121
Views
0
CrossRef citations to date
0
Altmetric
Review

Therapeutic Potential of Targeting Lipid Aldehydes and Lipoxidation End-Products in the Treatment of Ocular Disease

, , &
Pages 189-211 | Published online: 30 Jan 2013

References

  • Barnham KJ , MastersCL, BushAI. Neurodegenerative diseases and oxidative stress.Nat. Rev. Drug Discov.3(3), 205–214 (2004).
  • Griendling KK , FitzGeraldGA. Oxidative stress and cardiovascular injury. Part II: animal and human studies.Circulation108(17), 2034–2040 (2003).
  • Aldini G , le-DonneI, FacinoRM, MilzaniA, CariniM. Intervention strategies to inhibit protein carbonylation by lipoxidation-derived reactive carbonyls.Med. Res. Rev.27(6), 817–868 (2007).
  • Negre-Salvayre A , CoatrieuxC, IngueneauC, SalvayreR. Advanced lipid peroxidation end products in oxidative damage to proteins. Potential role in diseases and therapeutic prospects for the inhibitors.Br. J. Pharmacol.153(1), 6–20 (2008).
  • Esterbauer H , SchaurRJ, ZollnerH. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes.Free Radic. Biol. Med.11(1), 81–128 (1991).
  • Uchida K . Current status of acrolein as a lipid peroxidation product.Trends Cardiovasc. Med.9(5), 109–113 (1999).
  • Catala A . Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions.Chem. Phys. Lipids157(1), 1–11 (2009).
  • Pamplona R . Advanced lipoxidation end-products.Chem. Biol. Interact.192(1–2), 14–20 (2011).
  • Esterbauer H . Cytotoxicity and genotoxicity of lipid-oxidation products.Am. J. Clin. Nutr.57(5 Suppl.), 779S–785S (1993).
  • Petersen DR , DoornJA. Reactions of 4-hydroxynonenal with proteins and cellular targets.Free Radic. Biol. Med.37(7), 937–945 (2004).
  • Uchida K , StadtmanER. Modification of histidine residues in proteins by reaction with 4-hydroxynonenal.Proc. Natl Acad. Sci. USA89(10), 4544–4548 (1992).
  • Nadkarni DV , SayreLM. Structural definition of early lysine and histidine adduction chemistry of 4-hydroxynonenal.Chem. Res. Toxicol.8(2), 284–291 (1995).
  • Long EK , PickloMJ Sr. Trans-4-hydroxy-2-hexenal, a product of n-3 fatty acid peroxidation: make some room HNE. Free Radic. Biol. Med.49(1), 1–8 (2010).
  • Long EK , MurphyTC, LeiphonLJet al. Trans-4-hydroxy-2-hexenal is a neurotoxic product of docosahexaenoic (22:6; n-3) acid oxidation. J. Neurochem. 105(3), 714–724 (2008).
  • Riahi Y , CohenG, ShamniO, SassonS. Signaling and cytotoxic functions of 4-hydroxyalkenals.Am. J. Physiol. Endocrinol. Metab299(6), E879–E886 (2010).
  • Kaneko T , KajiK, MatsuoM. Cytotoxicities of a linoleic acid hydroperoxide and its related aliphatic aldehydes toward cultured human umbilical vein endothelial cells.Chem. Biol. Interact.67(3–4), 295–304 (1988).
  • Aldini G , OrioliM, CariniM. Protein modification by acrolein: relevance to pathological conditions and inhibition by aldehyde sequestering agents.Mol. Nutr. Food Res.55(9), 1301–1319 (2011).
  • Uchida K , KanematsuM, MorimitsuY, OsawaT, NoguchiN, NikiE. Acrolein is a product of lipid peroxidation reaction. Formation of free acrolein and its conjugate with lysine residues in oxidized low density lipoproteins.J. Biol. Chem.273(26), 16058–16066 (1998).
  • Stevens JF , MaierCS. Acrolein: sources, metabolism, and biomolecular interactions relevant to human health and disease.Mol. Nutr. Food Res.52(1), 7–25 (2008).
  • Weiss SJ . Tissue destruction by neutrophils.N. Engl. J. Med.320(6), 365–376 (1989).
  • Anderson MM , HazenSL, HsuFF, HeineckeJW. Human neutrophils employ the myeloperoxidase-hydrogen peroxide-chloride system to convert hydroxy-amino acids into glycolaldehyde, 2-hydroxypropanal, and acrolein. A mechanism for the generation of highly reactive alpha-hydroxy and alpha,beta-unsaturated aldehydes by phagocytes at sites of inflammation. J. Clin. Invest99(3), 424–432 (1997).
  • O‘Brien PJ , SirakiAG, ShangariN. Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health.Crit. Rev. Toxicol.35(7), 609–662 (2005).
  • Igarashi K , KashiwagiK. Protein-conjugated acrolein as a biochemical marker of brain infarction.Mol. Nutr. Food Res.55(9), 1332–1341 (2011).
  • Saiki R , NishimuraK, IshiiIet al. Intense correlation between brain infarction and protein-conjugated acrolein. Stroke 40(10), 3356–3361 (2009).
  • Cai J , BhatnagarA, PierceWM Jr. Protein modification by acrolein: formation and stability of cysteine adducts. Chem. Res. Toxicol.22(4), 708–716 (2009).
  • Maeshima T , HondaK, ChikazawaMet al. quantitative analysis of acrolein-specific adducts generated during lipid peroxidation-modification of proteins in vitro: identification of N(tau)-(3-propanal)histidine as the major adduct. Chem. Res. Toxicol. 25(7), 1384–1392 (2012).
