690
Views
0
CrossRef citations to date
0
Altmetric
Review

Cytochrome P450-Activated Prodrugs

Pages 213-228 | Published online: 30 Jan 2013

References

  • Dayer P , DesmeulesJ, LeemannT, StriberniR. Bioactivation of the narcotic drug codeine in human liver is mediated by the polymorphic monooxygenase catalyzing debrisoquine 4-hydroxylation (cytochrome P-450 dbl/bufI).Biochem. Biophys. Res. Commun.152, 411–416 (1988).
  • Vree TB , Verwey-van Wissen CP. Pharmacokinetics and metabolism of codeine in humans. Biopharm. Drug Dispos.13, 445–460 (1992).
  • Srinivasan V , WielboD, TebbettIR. Analgesis effects of codeine-6-glucuronide after intravenous administration.Eur. J. Pain1, 185–190 (1997).
  • Vree TB , Van Dongren RT, Koopman-Kimenai PM. Codeine analgesia is due to codeine-6-glucuronide, not morphine. Int. J. Clin. Pract.54, 395–398 (2000).
  • Armstrong SC , CozzaKL. Pharmacokinetic drug interactions of morphine, codeine, and their derivatives: theory and clinical reality, part II.Psychosomatics44, 515–520 (2003).
  • Koren G , CairnsJ, ChitayatD, GaedigkA, LeederSJ. Pharmacogenetics of morphine poisoning in a breastfed neonate of a codeine-prescribed mother.Lancet368, 704 (2006).
  • Kelly LE , RiederM, van den Anker J et al. More codeine fatalities after tonsillectomy in North American children. Pediatrics129, e1343–e1347 (2012).
  • Rautio J , KumpulainenH, HeimbachTet al. Prodrugs: design and clinical applications. Nat. Rev. Drug Discov. 7, 255–270 (2008).
  • Janin YL . Antituberculosis drugs: ten years of research.Bioorg. Med. Chem.15, 2479–2513 (2007).
  • Guengerich FP . Human cytochrome P450 enzymes. In: Cytochrome P450: Structure, Mechanism, and Biochemistry. Ortiz de Montellano PR (Ed.). Kluwer/Plenum/Elsevier, NY, USA, 377–530 (2005).
  • Evans WE , RellingMV. Pharmacogenomics: Translating functional genomics into rational therapeutics.Science286, 487–491 (1999).
  • Rivera SP , WangF, SaarikoskiSTet al. A novel promoter element containing multiple overlapping xenobiotic and hypoxia response elements mediates induction of P4502S1 by both dioxin and hypoxia. J. Biol. Chem. 282, 10881–10893 (2007).
  • Downie D , McFadyenMCE, RooneyPHet al. Profiling cytochrome P450 expression in ovarian cancer: identification of prognostic markers. Clin. Cancer Res. 11, 7369–7375 (2005).
  • Karlgren M , GomezA, StarkKet al. Tumor-specific expression of the novel cytochrome P450 enzyme, CYP2W1. Biochem. Biophys. Res. Commun. 341, 451–458 (2006).
  • Wijnen PA , O den BuijschRA, DrentMet al. The prevalence and clinical relevance of cytochrome P450 polymorphisms. Aliment. Pharmacol. Ther.26(Suppl. 2), 211–219 (2007).
  • Ingelman-Sundberg M , SimSC, GomezA, Rodriguez-AntonaC. Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacoepigenetic and clinical aspects.Pharmacol. Ther.116, 496–526 (2007).
  • Pelkonen O , MaenpaaJ, TaavitsainenP, RautioA, RaunioH. Inhibition and induction of human cytochrome P450 (CYP) enzymes.Xenobiotica28, 1203–1253 (1998).
  • Tompkins LM , WallaceAD. Mechanisms of cytochrome P450 induction.J. Biochem. Mol. Toxicol.21, 176–181 (2007).
  • Ortiz de Montellano PR , De Voss JJ. Substrate oxidation by cytochrome P450 enzymes. In: Cytochrome P450: Structure, Mechanism, and Biochemistry. Ortiz de Montellano PR (Ed.). Springer, NY, USA, 183–245 (2005).
