87
Views
0
CrossRef citations to date
0
Altmetric
Perspective

Nonhuman Targets in Allergic Lung Conditions

, , &
Pages 147-161 | Published online: 30 Jan 2013

References

  • Peat JK , ToveyE, ToelleBGet al. House dust mite allergens. A major risk factor for childhood asthma in Australia. Am. J. Respir. Crit. Care Med. 153(1), 141–146 (1996).
  • Pearce N , PekkanenJ, BeasleyR. How much asthma is really attributable to atopy?Thorax54(3), 268–272 (1999).
  • Platts-Mills T . Indoor Allergens. In: Middleton’s Allergy. Principles and Practice. Adkinson NF, Bochner BS, Busse WW, Holgate ST, Lemanske RF, Simons FER (Eds). Mosby Elsevier, MO, USA, 539–555 (2009).
  • Anandan C , NurmatovU, van Schayck OC, Sheikh A. Is the prevalence of asthma declining? Systematic review of epidemiological studies. Allergy65(2), 152–167 (2010).
  • NICE. NICE technology appraisal guidance 133. Omalizumab for severe persistent allergic asthma. NICE, London, UK (2007).
  • von Pirquet C . Allergie.Munch. Med. Wochenschr.53, 1457–1458 (1906).
  • Arbes SJ Jr, Cohn RD, Yin M et al. House dust mite allergen in US beds: results from the First National Survey of Lead and Allergens in Housing. J. Allergy Clin. Immunol.111(2), 408–414 (2003).
  • Arruda LK , RizzoMC, ChapmanMDet al. Exposure and sensitization to dust mite allergens among asthmatic children in Sao Paulo, Brazil. Clin. Exp. Allergy 21(4), 433–439 (1991).
  • Gelber LE , SeltzerLH, BouzoukisJK, PollartSM, ChapmanMD, Platts-MillsTA. Sensitization and exposure to indoor allergens as risk factors for asthma among patients presenting to hospital.Am. Rev. Respir. Dis.147(3), 573–578 (1993).
  • Miyamoto T , OshimaS, IshizakiT, SatoSH. Allergenic identity between the common floor mite (Dermatophagoides farinae Hughes, 1961) and house dust as a causative antigen in bronchial asthma. J. Allergy42(1), 14–28 (1968).
  • Peat JK , Woolcock AJ. Sensitivity to common allergens: relation to respiratory symptoms and bronchial hyper-responsiveness in children from three different climatic areas of Australia. Clin. Exp. Allergy21(5), 573–581 (1991).
  • Pollart SM , ChapmanMD, FioccoGP, RoseG, Platts-MillsTA. Epidemiology of acute asthma: IgE antibodies to common inhalant allergens as a risk factor for emergency room visits.J. Allergy Clin. Immunol.83(5), 875–882 (1989).
  • Smith JM , DisneyME, WilliamsJD, GoelsZA. Clinical significance of skin reactions to mite extracts in children with asthma.Br. Med. J.1(659), 723–726 (1969).
  • Sporik R , HolgateST, Platts-MillsTA, CogswellJJ. Exposure to house-dust mite allergen (Der p I) and the development of asthma in childhood. A prospective study.N. Engl. J. Med.323(8), 502–507 (1990).
  • Platts-Mills TA , HaydenML, ChapmanMD, WilkinsSR. Seasonal variation in dust mite and grass-pollen allergens in dust from the houses of patients with asthma.J. Allergy Clin. Immunol.79(5), 781–791 (1987).
  • Platts-Mills TA , VervloetD, ThomasWR, AalberseRC, ChapmanMD. Indoor allergens and asthma: report of the third international workshop.J. Allergy Clin. Immunol.100(6 Pt 1), S2–24 (1997).
  • Dowse GK , TurnerKJ, StewartGA, AlpersMP, WoolcockAJ. The association between Dermatophagoides mites and the increasing prevalence of asthma in village communities within the Papua New Guinea highlands.J. Allergy Clin. Immunol.75(1 Pt 1), 75–83 (1985).
  • Stewart GA , ZhangJ, RobinsonC. The structure and function of allergens. In: Middleton’s Allergy. Principles and Practice. Adkinson NF, Bochner BS, Busse WW, Holgate ST, Lemanske RF, Simons FER (Eds). Mosby Elsevier, MO, USA, 569–608 (2009).
  • Hales BJ , ShenHD, ThomasWR. Cross-reactivity of T-cell responses to Dermatophagoides pteronyssinus and D. farinae. Studies with group 1 and 7 allergens.Clin. Exp. Allergy30(7), 927–933 (2000).