  • Furuhata A , NakamuraM, OsawaT, UchidaK. Thiolation of protein-bound carcinogenic aldehyde. An electrophilic acrolein-lysine adduct that covalently binds to thiols.J. Biol. Chem.277(31), 27919–27926 (2002).
  • Furuhata A , IshiiT, KumazawaS, YamadaT, NakayamaT, UchidaK. N(epsilon)-(3-methylpyridinium)lysine, a major antigenic adduct generated in acrolein-modified protein. J. Biol. Chem.278(49), 48658–48665 (2003).
  • Choi J , LairdJM, SalomonRG. An efficient synthesis of gamma-hydroxy-alpha,beta-unsaturated aldehydic esters of 2-lysophosphatidylcholine.Bioorg. Med. Chem.19(1), 580–587 (2011).
  • Salomon RG , HongL, HollyfieldJG. Discovery of carboxyethylpyrroles (CEPs): critical insights into AMD, autism, cancer, and wound healing from basic research on the chemistry of oxidized phospholipids.Chem. Res. Toxicol.24(11), 1803–1816 (2011).
  • McGirr LG , HadleyM, DraperHH. Identification of N alpha-acetyl-epsilon-(2-propenal)lysine as a urinary metabolite of malondialdehyde. J. Biol. Chem.260(29), 15427–15431 (1985).
  • Uchida K , SakaiK, ItakuraK, OsawaT, ToyokuniS. Protein modification by lipid peroxidation products: formation of malondialdehyde-derived N(epsilon)-(2-propenol)lysine in proteins. Arch. Biochem. Biophys.346(1), 45–52 (1997).
  • Ishii T , KumazawaS, SakuraiT, NakayamaT, UchidaK. Mass spectroscopic characterization of protein modification by malondialdehyde.Chem. Res. Toxicol.19(1), 122–129 (2006).
  • Nair V , CooperCS, ViettiDE, TurnerGA. The chemistry of lipid peroxidation metabolites: crosslinking reactions of malondialdehyde.Lipids21(1), 6–10 (1986).
  • Reddy S , BichlerJ, Wells-KnechtKJ, ThorpeSR, BaynesJW. N epsilon-(carboxymethyl)lysine is a dominant advanced glycation end product (AGE) antigen in tissue proteins.Biochemistry34(34), 10872–10878 (1995).
  • Glomb MA , LangG. Isolation and characterization of glyoxal-arginine modifications.J. Agric. Food Chem.49(3), 1493–1501 (2001).
  • Rindgen D , NakajimaM, WehrliS, XuK, BlairIA. Covalent modifications to 2´-deoxyguanosine by 4-oxo-2-nonenal, a novel product of lipid peroxidation.Chem. Res. Toxicol.12(12), 1195–1204 (1999).
  • Lin D , LeeHG, LiuQ, PerryG, SmithMA, SayreLM. 4-Oxo-2-nonenal is both more neurotoxic and more protein reactive than 4-hydroxy-2-nonenal.Chem. Res. Toxicol.18(8), 1219–1231 (2005).
  • Zhang WH , LiuJ, XuG, YuanQ, SayreLM. Model studies on protein side chain modification by 4-oxo-2-nonenal.Chem. Res. Toxicol.16(4), 512–523 (2003).
  • Zhu X , GalloglyMM, MieyalJJ, AndersonVE, SayreLM. Covalent cross-linking of glutathione and carnosine to proteins by 4-oxo-2-nonenal.Chem. Res. Toxicol.22(6), 1050–1059 (2009).
  • Brame CJ , SalomonRG, MorrowJD, RobertsLJ. Identification of extremely reactive gamma-ketoaldehydes (isolevuglandins) as products of the isoprostane pathway and characterization of their lysyl protein adducts.J. Biol. Chem.274(19), 13139–13146 (1999).
  • Davies SS , AmarnathV, RobertsLJ. Isoketals: highly reactive gamma-ketoaldehydes formed from the H2-isoprostane pathway.Chem. Phys. Lipids128(1–2), 85–99 (2004).
  • Brame CJ , BoutaudO, DaviesSSet al. Modification of proteins by isoketal-containing oxidized phospholipids. J. Biol. Chem. 279(14), 13447–13451 (2004).
  • Jackson B , BrockerC, ThompsonDCet al. Update on the aldehyde dehydrogenase gene (ALDH) superfamily. Hum. Genomics 5(4), 283–303 (2011).
  • Pappa A , ChenC, KoutalosY, TownsendAJ, VasiliouV. Aldh3a1 protects human corneal epithelial cells from ultraviolet- and 4-hydroxy-2-nonenal-induced oxidative damage.Free Radic. Biol. Med.34(9), 1178–1189 (2003).
  • Townsend AJ , Leone-KablerS, HaynesRL, WuY, SzwedaL, BuntingKD. Selective protection by stably transfected human ALDH3A1 (but not human ALDH1A1) against toxicity of aliphatic aldehydes in V79 cells.Chem. Biol. Interact.130–132(1–3), 261–273 (2001).
  • Yoval-Sanchez B , Rodriguez-ZavalaJS. Differences in susceptibility to inactivation of human aldehyde dehydrogenases by lipid peroxidation byproducts.Chem. Res. Toxicol.25(3), 722–729 (2012).
  • Ramana KV . Aldose reductase. new insights for an old enzyme.Biomol. Concepts2(1–2), 103–114 (2011).
