671
Views
0
CrossRef citations to date
0
Altmetric
Review

Unnatural Amino Acids in Novel Antibody Conjugates

&
Pages 1309-1324 | Published online: 27 Aug 2014

References

  • Kaufman L , KaplanW. Preparation of a fluorescent antibody specific for the yeast phase of Histoplasma capsulatum. J. Bacteriol.82, 729–735 (1961).
  • Lambert JM . Drug-conjugated antibodies for the treatment of cancer. Br. J. Clin. Pharmacol.76 (2), 248–262 (2013).
  • Junutula JR , RaabH, ClarkSet al. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat. Biotechnol.26 (8), 925–932 (2008).
  • Axup JY , BajjuriKM, RitlandMet al. Synthesis of site-specific antibody-drug conjugates using unnatural amino acids. Proc. Natl Acad. Sci. USA109 (40), 16101–16106 (2012).
  • Tian F , LuY, ManibusanAet al. A general approach to site-specific antibody drug conjugates. Proc. Natl Acad. Sci. USA111 (5), 1766–1771 (2014).
  • Behrens CR , LiuB. Methods for site-specific drug conjugation to antibodies. MAbs6 (1), 46-53 (2013).
  • Shen BQ , XuK, LiuLet al. Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Nat. Biotechnol.30 (2), 184–189 (2012).
  • Agarwal P , vander Weijden J, SlettenEM, RabukaD, BertozziCR. A Pictet-Spengler ligation for protein chemical modification. Proc. Natl Acad. Sci. USA110 (1), 46–51 (2013).
  • Wu P , ShuiW, CarlsonBLet al. Site-specific chemical modification of recombinant proteins produced in mammalian cells by using the genetically encoded aldehyde tag. Proc. Natl Acad. Sci. USA106 (9), 3000–3005 (2009).
  • Strop P , LiuS-H, DorywalskaMet al. Location matters: site of conjugation modulates stability and pharmacokinetics of antibody drug conjugates. Chem. Biol.20 (2), 161–167 (2013).
  • Jeger S , ZimmermannK, BlancAet al. Site-specific and stoichiometric modification of antibodies by bacterial transglutaminase. Angew. Chem. Int. Ed.49 (51), 9995–9997 (2010).
  • Ambrogelly A , PaliouraS, SollD. Natural expansion of the genetic code. Nat. Chem. Biol.3 (1), 29–35 (2007).
  • Hofer T , SkeffingtonLR, ChapmanCM, RaderC. Molecularly defined antibody conjugation through a selenocysteine interface. Biochemistry48 (50), 12047–12057 (2009).
  • Hofer T , ThomasJD, BurkeTRJr, RaderC. An engineered selenocysteine defines a unique class of antibody derivatives. Proc. Natl Acad. Sci. USA105 (34), 12451–12456 (2008).
  • Fekner T , ChanMK. The pyrrolysine translational machinery as a genetic-code expansion tool. Curr. Opin. Chem. Biol.15 (3), 387–391 (2011).
  • Liu CC , SchultzPG. Adding new chemistries to the genetic code. Annu. Rev. Biochem.79, 413–444 (2010).
  • Anderson JC , WuN, SantoroSW, LakshmanV, KingDS, SchultzPG. An expanded genetic code with a functional quadruplet codon. Proc. Natl Acad. Sci. USA101 (20), 7566–7571 (2004).
  • Niu W , SchultzPG, GuoJ. An expanded genetic code in mammalian cells with a functional quadruplet codon. ACS Chem. Biol.8 (7), 1640–1645 (2013).
  • Hutchins BM , KazaneSA, StaflinKet al. Site-specific coupling and sterically controlled formation of multimeric antibody fab fragments with unnatural amino acids. J. Mol. Biol.406 (4), 595–603 (2011).
  • Jewett JC , BertozziCR. Cu-free click cycloaddition reactions in chemical biology. Chem. Soc. Rev.39 (4), 1272–1279 (2010).
  • Liu CC , MackAV, TsaoMLet al. Protein evolution with an expanded genetic code. Proc. Natl Acad. Sci. USA105 (46), 17688–17693 (2008).
  • Kim CH , AxupJY, DubrovskaAet al. Synthesis of bispecific antibodies using genetically encoded unnatural amino acids. J. Am. Chem. Soc.134 (24), 9918–9921 (2012).
  • Hutchins BM , KazaneSA, StaflinKet al. Selective formation of covalent protein heterodimers with an unnatural amino acid. Chem. Biol.18 (3), 299–303 (2011).
