239
Views
0
CrossRef citations to date
0
Altmetric
Special Focus Issue: Rare Diseases – Review

Galk Inhibitors for Classic Galactosemia

, &
Pages 1003-1015 | Published online: 28 Jul 2014

References

  • The Online Metabolic & Molecular Bases of Inherited Disease. Valle D , BeaudetA, VogelsteinB, KinzlerK, AntonarakisS, BallabioA ( Eds). McGraw Hill, NY, USA (2008).
  • Hoffmann GF , NyhanWL, ZschockeJ, KahlerSG, MayatepekE. Inherited Metabolic Diseases.Lippincott Williams & Wilkins, PA, USA (2002).
  • Burton BK . Inborn errors of metabolism in infancy: a guide to diagnosis. Pediatrics102 (6), E69 (1998).
  • Leonard JV , MorrisAAM. Diagnosis and early management of inborn errors of metabolism presenting around the time of birth. Acta Paediatr.95 (1), 6–14 (2006).
  • Leloir LF . The enzymatic transformation of uridine diphosphate glucose into a galactose derivative. Arch. Biochem. Biophys.33 (2), 186–190 (1951).
  • Berry GT , WalterJH. Disorders of galactose metabolism. In : Inborn Metabolic Diseases – Diagnosis and Treatment (5th Edition).FernandesJ, SaudubrayM, van den BergheG, WalterJH ( Eds). Springer-Verlag, Heidelberg, Germany, 143–1502012).
  • Harley JD , IrvineS, MuttonP, GuptaJD. Maternal enzymes of galactose metabolism and the 'inexplicable' infantile cataract. Lancet2 (7875), 259–261 (1974).
  • Levy HL , SepeSJ, ShihVE, VawterGF, KleinJO. Sepsis due to Escherichia coli in neonates with galactosemia. N. Engl. J. Med.297 (15),  823–825  (1977).
  • Classic galactosemia and clinical variant galactosemia. www.ncbi.nlm.nih.gov/books/NBK1518
  • Bosch AM . Classic galactosemia: dietary dilemmas. J. Inherit. Metab. Dis.34 (2), 257–260 (2011).
  • Rutherford PJ , DavidsonDC, MatthaiSM. Dietary calcium in galactosaemia. J. Hum. Nutr. Diet.15 (1), 39–42 (2002).
  • Panis B , van KroonenburghMJ, Rubio-GozalboME. Proposal for the prevention of osteoporosis in paediatric patients with classical galactosaemia. J. Inherit. Metab. Dis.30 (6), 982 (2007).
  • Komrower CM , LeeDH. Long-term follow-up of galactosemia. Arch. Dis. Child.45 (241), 367–373 (1970).
  • Waggoner DD , BuistNR, DonnellGN. Long-term prognosis in galactosaemia: results of a survey of 350 cases. J. Inherit. Metab. Dis.13 (6), 802–818 (1990).
  • Schweitzer S , ShinY, JakobsC, BrodehlJ. Long-term outcome in 134 patients with galactosaemia. Eur. J. Pediat.152 (1), 36–43 (1993).
  • Waisbren SE , PotterNL, GordonCMet al. The adult galactosemic phenotype. J. Inherit. Metab. Dis.35 (2), 279–286 (2012).
  • Webb AL , SinghRH, KennedyMJ, ElsasLJ. Verbal dyspraxia and galactosemia. Pediatr. Res.53 (3), 396–402 (2003).
  • Hoffmann B , WendelU, Schweitzer-KrantzS. Cross-sectional analysis of speech and cognitive performance in 32 patients with classic galactosemia. J. Inherit. Metab. Dis.34 (2), 421–427 (2011).
  • Potter NL , NievergeltY, ShribergLD. Motor and speech disorders in classic galactosemia. JIMD Rep.11, 31–41 (2013).
  • Ridel KR , LeslieND, GilbertDL. An updated review of the long-term neurological effects of galactosemia. Pediatr. Neurol.33 (3), 153–161 (2005).
  • Fridovich-Keil JL , GubbelsCS, SpencerJB, SandersRD, LandJA, Rubio-GozalboE. Ovarian function in girls and women with GALT-deficiency galactosemia. J. Inherit. Metab. Dis.34 (2), 357–366 (2011).
  • Gubbels CS , WeltCK, DumoulinJCet al. The male reproductive system in classic galactosemia: cryptorchidism and low semen volume. J. Inherit. Metab. Dis.36 (5), 779–786 (2013).
  • Berry GT , ElsasLJ. Introduction to the Maastricht workshop: lessons from the past and new directions in galactosemia. J. Inherit. Metab. Dis.34 (2), 249–255 (2011).
  • Donnell GN , BergrenWR, PerryG, KochR. Galactose-1-phosphate in galactosemia. Pediatrics31, 802–810 (1963).