  • Pladzyk A , RamanaKV, AnsariNH, SrivastavaSK. Aldose reductase prevents aldehyde toxicity in cultured human lens epithelial cells.Exp. Eye Res.83(2), 408–416 (2006).
  • Srivastava SK , YadavUC, ReddyABet al. Aldose reductase inhibition suppresses oxidative stress-induced inflammatory disorders. Chem. Biol. Interact. 191(1–3), 330–338 (2011).
  • Burczynski ME , SridharGR, PalackalNT, PenningTM. The reactive oxygen species – and Michael acceptor-inducible human aldo-keto reductase AKR1C1 reduces the alpha,beta-unsaturated aldehyde 4-hydroxy-2-nonenal to 1,4-dihydroxy-2-nonene.J. Biol. Chem.276(4), 2890–2897 (2001).
  • Gardner R , KaziS, EllisEM. Detoxication of the environmental pollutant acrolein by a rat liver aldo-keto reductase.Toxicol. Lett.148(1–2), 65–72 (2004).
  • Li D , FerrariM, EllisEM. Human aldo-keto reductase AKR7A2 protects against the cytotoxicity and mutagenicity of reactive aldehydes and lowers intracellular reactive oxygen species in hamster V79–4 cells.Chem. Biol. Interact.195(1), 25–34 (2012).
  • Sharma R , YangY, SharmaA, AwasthiS, AwasthiYC. Antioxidant role of glutathione S-transferases: protection against oxidant toxicity and regulation of stress-mediated apoptosis.Antioxid. Redox. Signal.6(2), 289–300 (2004).
  • Pladzyk A , ReddyAB, YadavUC, TammaliR, RamanaKV, SrivastavaSK. Inhibition of aldose reductase prevents lipopolysaccharide-induced inflammatory response in human lens epithelial cells.Invest. Ophthalmol. Vis. Sci.47(12), 5395–5403 (2006).
  • Pamplona R . Membrane phospholipids, lipoxidative damage and molecular integrity: a causal role in aging and longevity.Biochim. Biophys. Acta1777(10), 1249–1262 (2008).
  • Voulgaridou GP , AnestopoulosI, FrancoR, PanayiotidisMI, PappaA. DNA damage induced by endogenous aldehydes: current state of knowledge.Mutat. Res.711(1–2), 13–27 (2011).
  • Aiello LP , GardnerTW, KingGLet al. Diabetic retinopathy. Diabetes Care 21(1), 143–156 (1998).
  • Klein R , KleinBE, MossSE. The Wisconsin epidemiological study of diabetic retinopathy: a review.Diabetes Metab. Rev.5(7), 559–570 (1989).
  • UK prospective diabetes study (UKPDS) group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with Type 2 diabetes (UKPDS 33). Lancet352(9131), 837–853 (1998).
  • The diabetes control and complications trial research group. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med.329(14), 977–986 (1993).
  • The diabetes control and complications trial research group. Hypoglycemia in the diabetes control and complications trial. Diabetes46(2), 271–286 (1997).
  • Gardiner TA , ArcherDB, CurtisTM, StittAW. Arteriolar involvement in the microvascular lesions of diabetic retinopathy: implications for pathogenesis.Microcirculation14(1), 25–38 (2007).
  • Antonetti DA , BarberAJ, BronsonSKet al. Diabetic retinopathy: seeing beyond glucose-induced microvascular disease. Diabetes 55(9), 2401–2411 (2006).
  • Hancock HA , KraftTW. Oscillatory potential analysis and ERGs of normal and diabetic rats.Invest. Ophthalmol. Vis. Sci.45(3), 1002–1008 (2004).
  • Phipps JA , YeeP, FletcherEL, VingrysAJ. Rod photoreceptor dysfunction in diabetes: activation, deactivation, and dark adaptation.Invest. Ophthalmol. Vis. Sci.47(7), 3187–3194 (2006).
  • Lieth E , BarberAJ, XuBet al. Glial reactivity and impaired glutamate metabolism in short-term experimental diabetic retinopathy. Penn State Retina Research Group. Diabetes 47(5), 815–820 (1998).
  • Mizutani M , GerhardingerC, LorenziM. Muller cell changes in human diabetic retinopathy.Diabetes47(3), 445–449 (1998).
  • Rungger-Brandle E , DossoAA, LeuenbergerPM. Glial reactivity, an early feature of diabetic retinopathy.Invest. Ophthalmol. Vis. Sci.41(7), 1971–1980 (2000).
  • Hammes HP , BartmannA, EngelL, WulfrothP. Antioxidant treatment of experimental diabetic retinopathy in rats with nicanartine.Diabetologia40(6), 629–634 (1997).
  • Curtis TM , HamiltonR, YongPHet al. Muller glial dysfunction during diabetic retinopathy in rats is linked to accumulation of advanced glycation end-products and advanced lipoxidation end-products. Diabetologia 54(3), 690–698 (2011).
  • Bringmann A , PannickeT, GroscheJet al. Muller cells in the healthy and diseased retina. Prog. Retin. Eye Res. 25(4), 397–424 (2006).
  • Li Q , PuroDG. Diabetes-induced dysfunction of the glutamate transporter in retinal Müller cells.Invest. Ophthalmol. Vis. Sci.43(9), 3109–3116 (2002).
  • Pannicke T , IandievI, WurmAet al. Diabetes alters osmotic swelling characteristics and membrane conductance of glial cells in rat retina. Diabetes 55(3), 633–639 (2006).
  • Gerhardinger C , CostaMB, CoulombeMC, TothI, HoehnT, GrosuP. Expression of acute-phase response proteins in retinal Muller cells in diabetes.Invest. Ophthalmol. Vis. Sci.46(1), 349–357 (2005).