  • Kim CH , AxupJY, LawsonBRet al. Bispecific small molecule-antibody conjugate targeting prostate cancer. Proc. Natl Acad. Sci. USA110 (44), 17796–17801 (2013).
  • Lu H , WangD, KazaneSet al. Site-specific antibody-polymer conjugates for siRNA delivery. J. Am. Chem. Soc.135 (37), 13885–13891 (2013).
  • Kazane SA , SokD, ChoEHet al. Site-specific DNA-antibody conjugates for specific and sensitive immuno-PCR. Proc. Natl Acad. Sci. USA109 (10), 3731–3736 (2012).
  • Kazane SA , AxupJY, KimCHet al. Self-assembled antibody multimers through peptide nucleic acid conjugation. J. Am. Chem. Soc.135 (1), 340–346 (2013).
  • Young TS , AhmadI, BrockA, SchultzPG. Expanding the genetic repertoire of the methylotrophic yeast Pichia pastoris. Biochemistry48 (12), 2643–2653 (2009).
  • Li H , SethuramanN, StadheimTAet al. Optimization of humanized IgGs in glycoengineered Pichia pastoris. Nat. Biotechnol.24 (2), 210–215 (2006).
  • Liu W , BrockA, ChenS, SchultzPG. Genetic incorporation of unnatural amino acids into proteins in mammalian cells. Nat. Methods4 (3), 239–244 (2007).
  • Wurm FM . Production of recombinant protein therapeutics in cultivated mammalian cells. Nat. Biotechnol.22 (11), 1393–1398 (2004).
  • Nirenberg MW , MatthaeiJH. The dependence of cell-free protein synthesis in E. coli upon naturally occurring or synthetic polyribonucleotides. Proc. Natl Acad. Sci. USA47, 1588–1602 (1961).
  • Brodel AK , SonnabendA, KubickS. Cell-free protein expression based on extracts from CHO cells. Biotechnol. Bioeng.111 (1), 25–36 (2014).
  • Hodgman CE , JewettMC. Optimized extract preparation methods and reaction conditions for improved yeast cell-free protein synthesis. Biotechnol. Bioeng.110 (10), 2643–2654 (2013).
  • Underwood KA , SwartzJR, PuglisiJD. Quantitative polysome ana­lysis identifies limitations in bacterial cell-free protein synthesis. Biotechnol. Bioeng.91 (4), 425–435 (2005).
  • Zawada JF , YinG, SteinerARet al. Microscale to manufacturing scale-up of cell-free cytokine production – a new approach for shortening protein production development timelines. Biotechnol. Bioeng.108 (7), 1570–1578 (2011).
  • Munro S , PelhamHRB. An hsp70-like protein in the ER: Identity with the 78 kd glucose-regulated protein and immunoglobulin heavy chain binding protein. Cell46 (2), 291–300).
  • Yin G , GarcesED, YangJet al. Aglycosylated antibodies and antibody fragments produced in a scalable in vitro transcription-translation system. MAbs4 (2), 217–225 (2012).
  • Groff D , ArmstrongS, RiversPJet al. Engineering toward a bacterial “endoplasmic reticulum” for the rapid expression of immunoglobulin proteins. MAbs6 (3),  671–678  (2014).
  • Noren CJ , Anthony-CahillSJ, GriffithMC, SchultzPG. A general method for site-specific incorporation of unnatural amino acids into proteins. Science244 (4901), 182–188 (1989).
  • Hohsaka T , AshizukaY, TairaH, MurakamiH, SisidoM. Incorporation of nonnatural amino acids into proteins by using various four-base codons in an Escherichia coliin vitro translation system. Biochemistry40 (37), 11060–11064 (2001).
  • Heckler TG , ChangLH, ZamaY, NakaT, ChorghadeMS, HechtSM. T4 RNA ligase mediated preparation of novel “chemically misacylated” tRNAPheS. Biochemistry23 (7), 1468–1473 (1984).
  • Duffy NH , DoughertyDA. Preparation of translationally competent tRNA by direct chemical acylation. Org. Lett.12 (17), 3776–3779 (2010).
  • Goerke AR , SwartzJR. High-level cell-free synthesis yields of proteins containing site-specific non-natural amino acids. Biotechnol. Bioeng.102 (2), 400–416 (2009).
  • Bundy BC , SwartzJR. Site-specific incorporation of p-propargyloxyphenylalanine in a cell-free environment for direct protein-protein click conjugation. Bioconjug. Chem.21 (2), 255–263 (2010).