  • Kirkman HN , MaxwellES. Enzymatic estimation of erythrocytic galactose-1-phosphate. J. Lab. Clin. Med.56, 161–166 (1960).
  • Gitzelmann R . Estimation of galactose-1-phosphate in erythrocytes: a rapid and simple enzymatic method. Clin. Chim. Acta26 (2), 313–316 (1969).
  • Dahlqvist A . A fluorometric method for the assay of galactose-1-phosphate in red blood cells. J. Lab. Clin. Med.78 (6), 931–938 (1971).
  • Bozkowa K , DuchnowskaA, ChojnackiT, MankowskiT. The use of a radioisotopic method for estimation of galactose-1-phosphate in galactosemia. Biochem. Med.17 (1), 24–30 (1977).
  • Pesce MA , BodourianSH, NicholsonJF. A new microfluorometric method for the measurement of galactose-1-phosphate in erythrocytes. Clin. Chim. Acta118 (2–3), 177–189 (1982).
  • Ning C , SegalS. Plasma galactose and galactitol concentration in patients with galactose-1-phosphate uridyltransferase deficiency galactosemia: determination by gas chromatography/mass spectrometry. Metabolism49 (11), 1460–1466 (2000).
  • Chen J , YagerC, ReynoldsR, PalmieriM, SegalS. Erythrocyte galactose-1-phosphate quantified by isotope-dilution gas chromatography-mass spectrometry. Clin. Chem.48 (4), 604–612 (2002).
  • Schadewaldt P , KamalanathanL, HammenHW, WendelU. Stable-isotope dilution analysis of galactose metabolites in human erythrocytes. Rapid Commun. Mass Spectrom.17 (24), 2833–2838 (2003).
  • Jeong JS , KwonHJ, YoonHR, LeeYM, ChoiTY, HongSP. A pulsed amperometric detection method of galactose 1-phosphate for galactosemia diagnosis. Anal. Biochem.376 (2), 200–205 (2008).
  • Cangemi G , BarcoS, BarbagalloLet al. Erythrocyte galactose-1-phosphate measurement by GC-MS in the monitoring of classical galactosemia. Scand. J. Clin. Lab. Invest.72 (1), 29–33 (2012).
  • Hutchesson AC , Murdoch-DavisC, GreenAet al. Biochemical monitoring of treatment for galactosaemia: biological variability in metabolite concentrations. J. Inherit. Metab. Dis.22 (2), 139–148 (1999).
  • Lai K , ElsasLJ, WierengaKJ. Galactose toxicity in animals. IUBMB Life61 (11), 1063–1074 (2009).
  • Guerrero NV , SinghRH, ManatungaA, BerryGT, SteinerRD, ElsasLJ2nd. Risk factors for premature ovarian failure in females with galactosemia. J. Pediatr.137 (6), 833–841 (2000).
  • Robertson A , SinghRH, GuerreroNV, HundleyM, ElsasLJ. Outcomes analysis of verbal dyspraxia in classic galactosemia. Genet. Med.2 (2), 142–148 (2000).
  • Langley SD , LaiK, DemburePP, HjelmLN, ElsasLJ. Molecular basis for Duarte and Los Angeles variant galactosemia. Am. J. Hum. Genet.60 (2), 366–372 (1997).
  • Lai K , LangleySD, SinghRH, DemburePP, HjelmLN, ElsasLJ2nd. A prevalent mutation for galactosemia among black Americans. J. Pediatr.128 (1), 89–95 (1996).
  • Landt M , RitterD, LaiK, BenkePJ, ElsasLJ, SteinerRD. Black children deficient in galactose 1-phosphate uridyltransferase: correlation of activity and immunoreactive protein in erythrocytes and leukocytes. J. Pediatr.130 (6), 972–980 (1997).
  • Ficicioglu C , HussaC, GallagherPR, ThomasN, YagerC. Monitoring of biochemical status in children with Duarte galactosemia: utility of galactose, galactitol, galactonate, and galactose 1-phosphate. Clin. Chem.56 (7), 1177–1182 (2010).
  • Bork P , SanderC, ValenciaA. Convergent evolution of similar enzymatic function on different protein folds: the hexokinase, ribokinase, and galactokinase families of sugar kinases. Protein Sci.2 (1), 31–40 (1993).
  • Timson DJ . GHMP kinases – structures, mechanisms and potential for therapeutically relevant inhibition. Curr. Enz. Inhib.3 (1), 77–94 (2007).
  • Holden HM , ThodenJB, TimsonDJ, ReeceRJ. Galactokinase: structure, function and role in type II galactosemia. Cell. Mol. Life Sci.61 (19–20), 2471–2484 (2004).