  • Amin RH , FrankRN, KennedyA, EliottD, PuklinJE, AbramsGW. Vascular endothelial growth factor is present in glial cells of the retina and optic nerve of human subjects with nonproliferative diabetic retinopathy.Invest. Ophthalmol. Vis. Sci.38(1), 36–47 (1997).
  • Inokuchi N , IkedaT, ImamuraYet al. Vitreous levels of insulin-like growth factor-I in patients with proliferative diabetic retinopathy. Curr. Eye Res. 23(5), 368–371 (2001).
  • Wang J , XuX, ElliottMH, ZhuM, LeYZ. Muller cell-derived VEGF is essential for diabetes-induced retinal inflammation and vascular leakage.Diabetes59(9), 2297–2305 (2010).
  • Miura J , YamagishiS, UchigataYet al. Serum levels of non-carboxymethyllysine advanced glycation endproducts are correlated to severity of microvascular complications in patients with Type 1 diabetes. J. Diabetes Complications 17(1), 16–21 (2003).
  • Wautier MP , MassinP, GuillausseauPJ et al. N(carboxymethyl)lysine as a biomarker for microvascular complications in Type 2 diabetic patients. Diabetes Metab.29(1), 44–52 (2003).
  • Boehm BO , SchillingS, RosingerSet al. Elevated serum levels of N(epsilon)-carboxymethyl-lysine, an advanced glycation end product, are associated with proliferative diabetic retinopathy and macular oedema. Diabetologia 47(8), 1376–1379 (2004).
  • Endo M , YanagisawaK, TsuchidaKet al. Increased levels of vascular endothelial growth factor and advanced glycation end products in aqueous humor of patients with diabetic retinopathy. Horm. Metab. Res. 33(5), 317–322 (2001).
  • Genuth S , SunW, ClearyPet al. Glycation and carboxymethyllysine levels in skin collagen predict the risk of future 10-year progression of diabetic retinopathy and nephropathy in the diabetes control and complications trial and epidemiology of diabetes interventions and complications participants with Type 1 diabetes. Diabetes 54(11), 3103–3111 (2005).
  • Hammes HP , BrownleeM, LinJ, SchleicherE, BretzelRG. Diabetic retinopathy risk correlates with intracellular concentrations of the glycoxidation product N epsilon-(carboxymethyl) lysine independently of glycohaemoglobin concentrations. Diabetologia42(5), 603–607 (1999).
  • Stitt A , GardinerTA, AldersonNLet al. The AGE inhibitor pyridoxamine inhibits development of retinopathy in experimental diabetes. Diabetes 51(9), 2826–2832 (2002).
  • Losada M , AlioJL. Malondialdehyde serum concentration in Type 1 diabetic with and without retinopathy.Doc. Ophthalmol.93(3), 223–229 (1996).
  • Polak M , ZagorskiZ. Lipid peroxidation in diabetic retinopathy.Ann. Univ Mariae. Curie Sklodowska Med.59(1), 434–437 (2004).
  • Pan HZ , ZhangH, ChangD, LiH, SuiH. The change of oxidative stress products in diabetes mellitus and diabetic retinopathy.Br. J. Ophthalmol.92(4), 548–551 (2008).
  • Grattagliano I , VendemialeG, BosciaF, Micelli-FerrariT, CardiaL, AltomareE. Oxidative retinal products and ocular damages in diabetic patients.Free Radic. Biol. Med.25(3), 369–372 (1998).
  • Baydas G , TuzcuM, YasarA, BaydasB. Early changes in glial reactivity and lipid peroxidation in diabetic rat retina: effects of melatonin.Acta Diabetol.41(3), 123–128 (2004).
  • Fathallah L , ObrosovaIG. Increased retinal lipid peroxidation in early diabetes is not associated with ascorbate depletion or changes in ascorbate redox state.Exp. Eye Res.72(6), 719–723 (2001).
  • Obrosova IG , FathallahL, GreeneDA. Early changes in lipid peroxidation and antioxidative defense in diabetic rat retina: effect of DL-alpha-lipoic acid. Eur. J. Pharmacol.398(1), 139–146 (2000).
  • Ali TK , MatragoonS, PillaiBA, LiouGI, El-RemessyAB. Peroxynitrite mediates retinal neurodegeneration by inhibiting nerve growth factor survival signaling in experimental and human diabetes.Diabetes57(4), 889–898 (2008).
  • Hartnett ME , StrattonRD, BrowneRW, RosnerBA, LanhamRJ, ArmstrongD. Serum markers of oxidative stress and severity of diabetic retinopathy.Diabetes Care23(2), 234–240 (2000).
  • Zhang X , LaiY, McCanceDRet al. Evaluation of N (epsilon)-(3-formyl-3,4-dehydropiperidino)lysine as a novel biomarker for the severity of diabetic retinopathy. Diabetologia 51(9), 1723–1730 (2008).
  • Yong PH , ZongH, MedinaRJet al. Evidence supporting a role for N-(3-formyl-3,4-dehydropiperidino)lysine accumulation in Muller glia dysfunction and death in diabetic retinopathy. Mol Vis 16, 2524–2538 (2010).
  • Pascolini D , MariottiSP. Global estimates of visual impairment: 2010.Br. J. Ophthalmol.96(5), 614–618 (2012).
  • Robman L , TaylorH. External factors in the development of cataract.Eye (Lond.)19(10), 1074–1082 (2005).
  • Stein JD . Serious adverse events after cataract surgery.Curr. Opin. Ophthalmol.23(3), 219–225 (2012).