  • Albayrak C , SwartzJR. Using E. coli-based cell-free protein synthesis to evaluate the kinetic performance of an orthogonal tRNA and aminoacyl-tRNA synthetase pair. Biochem. Biophys. Res. Commun.431 (2), 291–295 (2013).
  • Young TS , AhmadI, YinJA, SchultzPG. An enhanced system for unnatural amino acid mutagenesis in E. coli. J. Mol. Biol.395 (2), 361–374 (2010).
  • Johnson DB , XuJ, ShenZet al. RF1 knockout allows ribosomal incorporation of unnatural amino acids at multiple sites. Nat. Chem. Biol.7 (11), 779–786 (2011).
  • Loscha KV , HerltAJ, QiR, HuberT, OzawaK, OttingG. Multiple-site labeling of proteins with unnatural amino acids. Angew. Chem. Int. Ed.51 (9), 2243–2246 (2012).
  • Agafonov DE , HuangY, GroteM, SprinzlM. Efficient suppression of the amber codon in E. coli in vitro translation system. FEBS Lett.579 (10), 2156–2160 (2005).
  • Lee KB , KimHC, KimDM, KangTJ, SugaH. Comparative evaluation of two cell-free protein synthesis systems derived from Escherichia coli for genetic code reprogramming. J. Biotechnol.164 (2), 330–335 (2012).
  • Hong SH , NtaiI, HaimovichAD, KelleherNL, IsaacsFJ, JewettMC. Cell-free protein synthesis from a release factor 1 deficient Escherichia coli activates efficient and multiple site-specific nonstandard amino acid incorporation. ACS Synth. Biol.3 (6), 398–409 (2014).
  • Wang L , AmphlettG, BlattlerWA, LambertJM, ZhangW. Structural characterization of the maytansinoid-monoclonal antibody immunoconjugate, huN901-DM1, by mass spectrometry. Protein Sci.14 (9), 2436–2446 (2005).
  • Junutula JR , FlagellaKM, GrahamRAet al. Engineered thio-trastuzumab-DM1 conjugate with an improved therapeutic index to target human epidermal growth factor receptor 2-positive breast cancer. Clin. Cancer Res.16 (19), 4769–4778 (2010).
  • Bartelds GM , KrieckaertCL, NurmohamedMTet al. Development of antidrug antibodies against adalimumab and association with disease activity and treatment failure during long-term follow-up. JAMA305 (14), 1460–1468 (2011).
  • Zimmerman ES , HeibeckTH, GillAet al. Production of site-specific antibody-drug conjugates using optimized non-natural amino acids in a cell-free expression system. Bioconjug. Chem.25 (2), 351–361 (2014).
  • Guarino C , DeLisaMP. A prokaryote-based cell-free translation system that efficiently synthesizes glycoproteins. Glycobiology22 (5), 596–601 (2012).
  • Sazinsky SL , OttRG, SilverNW, TidorB, RavetchJV, WittrupKD. Aglycosylated immunoglobulin G1 variants productively engage activating Fc receptors. Proc. Natl Acad. Sci. USA105 (51), 20167–20172 (2008).
  • Jung ST , ReddyST, KangTHet al. Aglycosylated IgG variants expressed in bacteria that selectively bind FcgammaRI potentiate tumor cell killing by monocyte-dendritic cells. Proc. Natl Acad. Sci. USA107 (2), 604–609 (2010).
  • Ozawa K , LoschaKV, KuppanKV, LohCT, DixonNE, OttingG. High-yield cell-free protein synthesis for site-specific incorporation of unnatural amino acids at two sites. Biochem. Biophys. Res. Commun.418 (4), 652–656 (2012).
  • Young DD , YoungTS, JahnzM, AhmadI, SpraggonG, SchultzPG. An evolved aminoacyl-tRNA synthetase with atypical polysubstrate specificity. Biochemistry50 (11), 1894–1900 (2011).
  • Kneepkens EL , WeiJC, NurmohamedMTet al. Immunogenicity, adalimumab levels and clinical response in ankylosing spondylitis patients during 24 weeks of follow-up. Ann. Rheum. Dis. doi:10.1136/annrheumdis-2013-204185  (2013)  (Epub ahead of print) .
  • Gauba V , GrunewaldJ, GorneyVet al. Loss of CD4 T-cell-dependent tolerance to proteins with modified amino acids. Proc. Natl Acad. Sci. USA108 (31), 12821–12826 (2011).