  • Gitzelmann R . Hereditary galactokinase deficiency, a newly recognized cause of juvenile cataracts. Pediatr. Res.1, 14–23 (1967).
  • Levy NS , KrillAE, BeutlerE. Galactokinase deficiency and cataracts. Am. J. Ophthalmol.74 (1), 41–48 (1972).
  • Beutler E , MatsumotoF, KuhlWet al. Galactokinase deficiency as a cause of cataracts. N. Engl. J. Med.288 (23), 1203–1206 (1973).
  • Bosch AM , BakkerHD, van GennipAH, van KempenJV, WandersRJA, WijburgFA. Clinical features of galactokinase deficiency: a review of the literature. J. Inherit. Metab. Dis.25 (8), 629–634 (2002).
  • Litman N , KanterAI, FinbergL. Galactokinase deficiency presenting as pseudotumor cerebri. J. Pediatr.86 (3), 410–412 (1975).
  • Wierenga KJ , LaiK, BuchwaldP, TangM. High-throughput screening for human galactokinase inhibitors. J. Biomol. Screen.13 (5), 415–423 (2008).
  • Douglas HC , HawthorneDC. Enzymatic expression and genetic linkage of genes controlling galactose utilization in saccharomyces. Genetics49, 837–844 (1964).
  • Douglas HC , HawthorneDC Regulation of genes controlling synthesis of the galactose pathway enzymes in yeast. Genetics54 (3), 911–916 (1966).
  • Toward improved therapy for classic galactosemia. www.ncbi.nlm.nih.gov/books/NBK56237
  • Zhang JH , ChungTD, OldenburgKR. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J. Biomol. Screen.4 (2), 67–73 (1999).
  • Seiler KP , GeorgeGA, HappMPet al. ChemBank: a small-molecule screening and cheminformatics resource database. Nucleic Acids Res.36 ( Database issue), D351–D359 (2007).
  • Tang M , WierengaK, ElsasLJ, LaiK. Molecular and biochemical characterization of human galactokinase and its small molecule inhibitors. Chem. Biol. Interact.188 (3), 376–385 (2010).
  • Wu G , YuanY, HodgeCN. Determining appropriate substrate conversion for enzymatic assays in high-throughput screening. J. Biomol. Screen.8 (6), 694–700 (2003).
  • Heinrich MR , HowardSM. Galactokinase. Methods Enzymol.9, 407–412 (1966).
  • Tang M , OdejinmiSI, AlletteYM, VankayalapatiH, LaiK. Identification of novel small molecule inhibitors of 4-diphosphocytidyl-2-C-methyl-D-erythritol (CDP-ME) kinase of Gram-negative bacteria. Bioorg. Med. Chem.19 (19), 5886–5895 (2011).
  • Timson DJ , ReeceRJ. Functional analysis of disease-causing mutations in human galactokinase. Eur. J. Biochem.270 (8), 1767–1774 (2003).
  • Slepak TI , TangM, SlepakVZ, LaiK. Involvement of endoplasmic reticulum stress in a novel classic galactosemia model. Mol. Genet. Metab.92 (1–2), 78–87 (2007).
  • Sousa SF , CerqueiraNM, FernandesPA, RamosMJ. Virtual screening in drug design and development. Comb. Chem. High Throughput Screen.13 (5), 442–453 (2010).
  • Lill M . Virtual screening in drug design. Methods Mol. Biol.993, 1–12 (2013).
  • Friesner RA , BanksJL, MurphyRBet al. Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem.47 (7), 1739–1749 (2004).
  • Halgren TA , MurphyRB, FriesnerRAet al. Glide: a new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem.47 (7), 1750–1759 (2004).
  • Friesner RA , MurphyRB, RepaskyMPet al. Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein–ligand complexes. J. Med. Chem.49 (21), 6177–6196 (2006).
  • Michino M , AbolaE, GPCR Dock 2008 participantset al. Community-wide assessment of GPCR structure modelling and ligand docking: GPCR Dock 2008. Nat. Rev. Drug Discov.8 (6), 455–463 (2009).
  • Thoden JB , TimsonDJ, ReeceRJ, HoldenHM. Molecular structure of human galactokinase: implications for type II galactosemia. J. Biol. Chem.280 (10), 9662–9670 (2005).
  • Tang M , OdejinmiSI, VankayalapatiH, WierengaKJ, LaiK. Innovative therapy for classic galactosemia – tale of two HTS. Mol. Genet. Metab.105 (1), 44–55 (2012).
  • Irwin JJ , SterlingT, MysingerMM, BolstadES, ColemanRG. ZINC: a free tool to discover chemistry for biology. J. Chem. Inf. Model.52 (7), 1757–1768 (2012).