  • Spector A . Oxidative stress-induced cataract: mechanism of action.FASEB J.9(12), 1173–1182 (1995).
  • Bhuyan KC , BhuyanDK, PodosSM. Lipid peroxidation in cataract of the human.Life Sci.38(16), 1463–1471 (1986).
  • Simonelli F , NestiA, PensaMet al. Lipid peroxidation and human cataractogenesis in diabetes and severe myopia. Exp. Eye Res. 49(2), 181–187 (1989).
  • Altomare E , VendemialeG, GrattaglianoI, AngeliniP, Micelli-FerrariT, CardiaL. Human diabetic cataract: role of lipid peroxidation.Diabetes Metab.21(3), 173–179 (1995).
  • Bhatia RP , RaiR, RaoGR. Role of malondialdehyde and superoxide dismutase in cataractogenesis.Ann. Ophthalmol.(Skokie.)38(2), 103–106 (2006).
  • Micelli-Ferrari T , VendemialeG, GrattaglianoIet al. Role of lipid peroxidation in the pathogenesis of myopic and senile cataract. Br. J. Ophthalmol. 80(9), 840–843 (1996).
  • Franke S , DawczynskiJ, StrobelJ, NiwaT, StahlP, SteinG. Increased levels of advanced glycation end products in human cataractous lenses.J. Cataract Refract. Surg.29(5), 998–1004 (2003).
  • Goosey JD , TuanWM, GarciaCA. A lipid peroxidative mechanism for posterior subcapsular cataract formation in the rabbit: a possible model for cataract formation in tapetoretinal diseases.Invest. Ophthalmol. Vis. Sci.25(5), 608–612 (1984).
  • Mibu H , NagataM, HikidaM. A study on lipid peroxide-induced lens damage in vitro. Exp. Eye Res.58(1), 85–90 (1994).
  • Ansari NH , WangL, SrivastavaSK. Role of lipid aldehydes in cataractogenesis: 4-hydroxynonenal-induced cataract.Biochem. Mol. Med.58(1), 25–30 (1996).
  • King G , HolmesR. Human ocular aldehyde dehydrogenase isozymes: distribution and properties as major soluble proteins in cornea and lens.J. Exp. Zool.282(1–2), 12–17 (1998).
  • Choudhary S , XiaoT, VergaraLAet al. Role of aldehyde dehydrogenase isozymes in the defense of rat lens and human lens epithelial cells against oxidative stress. Invest. Ophthalmol. Vis Sci. 46(1), 259–267 (2005).
  • Lassen N , BatemanJB, EsteyTet al. Multiple and additive functions of ALDH3A1 and ALDH1A1: cataract phenotype and ocular oxidative damage in Aldh3a1(-/-)/Aldh1a1(-/-) knock-out mice. J. Biol. Chem. 282(35), 25668–25676 (2007).
  • Nees DW , WawrousekEF, RobisonWG Jr, Piatigorsky J. Structurally normal corneas in aldehyde dehydrogenase 3a1-deficient mice. Mol. Cell. Biol.22(3), 849–855 (2002).
  • Zigler JS Jr, Bodaness RS, Gery I, Kinoshita JH. Effects of lipid peroxidation products on the rat lens in organ culture: a possible mechanism of cataract initiation in retinal degenerative disease. Arch. Biochem. Biophys.225(1), 149–156 (1983).
  • LaVail MM . Legacy of the RCS rat: impact of a seminal study on retinal cell biology and retinal degenerative diseases.Prog. Brain Res.131, 617–627 (2001).
  • Zigler JS Jr, Hess HH. Cataracts in the Royal College of Surgeons rat: evidence for initiation by lipid peroxidation products. Exp. Eye Res.41(1), 67–76 (1985).
  • Jager RD , MielerWF, MillerJW. Age-related macular degeneration.N. Engl. J. Med.358(24), 2606–2617 (2008).
  • Abdelsalam A , DelPL, ZarbinMA. Drusen in age-related macular degeneration: pathogenesis, natural course, and laser photocoagulation-induced regression.Surv. Ophthalmol.44(1), 1–29 (1999).
  • de Jong PT . Age-related macular degeneration.N. Engl. J. Med.355(14), 1474–1485 (2006).
  • Grossniklaus HE , GreenWR. Choroidal neovascularization.Am. J. Ophthalmol.137(3), 496–503 (2004).
  • Kopitz J , HolzFG, KaemmererE, SchuttF. Lipids and lipid peroxidation products in the pathogenesis of age-related macular degeneration.Biochimie86(11), 825–831 (2004).
  • Schutt F , BergmannM, HolzFG, KopitzJ. Proteins modified by malondialdehyde, 4-hydroxynonenal, or advanced glycation end products in lipofuscin of human retinal pigment epithelium.Invest. Ophthalmol. Vis. Sci.44(8), 3663–3668 (2003).
  • Krohne TU , KaemmererE, HolzFG, KopitzJ. Lipid peroxidation products reduce lysosomal protease activities in human retinal pigment epithelial cells via two different mechanisms of action.Exp. Eye Res.90(2), 261–266 (2010).
  • Krohne TU , StratmannNK, KopitzJ, HolzFG. Effects of lipid peroxidation products on lipofuscinogenesis and autophagy in human retinal pigment epithelial cells.Exp. Eye Res.90(3), 465–471 (2010).
  • Krohne TU , HolzFG, KopitzJ. Apical-to-basolateral transcytosis of photoreceptor outer segments induced by lipid peroxidation products in human retinal pigment epithelial cells.Invest. Ophthalmol. Vis. Sci.51(1), 553–560 (2010).