  • Trompette A , DivanovicS, VisintinAet al. Allergenicity resulting from functional mimicry of a toll-like receptor complex protein. Nature 457(7229), 585–588 (2009).
  • Flindt ML . Biological miracles and misadventures: identification of sensitization and asthma in enzyme detergent workers.Am. J. Ind. Med.29(1), 99–110 (1996).
  • Bodini A , PeroniD, VicentiniLet al. Exhaled breath condensate eicosanoids and sputum eosinophils in asthmatic children: a pilot study. Pediatr. Allergy Immunol. 15(1), 26–31 (2004).
  • Piacentini GL , PetersonC, PeroniDG, BodiniA, BonerAL. Allergen avoidance at high altitude and urinary eosinophil protein X.J. Allergy Clin. Immunol.104(1), 243–244 (1999).
  • Charpin D , BirnbaumJ, HaddiEet al. Altitude and allergy to house-dust mites. A paradigm of the influence of environmental exposure on allergic sensitization. Am. Rev. Respir. Dis. 143(5 Pt 1), 983–986 (1991).
  • Vervloet D , PenaudA, RazzoukHet al. Altitude and house dust mites. J. Allergy Clin. Immunol. 69(3), 290–296 (1982).
  • Piacentini GL , VicentiniL, MazziP, ChilosiM, MartinatiL, BonerAL. Mite-antigen avoidance can reduce bronchial epithelial shedding in allergic asthmatic children.Clin. Exp. Allergy28(5), 561–567 (1998).
  • Peroni DG , BonerAL, ValloneG, AntoliniI, WarnerJO. Effective allergen avoidance at high altitude reduces allergen-induced bronchial hyperresponsiveness.Am. J. Respir. Crit Care Med.149(6), 1442–1446 (1994).
  • van Velzen E , Van Den Bos JW, Benckhuijsen JA, van Essel T, de Bruijn R, Aalbers R. Effect of allergen avoidance at high altitude on direct and indirect bronchial hyperresponsiveness and markers of inflammation in children with allergic asthma. Thorax51(6), 582–584 (1996).
  • Topham CM , SrinivasanN, ThorpeCJ, OveringtonJP, KalshekerNA. Comparative modelling of major house dust mite allergen Der p I: structure validation using an extended environmental amino acid propensity table.Protein Eng.7(7), 869–894 (1994).
  • Meno K , ThorstedPB, IpsenHet al. The crystal structure of recombinant proDer p 1, a major house dust mite proteolytic allergen. J. Immunol. 175(6), 3835–3845 (2005).
  • de Halleux S , SturaE, VanderElstL, CarlierV, JacqueminM, Saint-RemyJM. Three-dimensional structure and IgE-binding properties of mature fully active Der p 1, a clinically relevant major allergen.J. Allergy Clin. Immunol.117(3), 571–576 (2006).
  • Chruszcz M , ChapmanMD, VailesLDet al. Crystal structures of mite allergens Der f 1 and Der p 1 reveal differences in surface-exposed residues that may influence antibody binding. J. Mol. Biol. 386(2), 520–530 (2009).
  • Zhang J , Saint-RemyJM, GarrodDR, RobinsonC. Comparative enzymology of native and recombinant house dust mite allergen Der p 1.Allergy64(3), 469–477 (2009).
  • Pernas M , Sanchez-RamosI, Sanchez-MongeRet al. Der p 1 and Der f 1, the highly related and major allergens from house dust mites, are differentially affected by a plant cystatin. Clin. Exp. Allergy 30(7), 972–978 (2000).
  • Takai T , KatoT, YasuedaH, OkumuraK, OgawaH. Analysis of the structure and allergenicity of recombinant pro- and mature Der p 1 and Der f 1: major conformational IgE epitopes blocked by prodomains.J. Allergy Clin. Immunol.115(3), 555–563 (2005).
  • Zhang J , HamiltonJM, GarrodDR, RobinsonC. Interactions between mature Der p 1 and its free prodomain indicate membership of a new family of C1 peptidases.Allergy62(11), 1302–1309 (2007).
  • Meno K , ThorstedPB, IpsenHet al. The metal binding site of the major house dust mite allergen Der p 1. J. Allergy Clin. Immunol. 118(4), 971 (2006).
  • Dolenc I , TurkB, PungercicG, RitonjaA, TurkV. Oligomeric structure and substrate induced inhibition of human cathepsin C.J. Biol. Chem.270(37), 21626–21631 (1995).