  • Iyanagi T , XiaC, KimJP. NADPH-cytochrome P450 oxidoreductase: prototypic member of the diflavin reductase family.Arch. Biochem. Biophys.528, 72–89 (2012).
  • Druckrey H . Experimentelle grundlagen der chemotherapie des krebses.Dtsch. Med. Wochenschr.77, 1534–1537 (1952).
  • Brock N . The history of the oxazaphorphorine cytostatics.Cancer78, 542–547 (1995).
  • Friedman OM , MylesA, ColvinM. Cyclophosphamide and phosphoramide mustards.Adv. Cancer Chemother.1, 143–204 (1979).
  • Colvin M , HiltonJ. Pharmacology of cyclophosphamide and metabolites.Cancer Treat. Rep.65(Suppl. 3), 89–95 (1981).
  • Sladek NE . Metabolism of oxazaphosphorines.Pharmacol. Ther.37, 301–355 (1988).
  • Bunting KD , TownsendAJ. Protection by transfected rat or human class 3 aldehyde dehydrogenase against the cytotoxic effects of oxazaphosphorine alkylating agents in hamster V79 cell lines. Demonstration of aldophosphamide metabolism by the human cytosolic class 3 isozyme. J. Biol. Chem.271, 11891–11896 (1996).
  • Mace JR , KeohanML, BernardyHet al. Crossover randomized comparison of intravenous versus intravenous/oral mesna in soft tissue sarcoma treated with high-dose ifosfamide. Clin. Cancer Res. 9, 5829–5834 (2003).
  • Roy P , YuLJ, CrespiCL, WaxmanDJ. Development of a substrate activity based approach to identify the major human liver P-450 catalysts of cyclophosphamide and ifosfamide activation based on cDNA-expressed activities and liver microsomal P-450 profiles.Drug Metab. Dispos.27, 655–666 (1999).
  • Nguyen T , TychopoulosM, BichatFet al. Improvement of cyclophosphamide activation by CY2B6 mutants: from in silico to ex vivo. Mol. Pharmacol. 73, 1122–1133 (2008).
  • Waxman DJ , ChenL, HechtJE, JounaidiY. Cytochrome P450-based cancer gene therapy: recent advances and future prospects.Drug Metab. Rev.31, 503–522 (1999).
  • Legha SS . Current therapy for malignant melanoma.Semin. Oncol.16, 34–44 (1989).
  • Marchesi F , TurrizianiM, TortorelliG, AvvisatiG, TorinoF, De Vecchis L. Triazene compounds: mechanism of action and related DNA repair systems. Pharmacol. Res.56, 275–287 (2007).
  • Kolar GF , MaurerM, WildschütteM. 5-(3-Hydroxymethyl-3-methyl-1-triazeno imidazole-4-carboxamide is a metabolite of 5-(3,3-dimethyl-1-triazeno)imidazole-4-carboxamide (DIC, DTIC NSC-45388).Cancer Lett.10, 235–241 (1980).
  • Meer L , JanzerRC, KleihuesP, KolarGF. In vivo metabolism and reaction with DNA of the cytostatic agent, 5-(3,3-dimethyl-1-triazeno)imidazole-4-carboxamide (DTIC). Biochem. Pharmacol.35, 3243–3247 (1986).
  • Reid JM , KuffelMJ, MillerJK, RiosR, AmesMM. Metabolic activation of dacarbazine by human cytochromes P450: the role of CYP1A1, CYP1A2 and CYP2E1.Clin. Cancer Res.5, 2192–2197 (1999).
  • Lewis BC , MackenziePI, MinersJO. Application of homology modeling to generate CYP1A1 mutants with enhanced activation of the cancer chemotherapeutic prodrug dacarbazine.Mol. Pharmacol.80, 879–888 (2011).
  • Friedman HS , KerbyT, CalvertH. Temozolomide and treatment of malignant glioma.Clin. Cancer Res.6, 2585–2597 (2000).
  • Swaffar DS , HorstmanMG, JawJet al. Methylazoxyprocarbazine, the active metabolite responsible for the anticancer activity of procarbazine against L1210 leukemia. Cancer Res. 49, 2442–2447 (1989).