  • Crabb JW , MiyagiM, GuXet al. Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc. Natl Acad. Sci. USA 99(23), 14682–14687 (2002).
  • Gu X , MeerSG, MiyagiMet al. Carboxyethylpyrrole protein adducts and autoantibodies, biomarkers for age-related macular degeneration. J. Biol. Chem. 278(43), 42027–42035 (2003).
  • Hollyfield JG , BonilhaVL, RaybornMEet al. Oxidative damage-induced inflammation initiates age-related macular degeneration. Nat. Med. 14(2), 194–198 (2008).
  • Ebrahem Q , RenganathanK, SearsJet al. Carboxyethylpyrrole oxidative protein modifications stimulate neovascularization: implications for age-related macular degeneration. Proc Natl. Acad. Sci. USA 103(36), 13480–13484 (2006).
  • Doyle SL , CampbellM, OzakiEet al. NLRP3 has a protective role in age-related macular degeneration through the induction of IL-18 by drusen components. Nat. Med. 18(5), 791–798 (2012).
  • DeAngelis MM , SilveiraAC, CarrEA, KimIK. Genetics of age-related macular degeneration: current concepts, future directions.Semin. Ophthalmol.26(3), 77–93 (2011).
  • Edwards AO , RitterR, III, Abel KJ, Manning A, Panhuysen C, Farrer LA. Complement factor H polymorphism and age-related macular degeneration. Science308(5720), 421–424 (2005).
  • Hageman GS , AndersonDH, JohnsonLVet al. A common haplotype in the complement regulatory gene factor H (HF1/CFH) predisposes individuals to age-related macular degeneration. Proc. Natl. Acad. Sci. USA 102(20), 7227–7232 (2005).
  • Haines JL , HauserMA, SchmidtSet al. Complement factor H variant increases the risk of age-related macular degeneration. Science 308(5720), 419–421 (2005).
  • Klein RJ , ZeissC, ChewEYet al. Complement factor H polymorphism in age-related macular degeneration. Science 308(5720), 385–389 (2005).
  • Weismann D , HartvigsenK, LauerNet al. Complement factor H binds malondialdehyde epitopes and protects from oxidative stress. Nature 478(7367), 76–81 (2011).
  • Hartong DT , BersonEL, DryjaTP. Retinitis pigmentosa.Lancet368(9549), 1795–1809 (2006).
  • Punzo C , XiongW, CepkoCL. Loss of daylight vision in retinal degeneration: are oxidative stress and metabolic dysregulation to blame?J. Biol. Chem.287(3), 1642–1648 (2012).
  • Yu DY , CringleS, ValterK, WalshN, LeeD, StoneJ. Photoreceptor death, trophic factor expression, retinal oxygen status, and photoreceptor function in the P23H rat.Invest. Ophthalmol. Vis. Sci.45(6), 2013–2019 (2004).
  • Shen J , YangX, DongAet al. Oxidative damage is a potential cause of cone cell death in retinitis pigmentosa. J. Cell. Physiol. 203(3), 457–464 (2005).
  • Komeima K , RogersBS, LuL, CampochiaroPA. Antioxidants reduce cone cell death in a model of retinitis pigmentosa.Proc. Natl Acad. Sci. USA103(30), 11300–11305 (2006).
  • Schock BC , SweetDG, HallidayHL, YoungIS, EnnisM. Oxidative stress in lavage fluid of preterm infants at risk of chronic lung disease.Am. J. Physiol. Lung Cell. Mol. Physiol.281(6), L1386–L1391 (2001).
  • Sapieha P , JoyalJS, RiveraJCet al. Retinopathy of prematurity: understanding ischemic retinal vasculopathies at an extreme of life. J. Clin. Invest. 120(9), 3022–3032 (2010).
  • Lutty GA , Chan-LingT, PhelpsDLet al. Proceedings of the Third International Symposium on Retinopathy of Prematurity: an update on ROP from the lab to the nursery (November 2003, Anaheim, California). Mol. Vis. 12, 532–580 (2006).
  • Weinberger B , AnwarM, HenienSet al. Association of lipid peroxidation with antenatal betamethasone and oxygen radial disorders in preterm infants. Biol. Neonate 85(2), 121–127 (2004).
  • Tsukahara H , JiangMZ, OhtaNet al. Oxidative stress in neonates: evaluation using specific biomarkers. Life Sci. 75(8), 933–938 (2004).
  • Quigley HA . Glaucoma.Lancet377(9774), 1367–1377 (2011).
  • Almasieh M , WilsonAM, MorquetteB, Cueva Vargas JL, Di PA. The molecular basis of retinal ganglion cell death in glaucoma. Prog. Retin. Eye Res.31(2), 152–181 (2012).
  • Ghanem AA , ArafaLF, El-BazA. Oxidative stress markers in patients with primary open-angle glaucoma.Curr. Eye Res.35(4), 295–301 (2010).
  • Chang D , ShaQ, ZhangXet al. The evaluation of the oxidative stress parameters in patients with primary angle-closure glaucoma. PLoS. ONE 6(11), e27218 (2011).
  • Liu Q , JuWK, CrowstonJGet al. Oxidative stress is an early event in hydrostatic pressure induced retinal ganglion cell damage. Invest. Ophthalmol. Vis. Sci. 48(10), 4580–4589 (2007).
  • Ju WK , LiuQ, KimKYet al. Elevated hydrostatic pressure triggers mitochondrial fission and decreases cellular ATP in differentiated RGC-5 cells. Invest. Ophthalmol. Vis. Sci. 48(5), 2145–2151 (2007).