  • Hewitt CR , HortonH, JonesRM, PritchardDI. Heterogeneous proteolytic specificity and activity of the house dust mite proteinase allergen Der p I.Clin. Exp. Allergy27(2), 201–207 (1997).
  • Herbert CA , KingCM, RingPCet al. Augmentation of permeability in the bronchial epithelium by the house dust mite allergen Der p1. Am. J. Respir. Cell Mol. Biol. 12(4), 369–378 (1995).
  • Herbert CA , HolgateST, RobinsonC, ThompsonPJ, StewartGA. Effect of mite allergen on permeability of bronchial mucosa.Lancet336(8723), 1132 (1990).
  • Wan H , WintonHL, SoellerCet al. Der p 1 facilitates transepithelial allergen delivery by disruption of tight junctions. J. Clin. Invest 104(1), 123–133 (1999).
  • Wan H , WintonHL, SoellerCet al. Quantitative structural and biochemical analyses of tight junction dynamics following exposure of epithelial cells to house dust mite allergen Der p 1. Clin. Exp. Allergy 30(5), 685–698 (2000).
  • Kalsheker NA , DeamS, ChambersL, SreedharanS, BrocklehurstK, LomasDA. The house dust mite allergen Der p1 catalytically inactivates alpha 1- antitrypsin by specific reactive centre loop cleavage: a mechanism that promotes airway inflammation and asthma.Biochem. Biophys. Res. Commun.221(1), 59–61 (1996).
  • Brown A , FarmerK, MacDonaldLet al. House dust mite Der p 1 downregulates defenses of the lung by inactivating elastase inhibitors. Am. J. Respir. Cell Mol. Biol. 29(3), 381–389 (2003).
  • Hubbard RC , CrystalRG. Antiproteases. In: The Lung: Scientific Foundation. Crystal RGWJB (Eds). Raven Press, CA, USA, 1775–1787 (1991).
  • Deb R , ShakibF, ReidK, ClarkH. Major house dust mite allergens Dermatophagoides pteronyssinus 1 and Dermatophagoides farinae 1 degrade and inactivate lung surfactant proteins A and D.J. Biol. Chem.282(51), 36808–36819 (2007).
  • Muir A , SoongG, SokolSet al. Toll-like receptors in normal and cystic fibrosis airway epithelial cells. Am. J. Respir. Cell Mol. Biol. 30(6), 777–783 (2004).
  • Moller GM , OverbeekSE, Helden-MeeuwsenCGet al. Increased numbers of dendritic cells in the bronchial mucosa of atopic asthmatic patients: downregulation by inhaled corticosteroids. Clin. Exp. Allergy 26(5), 517–524 (1996).
  • Bellini A , VittoriE, MariniM, AckermanV, MattoliS. Intraepithelial dendritic cells and selective activation of Th2-like lymphocytes in patients with atopic asthma.Chest103(4), 997–1005 (1993).
  • Jahnsen FL , MoloneyED, HoganT, UphamJW, BurkeCM, HoltPG. Rapid dendritic cell recruitment to the bronchial mucosa of patients with atopic asthma in response to local allergen challenge.Thorax56(11), 823–826 (2001).
  • Pichavant M , CharbonnierAS, TarontSet al. Asthmatic bronchial epithelium activated by the proteolytic allergen Der p 1 increases selective dendritic cell recruitment. J. Allergy Clin. Immunol. 115(4), 771–778 (2005).
  • Lambrecht BN , SalomonB, KlatzmannD, PauwelsRA. Dendritic cells are required for the development of chronic eosinophilic airway inflammation in response to inhaled antigen in sensitized mice.J. Immunol.160(8), 4090–4097 (1998).
  • Lukacs NW , ProsserDM, WiekowskiM, LiraSA, CookDN. Requirement for the chemokine receptor CCR6 in allergic pulmonary inflammation.J. Exp. Med.194(4), 551–555 (2001).
  • Furmonaviciene R , GhaemmaghamiAM, BoydSEet al. The protease allergen Der p 1 cleaves cell surface DC-SIGN and DC-SIGNR: experimental analysis of in silico substrate identification and implications in allergic responses. Clin. Exp. Allergy 37(2), 231–242 (2007).
  • Huang HJ , LinYL, LiuCF, KaoHF, WangJY. Mite allergen decreases DC-SIGN expression and modulates human dendritic cell differentiation and function in allergic asthma.Mucosal. Immunol.4(5), 519–527 (2011).
  • King C , BrennanS, ThompsonPJ, StewartGA. Dust mite proteolytic allergens induce cytokine release from cultured airway epithelium.J. Immunol.161(7), 3645–3651 (1998).