  • Cummings SW , GuengerichFP, ProughRA. The characterization of N-isopropyl-p-hydroxymethylbenzamide formed during the oxidative metabolism of azo-procarbazine. Drug Metab. Dispos.10, 459–464 (1982).
  • Weinkam RJ , ShibaDA. Metabolic activation of procarbazine.Life Sci.22, 937–946 (1978).
  • Rodriguez-Antona C , Ingelman-SundbergM. Cytochrome P450 pharmacogenetics and cancer.Oncogene25, 1679–1691 (2006).
  • Au JL , SadeeW. The pharmacology of Ftorafur (R,S-1-(tetrahydro-2-furanyl)-5-fluorouracil). Recent Results Cancer Res.76, 100–114 (1981).
  • Rooseboom M , CommandeurJNM, VermeulenNPE. Enzyme-catalyzed activation of anticancer prodrugs.Pharmacol. Rev.56, 53–102 (2004).
  • Komatsu T , YamazakiH, ShimadaNet al. Involvement of microsomal cytochrome P450 and cytosolic thymidine phosphorylase in 5-fluorouracil formation from tegafur in human liver. Clin. Cancer Res. 7, 675–681 (2001).
  • Komatsu T , YamazakiH, ShimadaN, NakajimaM, YokoiT. Roles of cytochrome P450 1A2, 2A6, and 2C8 in 5-fluorouracil formation from tegafur, an anticancer prodrug, in human liver microsomes.Drug Metab. Dispos.28, 1457–1463 (2000).
  • Ikeda K , YoshisueK, MatsushimaEet al. Bioactivation of tegafur to 5-fluorouracil is catalyzed by cytochrome P-450 2A6 in human liver microsomes in vitro. Clin. Cancer Res. 6, 4409–4415 (2000).
  • Singh SM , GauthierS, LabrieF. Androgen receptor antagonists (antiandrogens) structure–activity relationships.Curr. Med. Chem.7(2), 211–247 (2000).
  • Katchen B , BuxbaumS. Disposition of a new, nonsteroid, antiandrogen, α,α,α-trifluoro-2-methyl-4´-nitro-m-propionotoluidide (flutamide), in men following a single oral 200 mg dose. J. Clin. Endocrinol. Metab.41, 373–379 (1975).
  • Shet MS , McPhaulM, FisherCW, StallingsNR, EstabrookRW. Metabolism of the antiandrogenic drug (flutamide) by human CYP1A2.Drug Metab. Dispos.25, 1298–1303 (1997).
  • Rochat B , MorsmanJM, MurrayGI, FiggWD, McLeodHL. Human CYP1B1 and anticancer agent metabolism: mechanism for tumor-specific drug inactivation?J. Pharmacol. Exp. Therap.296, 537–541 (2001).
  • Morris JJ , HughesLR, GlenAT, TaylorPJ. Non-steroidal antiandrogens. Design of novel compounds based on an infrared study of the dominant conformation and hydrogen-bonding properties of a series of anilide antiandrogens.J. Med. Chem.34, 447–455. (1991).
  • Desta Z , WardBA, SoukhovaNV, FlockhartDA. Comprehensive evaluation of tamoxifen sewuential biotransformation by the human cytochrome P450 system in vitro: prominent roles for CYP3A4 and CYP2D6. J. Pharmacol. Exp. Therap.310, 1062–1075 (2004).
  • Beverage JN , SissungTM, SionAM, DanesiR, FiggWD. CYP2D6 polymorphism and the impact on tamoxifen therapy.J. Pharm. Sci.96, 2224–2231 (2007).
  • Boger DL , JohnsonDS. CC-1065 and the duocarmycins: unraveling the keys to a new class of naturally derived DNA alkylating agents.Proc. Natl Acad. Sci. USA92, 3642–3649 (1995).
  • Pors K , LoadmanPM, ShnyderSDet al. Modification of the duocarmycin pharmacophore enables CYP1A1 targeting for biological activity. Chem. Commun. 47, 12062–12064 (2011).
  • Murray GI , MelvinWT, GreenleeWF, BurkeMD. Regulation, function, and tissue-specific expression of cytochrome P450 CYP1B1.Annu. Rev. Pharmacol.41, 297–316 (2001).