  • Yuriev E , RamslandPA. Latest developments in molecular docking: 2010–2011 in review. J. Mol. Recognit.26 (5), 215–239 (2013).
  • Chiappori F , MerelliI, MilanesiL, MarabottiA. Static and dynamic interactions between GALK enzyme and known inhibitors: guidelines to design new drugs for galactosemic patients. Eur. J. Med. Chem.63, 423–434 (2013).
  • Megarity CF , HuangM, WarnockC, TimsonDJ. The role of the active site residues in human galactokinase: implications for the mechanisms of GHMP kinases. Bioorg. Chem.39 (3), 120–126 (2011).
  • Reinhardt LA , ThodenJB, PetersGS, HoldenHM, ClelandWW. pH-rate profiles support a general base mechanism for galactokinase (Lactococcus lactis). FEBS Lett.587 (17), 2876–2881 (2013).
  • Huang M , LiX, ZouJW, TimsonDJ. Role of Arg228 in the phosphorylation of galactokinase: the mechanism of GHMP kinases by quantum mechanics/molecular mechanics studies. Biochemistry52 (28), 4858–4868 (2013).
  • Segal S . Of mice and men: galactosemia. Mol. Genet. Metab.89 (4), 401–402 (2006).
  • Hughes J , RyanS, LambertDet al. Outcomes of siblings with classical galactosemia. J. Pediatr.154 (5), 721–726 (2009).
  • Widger J , O’TooleJ, GeogheganO, O’KeefeM, ManningR. Diet and visually significant cataracts in galactosaemia: is regular follow up necessary?J. Inherit. Metab. Dis.33 (2), 129–132 (2010).
  • Segal S . Another aspect of the galactosemia enigma. Mol. Genet. Metab.81 (3), 253–254 (2004).
  • Leslie ND , YagerKL, McNamaraPD, SegalS. A mouse model of galactose-1-phosphate uridyl transferase deficiency. Biochem. Mol. Med.59 (1), 7–12 (1996).
  • Ning C , ReynoldsR, ChenJet al. Galactose metabolism by the mouse with galactose-1-phosphate uridyltransferase deficiency. Pediatr. Res.48 (2), 211–217 (2000).
  • Lai K , TangM, YinX, KlapperH, WierengaK, ElsasLJ. ARHI: a new target of galactose toxicity in classic galactosemia. Biosci. Hypotheses1 (5), 263–271 (2008).
  • Tang M , SiddiqiA, WittBet al. Subfertility and growth restriction in a new galactose-1 phosphate uridylyltransferase (GALT) – deficient mouse model. Eur. J. Hum. Genet. doi:10.1038/ejhg.2014.12 (2014) ( Epub ahead of print).
  • Kushner RF , RyanEL, SeftonJMet al. A Drosophila melanogaster model of classic galactosemia. Dis. Model. Mech.3 (9–10), 618–627 (2010).
  • Cui X , WangL, ZuoPet al. D-galactose-caused life shortening in Drosophila melanogaster and Musca domestica is associated with oxidative stress. Biogerontology5 (5), 317–325 (2004).
  • Ryan EL , DuBoffB, FeanyMB, Fridovich-KeilJL. Mediators of a long-term movement abnormality in a Drosophila melanogaster model of classic galactosemia. Dis. Model. Mech.5 (6), 796–803 (2012).
  • Mc Guire PJ , ParikhA, DiazGA. Profiling of oxidative stress in patients with inborn errors of metabolism. Mol. Genet. Metab.98 (1–2), 173–180 (2009).
  • Schulpis KH , MichelakakisH, TsakirisT, TsakirisS. The effect of diet on total antioxidant status, erythrocyte membrane Na+,K+-ATPase and Mg2+-ATPase activities in patients with classical galactosaemia. Clin. Nutr.24 (1), 151–157 (2005).
  • Schulpis KH , PapassotiriouI, TsakirisS. 8-hydroxy-2-desoxyguanosine serum concentrations as a marker of DNA damage in patients with classical galactosaemia. Acta Paediatr.95 (2), 164–169 (2006).
  • Jumbo-Lucioni PP , HopsonML, HangD, LiangY, JonesDP, Fridovich-KeilJL. Oxidative stress contributes to outcome severity in a Drosophila melanogaster model of classic galactosemia. Dis. Model. Mech.6 (1), 84–94 (2013).
  • Jumbo-Lucioni PP , RyanEL, HopsonMLet al. Manganese-based superoxide dismutase mimics modify both acute and long-term outcome severity in a Drosophila melanogaster model of classic galactosemia. Antioxid. Redox Signal.20 (15), 2361–2371  (2014).
  • Gitzelmann R . Galactose-1-phosphate in the pathophysiology of galactosemia. Eur. J. Pediatr.154 (7 Suppl. 2), S45–S49 (1995).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.