  • Asokananthan N , GrahamPT, StewartDJet al. House dust mite allergens induce proinflammatory cytokines from respiratory epithelial cells: The cysteine protease allergen, Der p 1, activates protease-activated receptor (PAR)-2 and inactivates PAR-1. J. Immunol. 169(8), 4572–4578 (2002).
  • Sun G , StaceyMA, SchmidtM, MoriL, MattoliS. Interaction of mite allergens Der p3 and Der p9 with protease-activated receptor-2 expressed by lung epithelial cells.J. Immunol.167(2), 1014–1021 (2001).
  • Machado DC , HortonD, HarropR, PeachellPT, HelmBA. Potential allergens stimulate the release of mediators of the allergic response from cells of mast cell lineage in the absence of sensitization with antigen-specific IgE.Eur. J. Immunol.26(12), 2972–2980 (1996).
  • Eden E , HammelJ, RouhaniFNet al. Asthma features in severe alpha1-antitrypsin deficiency: experience of the National Heart, Lung, and Blood Institute Registry. Chest 123(3), 765–771 (2003).
  • Hyde JS , WernerP, KumarCM, MooreBS. Protease inhibitor variants in children and young adults with chronic asthma.Ann. Allergy43(1), 8–13 (1979).
  • Rudolph R , DollingJ, KunkelG, StaudRD, BaumgartenC. The significance of nasal protease inhibitor concentrations in house dust allergy.Allergy33(6), 310–315 (1978).
  • Sigsgaard T , BrandslundI, OmlandOet al. S and Z alpha1-antitrypsin alleles are risk factors for bronchial hyperresponsiveness in young farmers: an example of gene/environment interaction. Eur. Respir. J.16(1), 50–55 (2000).
  • Moffatt MF . SPINK5: a gene for atopic dermatitis and asthma.Clin. Exp. Allergy34(3), 325–327 (2004).
  • Schulz O , SewellHF, ShakibF. Proteolytic cleavage of CD25, the alpha subunit of the human T cell interleukin 2 receptor, by Der p 1, a major mite allergen with cysteine protease activity.J. Exp. Med.187(2), 271–275 (1998).
  • Schulz O , LaingP, SewellHF, ShakibF. Der p I, a major allergen of the house dust mite, proteolytically cleaves the low-affinity receptor for human IgE (CD23).Eur. J. Immunol.25(11), 3191–3194 (1995).
  • Knight DA , LimS, ScaffidiAKet al. Protease-activated receptors in human airways: upregulation of PAR-2 in respiratory epithelium from patients with asthma. J. Allergy Clin. Immunol. 108(5), 797–803 (2001).
  • Adam E , HansenKK, AstudilloOFet al. The house dust mite allergen Der p 1, unlike Der p 3, stimulates the expression of interleukin-8 in human airway epithelial cells via a proteinase-activated receptor-2-independent mechanism. J. Biol. Chem. 281(11), 6910–6923 (2006).
  • Harris J , MasonDE, LiJet al. Activity profile of dust mite allergen extract using substrate libraries and functional proteomic microarrays. Chem. Biol. 11(10), 1361–1372 (2004).
  • Pliura DH , BonaventuraBJ, SmithRA, ColesPJ, KrantzA. Comparative behavior of calpain and cathepsin B toward peptidyl acyloxymethyl ketones, sulphonium methyl ketones and other potential inhibitors of cysteine proteinases.Biochem. J.288(Pt 3), 759–762 (1992).
  • Jones LH , Hughes AD. Inhalation by design. Future Med. Chem.3(13), 1563–1565 (2011).
  • Robinson C , ZhangJ, GarrodDRet al. Future inhaled drugs by virtual innovation: allergen delivery inhibitors. Future Med. Chem. 3(13), 1567–1570 (2011).
  • Barnes PJ . Interview with Peter Barnes.Future Med. Chem.3(13), 1575–1579 (2011).
  • Yeadon M . The paradox of respiratory R&D, and why ‘inhaled-by-design’ heralds a new dawn in asthma and chronic obstructive pulmonary disease treatments.Future Med. Chem.3(13), 1581–1583 (2011).
  • Hughes AD , JonesLH. Dual-pharmacology muscarinic antagonist and β2 agonist molecules for the treatment of chronic obstructive pulmonary disease.Future Med. Chem.3(13), 1585–1605 (2011).
  • Jacobsen JR . Third-generation long-acting β2-adrenoceptor agonists: medicinal chemistry strategies employed in the identification of once-daily inhaled β2-adrenoceptor agonists.Future Med. Chem.3(13), 1607–1622 (2011).