  • Jiang J , ChenC, CardJWet al. Cytochrome P450 2J2 promotes the neoplastic phenotype of carcinoma cells and is up-regulated in human tumors. Cancer Res. 65, 4707–4715 (2005).
  • Rieger MA , EbnerR, BellDRet al. Identification of a novel mammary-restricted cytochrome P450, CYP4Z1, with overexpression in breast carcinoma. Cancer Res. 64, 2357–2364 (2004).
  • Downie D , McFadyenMCE, RooneyPHet al. Profiling cytochrome P450 expression in ovarian cancer: identification of prognostic markers. Clin. Cancer Res. 11, 7369–7375 (2005).
  • Saarikosi ST , WikmanHA, SmithG, WolffCHJ, Husgafvel-PursiainenK. Localization of cytochrome CYP2S1 expression in human tissues by in situ hybridization and immunohistochemistry. J. Histochem. Cytochem.53, 549–556 (2005).
  • Mortimer CG , WellsG, Crochard J-P et al. Antitumor benzothiazoles. 26. 2-(3,4-dimethoxyphenyl)-5-fluorobenzothiazole (GW 610, NSC 721648), a simple fluorinated 2-arylbenzo-thiazole, shows potent and selective inhibitory activity against lung, colon, and breast cancer cell lines. J. Med. Chem.49, 179–185 (2006).
  • Brantley E , TrapaniV, AlleyMCet al. Fluorinated 2-(4-amino-3-methylphenyl)benzothiazoles induce CYP1A1 expression, become metabolized, and bind to macromolecules in sensitive human cancer cell lines. Drug Metab. Dispos. 32, 1392–1401 (2004).
  • Tan BS , TiongKH, MuruhadasAet al. CYP2S1 and CYP2W1 mediate 2-(3,4-dimethoxyphenyl)-5-fluorobenzothiazole (GW-610, NSC 721648) sensitivity in breast and colorectal cancer cells. Mol. Cancer Ther. 10, 1982–1992 (2011).
  • Wang K , GuengerichFP. Bioactivation of fluorinated 2-aryl-benzothiazole antitumor molecules by hiuman cytochrome P450s 1A1 and 2W1 and deactivation by cytochrome P450 2S1.Chem. Res. Toxicol.25, 1740–1751 (2012).
  • Rooseboom M , CommandeurJNM, VermeulenNPE. Enzyme-catalyzed activation of anticancer prodrugs.Pharmacol. Rev.56, 53–102 (2004).
  • Patterson LH . Bioreductively activated antitumor N-oxides: the case of AQ4N, a unique approach to hypoxia-activated cancer chemotherapy.Drug Metab. Rev.34, 581–592 (2002).
  • Lalani AS , AltersSE, WongA, AlbertellaMR, ClelandJL, HennerWD. Selective tumor targeting by the hypoxia-activated prodrug AQ4N blocks tumor growth and metastasis in preclinical models of pancreatic cancer.Clin. Cancer. Res.13, 2216–2225 (2007).
  • Heimbrook DC , MurrayRE, EgebergKD, SligarSG, NeeMW, BruiceTC. Demethylation of N,N-dimethylaniline and p-cyano-N,N-dimethylaniline and their N-oxides by cytochromes P450LM2 and P450cam. J. Am. Chem. Soc.106, 1514–1515 (1984).
  • Seto Y , GuengerichFP. Partitioning between N-dealkylation and N-oxygenation in the oxidation of N,N-dialkylarylamines catalyzed by cytochrome P450 2B1. J. Biol. Chem.268, 9986–9997 (1993).
  • Raleigh SM , WanoghoE, BurkeMD, McKeownSR, PattersonLH. Involvement of human cytochromes P450 (CYP) in the reductive metabolism of AQ4N, a hypoxia activated anthraquinone di-N-oxide prodrug.Int. J. Radiation Oncol. Biol. Phys.42, 763–767 (1998).
  • Yakkundi A , McErlaneV, MurrayMet al. Tumour selective drug activation: a GDEPT approach utilizing cytochrome P450 1A1 and AQ4N. Cancer Gene Therapy 13, 598–605 (2006).