  • Yadav UC , KalariyaNM, RamanaKV. Emerging role of antioxidants in the protection of uveitis complications.Curr. Med. Chem.18(6), 931–942 (2011).
  • Rosenbaum JT , McDevittHO, GussRB, EgbertPR. Endotoxin-induced uveitis in rats as a model for human disease.Nature286(5773), 611–613 (1980).
  • Rao NA . Role of oxygen free radicals in retinal damage associated with experimental uveitis.Trans. Am. Ophthalmol. Soc.88, 797–850 (1990).
  • Ishimoto S , WuGS, HayashiS, ZhangJ, RaoNA. Free radical tissue damages in the anterior segment of the eye in experimental autoimmune uveitis.Invest. Ophthalmol. Vis. Sci.37(4), 630–636 (1996).
  • Satici A , GuzeyM, GurlerB, VuralH, GurkanT. Malondialdehyde and antioxidant enzyme levels in the aqueous humor of rabbits in endotoxin-induced uveitis.Eur. J. Ophthalmol.13(9–10), 779–783 (2003).
  • Yadav UC , SrivastavaSK, RamanaKV. Understanding the role of aldose reductase in ocular inflammation.Curr. Mol. Med.10(6), 540–549 (2010).
  • Yadav UC , ShoebM, SrivastavaSK, RamanaKV. Aldose reductase deficiency protects from autoimmune- and endotoxin-induced uveitis in mice.Invest. Ophthalmol. Vis. Sci.52(11), 8076–8085 (2011).
  • Yadav UC , SrivastavaSK, RamanaKV. Aldose reductase inhibition prevents endotoxin-induced uveitis in rats.Invest. Ophthalmol. Vis. Sci.48(10), 4634–4642 (2007).
  • Age-Related Eye Disease Study Research Group. A randomized, placebo-controlled, clinical trial of high-dose supplementation with vitamins C and E, beta carotene, and zinc for age-related macular degeneration and vision loss: AREDS report no. 8. Arch. Ophthalmol.119(10), 1417–1436 (2001).
  • Kowluru RA , ChanPS. Oxidative stress and diabetic retinopathy.Exp. Diabetes Res.2007, 43603 (2007).
  • Kowluru RA , KanwarM, ChanPS, ZhangJP. Inhibition of retinopathy and retinal metabolic abnormalities in diabetic rats with AREDS-based micronutrients.Arch. Ophthalmol.126(9), 1266–1272 (2008).
  • Millen AE , GruberM, KleinR, KleinBE, PaltaM, MaresJA. Relations of serum ascorbic acid and alpha-tocopherol to diabetic retinopathy in the Third National Health and Nutrition Examination Survey.Am. J. Epidemiol.158(3), 225–233 (2003).
  • Garcia-Medina JJ , Pinazo-DuranMD, Garcia-MedinaM, Zanon-MorenoV, Pons-VazquezS. A 5-year follow-up of antioxidant supplementation in Type 2 diabetic retinopathy.Eur. J. Ophthalmol.21(5), 637–643 (2011).
  • Pasantes-Morales H , QuirozH, QuesadaO. Treatment with taurine, diltiazem, and vitamin E retards the progressive visual field reduction in retinitis pigmentosa: a 3-year follow-up study.Metab. Brain Dis.17(3), 183–197 (2002).
  • Motohashi H , YamamotoM. Nrf2-Keap1 defines a physiologically important stress response mechanism.Trends Mol. Med.10(11), 549–557 (2004).
  • Ellis EM . Reactive carbonyls and oxidative stress: potential for therapeutic intervention.Pharmacol. Ther.115(1), 13–24 (2007).
  • Gao X , TalalayP. Induction of phase 2 genes by sulforaphane protects retinal pigment epithelial cells against photooxidative damage.Proc. Natl. Acad. Sci. USA101(28), 10446–10451 (2004).
  • Kong L , TanitoM, HuangZet al. Delay of photoreceptor degeneration in tubby mouse by sulforaphane. J. Neurochem. 101(4), 1041–1052 (2007).
  • Xue M , QianQ, AdaikalakoteswariA, RabbaniN, Babaei-JadidiR, ThornalleyPJ. Activation of NF-E2-related factor-2 reverses biochemical dysfunction of endothelial cells induced by hyperglycemia linked to vascular disease.Diabetes57(10), 2809–2817 (2008).
  • Zheng H , WhitmanSA, WuWet al. Therapeutic potential of Nrf2 activators in streptozotocin-induced diabetic nephropathy. Diabetes 60(11), 3055–3066 (2011).
  • Feng Z , LiuZ, LiXet al. Alpha-Tocopherol is an effective Phase II enzyme inducer: protective effects on acrolein-induced oxidative stress and mitochondrial dysfunction in human retinal pigment epithelial cells. J. Nutr. Biochem. 21(12), 1222–1231 (2010).
  • Zhu L , LiuZ, FengZet al. Hydroxytyrosol protects against oxidative damage by simultaneous activation of mitochondrial biogenesis and phase II detoxifying enzyme systems in retinal pigment epithelial cells. J. Nutr. Biochem. 21(11), 1089–1098 (2010).
  • Dorr RT . Chemoprotectants for cancer chemotherapy.Semin. Oncol.18(1, Suppl. 2), 48–58 (1991).
  • Burcham PC , KaminskasLM, TanD, PykeSM. Carbonyl-scavenging drugs and protection against carbonyl stress-associated cell injury.Mini. Rev. Med. Chem.8(4), 319–330 (2008).
