto HW , HeathJR, ObrienSC, CurlRF, SmalleyRE. C-60 – buckminsterfullerene.Nature318, 162–163 (1985).
  • Heath JR , ObrienSC, ZhangQet al. Lanthanum complexes of spheroidal carbon shells. J. Am. Chem. Soc. 107, 7779–7780 (1985).
  • Laus S , SitharamanB, TothEet al. Understanding paramagnetic relaxation phenomena for water-soluble gadofullerenes. J. Phys. Chem. C Nanomater. Interfaces 111, 5633–5639 (2007).
  • Toth E , BolskarRD, BorelAet al. Water-soluble gadofullerenes: Toward high-relaxivity, pH-responsive MRI contrast agents. J. Am. Chem. Soc. 127, 799–805 (2005).
  • Bertini I , GalasO, LuchinatC, ParigiG. Computer-program for the calculation of paramagnetic enhancements nuclear-relaxation rates in slowly rotating systems.J. Magn. Reson. A113, 151–158 (1995).
  • Laus S , SitharamanB, TothVet al. Destroying gadofullerene aggregates by salt addition in aqueous solution of Gd@C60(OH)x and Gd@C60[C(COOH2)]10. J. Am. Chem. Soc. 127, 9368–9369 (2005).
  • Sitharaman B , TranLA, PhamQPet al. Gadofullerenes as nanoscale magnetic labels for cellular MRI. Contrast Media Mol. Imaging 2, 139–146 (2007).
  • Stevenson S , StephenRR, AmosTM, CadoretteVR, ReidJE, PhillipsJP. Synthesis and purification of a metallic nitride fullerene BisAdduct: exploring the reactivity of Gd3N@C80. J. Am. Chem. Soc.127, 12776–12777 (2005).
  • Lu J , SabirianovRF, MeiWN, GaoY, DuanCG, ZengXC. Structural and magnetic properties of Gd3N@C80. J. Phys. Chem. B.110, 23637–23640 (2006).
  • Stevenson S , PhillipsJP, ReidJE, OlmsteadMM, RathSP, BalchAL. Pyramidalization of Gd3N inside a C-80 cage. The synthesis and structure of Gd3N@C80. Chem. Commun.2814–2815 (2004).
  • MacFarland DK , WalkerKL, LenkRPet al. Hydrochalarones: a novel endohedral metallofullerene platform for enhancing magnetic resonance imaging contrast. J. Med. Chem. 51, 3681–3683 (2008).
  • Chen Z , FatourosPP, CorwinFD, BroaddusWC, DornHC. In vitro and in vivo imaging studies of a new gadolinium endohedral metallofullerene MRI contrast agent. Neuro. Oncol.8, 492–492 (2006).
  • Fatouros PP , CorwinFD, ChenZJet al. In vitro and in vivo imaging studies of a new endohedral metallofullerene nanoparticle. Radiology240, 756–764 (2006).
  • Rinzler AG , LiuJ, DaiHet al. Large-scale purification of single-wall carbon nanotubes: process, product, and characterization. Appl. Phys. A Mater. Sci. Processing 67, 29–37 (1998).
  • Journet C , MaserWK, BernierPet al. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388, 756–758 (1997).
  • Nikolaev P , BronikowskiMJ, BradleyRKet al. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett. 313, 91–97 (1999).
  • Gu Z , PengH, HaugeRH, SmalleyRE, MargraveJL. Cutting single-wall carbon nanotubes through fluorination.Nano. Lett.2, 1009–1013 (2002).
  • Ashcroft JM , HartmanKB, KissellKRet al. Single-molecule I-2@US tube nanocapsules: a new X-ray contrast-agent design. Adv. Mater. 19, 573 (2007).
  • Hartman KB , HamlinDK, WilburDS, WilsonLJ. (AtCl)-At-211@US tube nanocapsules: a new concept in radiotherapeutic-agent design.Small3, 1496–1499 (2007).
  • Sitharaman B , KissellKR, HartmanKBet al. Superparamagnetic gadonanotubes are high-performance MRI contrast agents. Chem. Commun. 3915–3917 (2005).
  • Ananta JS , MatsonML, TangAMet al. Single-walled carbon nanotubes materials as T2-weighted MRI contrast agents. J. Phys. Chem. C DOI: 10.1021/jp907891n (2009) (Epub ahead of print).
  • Sithararman B , WilsonLJ. Gadonanotubes as new high-performance MRI contrast agents.Int. J. Nanomed.1, 291–295 (2006).
  • Tannock IF , RotinD. Acid pH in tumors and its potential for Therapeutic exploitation.JBR-BTR.49, 4373–4384 (1989).
  • Striolo A . The mechanism of water diffusion in narrow carbon nanotubes.Nano. Lett.6, 633–639 (2006).
  • Jankovski A , RaftopoulosC, VazGet al. Intra-operative MRI at 3T: short report. JBR-BTR. 90, 249–251 (2007).
  • McDermott R , LeeSK, ten Haken B, Trabesinger AH, Pines A, Clarke J. Microtesla MRI with a superconducting quantum interference device. Proc. Natl Acad. Sci. USA101, 7857–7861 (2004).
  • Mansfield P . Snapshot magnetic resonance imaging (nobel lecture).Angew. Chem. Int. Ed. Engl.43, 5456–5464 (2004).
  • Mackeyev Y , HartmanKB, AnantaJS, LeeAV, WilsonLJ. Catalytic synthesis of amino acid and peptide derivatized gadonanotubes.J. Am. Chem. Soc.131, 8342 (2009).
  • Langer M , KratzF, Rothen-RutishauserB, Wunderli-AllenspachH, Beck-SickingerAG. Novel peptide conjugates for tumor-specific chemotherapy.J. Med. Chem.44, 1341–1348 (2001).
  • Hassan AA , ChanBT, TranLAet al. Serine-derivatized gadonanotubes as magnetic nanoprobes for intracellular labeling. Contrast Media Mol. Imaging DOI: 10.1002/cmmi.293 (2009) (Epub ahead of print).
  • Grobner T . Gadolinium – a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis?Nephrol. Dial. Transplant.21, 1104–1108 (2006).
  • Grobner T , PrischlFC. Gadolinium and nephrogenic systemic fibrosis.Kidney Int.72, 260–264 (2007).
  • High WA , AyersRA, ChandlerJ, ZitoG, CowperSE. Gadolinium is detectable within the tissue of patients with nephrogenic systemic fibrosis.J. Am. Acad. Dermatol.56, 21–26 (2007).
  • Thakral C , AbrahamJL. Nephrogenic systemic fibrosis: histology and gadolinium detection.Radiol. Clin. North Am.47, 841–846 (2009).
  • Todd DJ , KaganA, ChibnikLB, KayJ. Cutaneous changes of nephrogenic systemic fibrosis - Predictor of early mortality and association with gadolinium exposure.Arthritis Rheum.56, 3433–3441 (2007).
  • Winter TC , FreenyPC, NghiemHVet al. MR-Imaging with IV-superparamagnetic iron-oxide – efficacy in the detection of focal hepatic-lesions. Am. J. Roentgenol. 161, 1191–1198 (1993).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.