  • Nishida CR , LeeM, Ortiz de Montellano PR. Efficient hypoxic activation of the anticancer agent AQ4N by CYP2S1 and CYP2W1. Mol. Pharmacol.78, 497–502 (2010).
  • Duan J , JiaoH, KaizermanJet al. Potent and highly selective hypoxia-activated achiral phosphoroamidate mustards as anticancer drugs. J. Med. Chem. 51, 2412–2420 (2008).
  • Hadley WM . A Review of the Literature on Enzymatic Reduction of Nitrocompounds. Inhalation Toxicology Research Institute, Lovelace Biomedical and Environmental Research Institute. Springfield, VA, USA, 1–20 (1983).
  • Spain JC . Biodegradation of nitroaromatic compounds.Annu. Rev. Microbiol.49, 523–555 (1995).
  • Patterson AV , FerryDM, EdmundsSJet al. Mechanism of action and preclinical antitumor activity of the novel hypoxia-activated DNA cross-linking agent PR-104. Clin. Cancer Res. 13, 3922–3932 (2007).
  • Singleton RS , GuiseCP, FerryDMet al. DNA cross-links in human tumor cells exposed to the prodrug PR-104A: relationships to hypoxia, bioreductive metabolism, and cytotoxicity. Cancer Res. 69, 3884–3891 (2009).
  • Guise CP , AbbattistaMR, SingletonRSet al. The bioreductive prodrug PR-104A is activated under aerobic conditions by human aldo-keto reductase 1C3. Cancer Res. 70, 1573–1584 (2010).
  • Dansette PM , LibraireJ, BerthoG, MansuyD. Metabolic oxidative cleavage of thioesters: evidence for the formation of sulfenic acid intermediates in the bioactivation of the antithrombotic prodrugs ticlopidine and clopidogrel.Chem. Res. Toxicol.22, 369–373 (2009).
  • Kazui M , NishiyaY, IshizukaTet al. Identification of the human cytochrome P450 enzymes involved in the two oxidative steps in the bioactivation of clopidogrel to its pharmacologically active metabolite. Drug Metab. Dispos. 38, 92–99 (2010).
  • Bouman HJ , SchömigE, van Werkum JW et al. Paraosonase-1 is a major determinant of clopidogrel efficacy. Nat. Med.17, 110–116 (2011).
  • Dansette PM , RosiJ, BerthoG, MansuyD. Paraoxonase-1 and clopidogrel efficacy.Nat. Med.17(9), 1040–1041 (2011).
  • Dansette PM , RosiJ, BerthoG, MansuyD. Cytochromes P450 catalyze both steps of the major pathway of clopidogrel bioactivation, whereas paraoxonase catalyzes the formation of a minor thiol metabolite isomer.Chem. Res. Tox.25, 348–356. (2012).
  • Bouman HJ , SchömigE, van Werkum JW et al. Reply to: ‘Paraoxonase-1 and clopidogrel efficacy’. Nat. Med.17(9), 1042–1044 (2011).
  • Dansette PM , RosiJ, DevernardiJ, BerthoG, MansuyD. Metabolic activation of prasugrel: nature of the two competitive pathways resulting in the opening of its thiophene ring.Chem. Res. Toxicol.25, 1058–1065 (2012).
  • Hagihara K , KazuiM, KuriharaAet al. Biotransformation of prasugrel, a novel thienopyridine antiplatelet agent, to the pharmacologically active metabolite. Drug Metab. Dispos. 38, 898–904 (2010).
  • Dansette PM , ThébaultS, BerthoG, MansuyD. Formation and fate of a sulfenic acid intermediate in metabolic activation of the antithrombotic prodrug prasugrel.Chem. Res. Toxicol.23, 1268–1274 (2010).
  • Shan J , ZhangB, ZhuYet al. Overcoming clopidogrel resistance: discovery of vicagrel as a highly potent and orally bioavailable antiplatelet agent. J. Med. Chem. 55, 3342–3352 (2012).
  • Hedner T , SamulessonO, WährborgP, WadenvikH, UngKA, EkbomA. Nabumetone: therapeutic use and safety profile in the management of osteoarthritis and rheumatoid arthritis.Drugs64, 2315–2343 (2004).