  • Hammes HP , MartinS, FederlinK, GeisenK, BrownleeM. Aminoguanidine treatment inhibits the development of experimental diabetic retinopathy.Proc. Natl Acad. Sci. USA88(24), 11555–11558 (1991).
  • Lewis BS , HardingJJ. The effects of aminoguanidine on the glycation (non-enzymic glycosylation) of lens proteins.Exp. Eye Res.50(5), 463–467 (1990).
  • Burcham PC , KaminskasLM, FontaineFR, PetersenDR, PykeSM. Aldehyde-sequestering drugs: tools for studying protein damage by lipid peroxidation products.Toxicology181–182, 229–236 (2002).
  • Ihm SH , YooHJ, ParkSW, IhmJ. Effect of aminoguanidine on lipid peroxidation in streptozotocin-induced diabetic rats.Metabolism48(9), 1141–1145 (1999).
  • Zheng L , DuY, MillerCet al. Critical role of inducible nitric oxide synthase in degeneration of retinal capillaries in mice with streptozotocin-induced diabetes. Diabetologia 50(9), 1987–1996 (2007).
  • Takano K , OguraM, YonedaY, NakamuraY. Oxidative metabolites are involved in polyamine-induced microglial cell death.Neuroscience134(4), 1123–1131 (2005).
  • Freedman BI , WuerthJP, CartwrightKet al. Design and baseline characteristics for the aminoguanidine Clinical Trial in Overt Type 2 Diabetic Nephropathy (ACTION II). Control. Clin. Trials 20(5), 493–510 (1999).
  • Osicka TM , YuY, LeeV, PanagiotopoulosS, KempBE, JerumsG. Aminoguanidine and ramipril prevent diabetes-induced increases in protein kinase C activity in glomeruli, retina and mesenteric artery.Clin. Sci.(Lond.)100(3), 249–257 (2001).
  • Thornalley PJ . Use of aminoguanidine (Pimagedine) to prevent the formation of advanced glycation endproducts.Arch. Biochem. Biophys.419(1), 31–40 (2003).
  • Metz TO , AldersonNL, ThorpeSR, BaynesJW. Pyridoxamine, an inhibitor of advanced glycation and lipoxidation reactions: a novel therapy for treatment of diabetic complications.Arch. Biochem. Biophys.419(1), 41–49 (2003).
  • Voziyan PA , MetzTO, BaynesJW, HudsonBG. A post-Amadori inhibitor pyridoxamine also inhibits chemical modification of proteins by scavenging carbonyl intermediates of carbohydrate and lipid degradation.J. Biol. Chem.277(5), 3397–3403 (2002).
  • Kang Z , LiH, LiG, YinD. Reaction of pyridoxamine with malondialdehyde: mechanism of inhibition of formation of advanced lipoxidation end-products.Amino Acids30(1), 55–61 (2006).
  • Amarnath V , AmarnathK, AmarnathK, DaviesS, RobertsLJ. Pyridoxamine: an extremely potent scavenger of 1,4-dicarbonyls.Chem. Res. Toxicol.17(3), 410–415 (2004).
  • Voziyan PA , HudsonBG. Pyridoxamine: the many virtues of a maillard reaction inhibitor.Ann. NY Acad. Sci.1043, 807–816 (2005).
  • Aldini G , FacinoRM, BerettaG, CariniM. Carnosine and related dipeptides as quenchers of reactive carbonyl species: from structural studies to therapeutic perspectives.Biofactors24(1–4), 77–87 (2005).
  • Shi Q , YanH, LiMY, HardingJJ. Effect of a combination of carnosine and aspirin eye drops on streptozotocin – induced diabetic cataract in rats.Mol. Vis.15, 2129–2138 (2009).
  • Babizhayev MA . Current ocular drug delivery challenges for N-acetylcarnosine: novel patented routes and modes of delivery, design for enhancement of therapeutic activity and drug delivery relationships. Recent Pat. Drug Deliv. Formul.3(3), 229–265 (2009).
  • Pfister F , RiedlE, WangQet al. Oral carnosine supplementation prevents vascular damage in experimental diabetic retinopathy. Cell. Physiol. Biochem. 28(1), 125–136 (2011).
  • Burcham PC , KerrPG, FontaineF. The antihypertensive hydralazine is an efficient scavenger of acrolein.Redox. Rep.5(1), 47–49 (2000).
  • Burcham PC , FontaineFR, KaminskasLM, PetersenDR, PykeSM. Protein adduct-trapping by hydrazinophthalazine drugs: mechanisms of cytoprotection against acrolein-mediated toxicity.Mol. Pharmacol.65(3), 655–664 (2004).
  • Kaminskas LM , PykeSM, BurchamPC. Strong protein adduct trapping accompanies abolition of acrolein-mediated hepatotoxicity by hydralazine in mice.J. Pharmacol. Exp. Ther.310(3), 1003–1010 (2004).
  • Kaminskas LM , PykeSM, BurchamPC. Reactivity of hydrazinophthalazine drugs with the lipid peroxidation products acrolein and crotonaldehyde.Org. Biomol. Chem.2(18), 2578–2584 (2004).
  • Druey J , MarxerA. Hypotensive Hydrazinophthalazines and Related Compounds.J. Med. Pharm. Chem.1(1), 1–21 (1959).
  • Reinhardt DJ , WaldronJM. Lupus erythematosus-like syndrome complicating hydralazine (apresoline) therapy.J. Am. Med. Assoc.155(17), 1491–1492 (1954).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.