  • Busch-Petersen J , LainéDI. Inhaled long-acting muscarinic antagonists in chronic obstructive pulmonary disease.Future Med. Chem.3(13), 1623–1634 (2011).
  • Millan DS . What is the potential for inhaled p38 inhibitors in the treatment of chronic obstructive pulmonary disease?Future Med. Chem.3(13), 1635–1645 (2011).
  • Ferrari N , SeguinR, RenziP. Oligonucleotides: a multi-targeted approach for the treatment of respiratory diseases.Future Med. Chem.3(13), 1647–1662 (2011).
  • Hudson R , BlairBO. Inhaled antibiotics for Gram-negative respiratory infections.Future Med. Chem.3(13), 1663–1677 (2011).
  • Selby MD , de Koning PD, Roberts DF. A perspective on synthetic and solid-form enablement of inhalation candidates. Future Med. Chem.3(13), 1679–1701 (2011).
  • Lechuga-Ballesteros D , NogaB, VehringR, CummingsRH, DwivediSK. Novel cosuspension metered-dose inhalers for the combination therapy of chronic obstructive pulmonary disease and asthma.Future Med. Chem.3(13), 1703–1718 (2011).
  • Myers DJ , SpykerDA, DinhK, QuintanaRJ, BiondiSA, CassellaJV. Consistency of dosing with a thermal aerosol generation system: in vitro and in vivo correlation. Future Med. Chem.3(13), 1719–1733 (2011).
  • Billson J , ClarkJ, ConwaySPet al. The design and synthesis of inhibitors of the cysteinyl protease, Der p I. Bioorg. Med. Chem. Lett. 8(9), 993–998 (1998).
  • Bromme D , KlausJL, OkamotoK, RasnickD, PalmerJT. Peptidyl vinyl sulphones: a new class of potent and selective cysteine protease inhibitors: S2P2 specificity of human cathepsin O2 in comparison with cathepsins S and L.Biochem. J.315(Pt 1), 85–89 (1996).
  • Palmer JT , RasnickD, KlausJL, BrommeD. Vinyl sulfones as mechanism-based cysteine protease inhibitors.J. Med. Chem.38(17), 3193–3196 (1995).
  • Zhang J , GarrodDR, RobinsonC. Novel Der p 1 inhibitors attenuate house dust mite sensitization in mice.Am. J. Respir. Crit. Care Med.179, A4249 (2009).
  • Robinson C , ZhangJ, RichardsonJet al. Cysteine peptidase inhibitor ADZ 51,457 attenuates the recruitment of dendritic cells and esoinophils to the airways of mice challenged with house dust mite allergen. Am. J. Respir. Crit. Care Med. 185, A2854 (2012).
  • Zhang J , RichardsonJ, ChenJet al. A novel Der p 1 inhibitor ADZ 51,457 inhibits eosinophil recruitment and chemokine release following house dust mite allergen challenge in brown Norway rats. Am. J. Respir. Crit. Care Med. 185, A2792 (2012).
  • Wan H , WintonHL, SoellerCet al. The transmembrane protein occludin of epithelial tight junctions is a functional target for serine peptidases from faecal pellets of Dermatophagoides pteronyssinus. Clin. Exp. Allergy 31(2), 279–294 (2001).
  • Zhang J , ZuoJ, YinY, GarrodDR, RobinsonC. Identification of Der p 1 cleavage sites in the first adhesion domain of claudin-1.Am. J. Respir. Crit. Care Med.179, A5173 (2009).
  • Kauffman HF , TammM, TimmermanJA, BorgerP. House dust mite major allergens Der p 1 and Der p 5 activate human airway-derived epithelial cells by protease-dependent and protease-independent mechanisms.Clin. Mol. Allergy4, 5 (2006).
  • Comoy EE , PestelJ, DuezCet al. The house dust mite allergen, Dermatophagoides pteronyssinus, promotes type 2 responses by modulating the balance between IL-4 and IFN-gamma. J. Immunol. 160(5), 2456–2462 (1998).
  • Gough L , SewellHF, ShakibF. The proteolytic activity of the major dust mite allergen Der p 1 enhances the IgE antibody response to a bystander antigen.Clin. Exp. Allergy31(10), 1594–1598 (2001).
  • Fattouh R , PouladiMA, AlvarezDet al. House dust mite facilitates ovalbumin-specific allergic sensitization and airway inflammation. Am. J. Respir. Crit Care Med. 172(3), 314–321 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.