  • Haddock RE , JefferyDJ, LloydJA, ThawleyAR. Metabolism of nabumetone (BRL 14777) by various species including man.Xenobiotica14, 327–337 (1984).
  • Turpeinen M , HofmannU, KleinK, MürderT, SchwabM, ZangerUM. A predominate role of CYP1A2 for the metabolism of nabumetone to the active metabolite, 6-methoxy-2-naphthylacetic acid, in human liver microsomes.Drug Metab. Dispos.37, 1017–1024 (2009).
  • Wang MZ , SaulterJY, UsukiEet al. CYP4F enzymes are the major enzymes in human liver microsomes that catalyze the O-demethylation of the antiparasitic prodrug DB289 [2,5-bis(4-amidinophenyl)furan-bis-O-methylamidoxime]. Drug Metab. Dispos. 34, 1985–1994 (2006).
  • Wang MZ , WuJQ, BridgesASet al. Human enteric microsomal CYP4F enzymes O-demethylate the antiparasitic prodrug pafuramidine. Drug Metab. Dispos. 35, 2067–2075 (2007).
  • Saulter JY , KurianJR, TrepanierLAet al. Unusual dehydroxylation of antimicrobial amidoxime prodrugs by cytochrome b5 and NADH cytochrome b5 reductase. Drug Metab. Dispos. 33, 1886–1893 (2005).
  • Haria M , FittonA, PetersDH. Loratadine. A reappraisal of its pharmacological properties and therapeutic use in allergic disorders.Drugs48, 617–637 (1994).
  • Yumibe N , HuieK, ChenK, SnowM, ClementRP, CayenMN. Identification of human liver cytochrome P450 enzymes that metabolize the nonsedating antihistamine loratadine. Formation of descarboethoxyloratadine by CYP3A4 and CYP2D6.Biochem. Pharmacol.51, 165–172 (1996).
  • Berthon B , TaudouG, CombettesLet al. In vitro inhibition, by loratadine and descarboxyethoxyloratadine, of histamine release from human basophils, and of histamine release and intracellular calcium fluxes in rat basophilic leukemia cells (RBL-2H3). Biochem. Pharmacol.47, 789–794 (1994).
  • Renwick AG . The metabolism of antihistamines and drug interactions: the role of cytochrome P450 enzymes.Clin. Exper. Allergy29(Suppl. 3), 116–124 (1999).
  • Timmermans PB , CariniJD, ChiuATet al. The discovery of a new class of highly specific nonpeptide angiotensin II receptor antagonists. Am. J. Hypertens. 4, 275S–281S (1991).
  • Wong PC , PriceWA Jr, Chiu AT et al. Nonpeptide angiotensin II receptor antagonists. XI. Pharmacology of EXP3174: an active metabolite of DuP 753, an orally active antihypertensive agent. J. Pharmacol. Exp. Therap.255, 211–217 (1990).
  • Stearns RA , MillerRR, DossGAet al. The metabolism of DuP 753, a nonpeptide angiotensin II receptor antagonist, by rat, monkey, and human liver slices. Drug Metab. Dispos. 20, 281–287 (1992).
  • Stearns RA , ChakravartyPK, ChenR, ChiuSH. Biotransformation of losartan to its active carboxylic acid metabolite in human liver microsomes. Role of cytochrome P4502C and 3A subfamily members.Drug Metab. Dispos.23, 207–215 (1995).
  • Iwamura A , FukamiT, HosomiH, NakaajimaM, YokoiT. CYP2C9-mediated metabolic activation of losartan detected by a highly sensitive cell-based screening assay.Drug. Metab. Dispos.39, 838–846 (2011).
  • Reddy KR , MatelichMC, UgarkarBGet al. Pradefovir: a prodrug that targets adefovir to the liver for the treatment of hepatitis B. J. Med. Chem. 51, 666–676 (2008).
  • Lin C , FangC, BenettonS, XuG, YehL. Metabolic activation of pradefovir by CYP3A4 and its potential as an inhibitor or inducer.Antimicrob. Agents Chemother.50, 2926–2931 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.