  • Cho H , DanielT, BuechlerYJet al. Optimized clinical performance of growth hormone with an expanded genetic code. Proc. Natl Acad. Sci. USA108 (22), 9060–9065 (2011).
  • Xiao H , ChatterjeeA, ChoiSH, BajjuriKM, SinhaSC, SchultzPG. Genetic incorporation of multiple unnatural amino acids into proteins in mammalian cells. Angew. Chem. Int. Ed.52 (52), 14080–14083 (2013).
  • Plass T , MillesS, KoehlerC, SchultzC, LemkeEA. Genetically encoded copper-free click chemistry. Angew. Chem. Int. Ed.50 (17), 3878–3881 (2011).
  • Bargou R , LeoE, ZugmaierGet al. Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science321 (5891), 974–977 (2008).
  • Cui H , ThomasJD, BurkeTR, Jr, RaderC. Chemically programmed bispecific antibodies that recruit and activate T cells. J. Biol. Chem.287 (34), 28206–28214 (2012).
  • Robert Lutz . Antibody–drug conjugates: from bench to bedside and back. Presented at: Plenary Session at the 5th Annual Protein & Antibody Engineering Summit (PEGS). Lisbon, Portugal, 4–8 November 2013.
  • Krop IE , BeeramM, ModiSet al. Phase I study of trastuzumab-DM1, an HER2 antibody-drug conjugate, given every 3 weeks to patients with HER2-positive metastatic breast cancer. J. Clin. Oncol.28 (16), 2698–2704 (2010).
  • Panowksi S , BhaktaS, RaabH, PolakisP, JunutulaJR. Site-specific antibody drug conjugates for cancer therapy. MAbs6 (1), 34–45 (2014).
  • Wan W , HuangY, WangZet al. A facile system for genetic incorporation of two different noncanonical amino acids into one protein in Escherichia coli. Angew. Chem. Int. Ed.49 (18),  3211–3214  (2010).
  • Shimizu Y , InoueA, TomariYet al. Cell-free translation reconstituted with purified components. Nat. Biotechnol.19 (8), 751–755 (2001).
  • Wang Y , XuW, KouXet al. Establishment and optimization of a wheat germ cell-free protein synthesis system and its application in venom kallikrein. Prot. Expr. Purif.84 (2), 173–180 (2012).
  • Nakane PK , PierceGBJr. Enzyme-labeled antibodies: preparation and application for the localization of antigens. J. Histochem. Cytochem.14 (12), 929–931 (1966).
  • Oi VT , GlazerAN, StryerL. Fluorescent phycobiliprotein conjugates for analyses of cells and molecules. J. Cell Biol.93 (3), 981–986 (1982).
  • Sievers EL , SenterPD. Antibody-drug conjugates in cancer therapy. Annu. Rev. Med.64, 15–29 (2013).
  • Kim CH , AxupJY, SchultzPG. Protein conjugation with genetically encoded unnatural amino acids. Curr. Opin. Chem. Biol.17 (3), 412–419 (2013).
  • Longstaff DG , LarueRC, FaustJEet al. A natural genetic code expansion cassette enables transmissible biosynthesis and genetic encoding of pyrrolysine. Proc. Natl Acad. Sci. USA104 (3), 1021–1026 (2007).
  • Ou W , UnoT, ChiuHPet al. Site-specific protein modifications through pyrroline-carboxy-lysine residues. Proc. Natl Acad. Sci. USA108 (26), 10437–10442 (2011).
  • Wang L , XieJ, SchultzPG. Expanding the genetic code. Annu. Rev. Biophys. Biomol. Struct.35, 225–249 (2006).
  • Young TS , SchultzPG. Beyond the canonical 20 amino acids: expanding the genetic lexicon. J. Biol. Chem.285 (15), 11039–11044 (2010).
  • Robertson SA , EllmanJA, SchultzPG. A general and efficient route for chemical aminoacylation of transfer RNAs. J. Am. Chem. Soc.113 (7), 2722–2729 (1991).
  • Robertson SA , NorenCJ, Anthony-CahillSJ, GriffithMC, SchultzPG. The use of 5’-phospho-2 deoxyribocytidylylriboadenosine as a facile route to chemical aminoacylation of tRNA. Nucleic Acids Res.17 (23), 9649–9660 (1989).
  • Grunewald J , HuntGS, DongLet al. Mechanistic studies of the immunochemical termination of self-tolerance with unnatural amino acids. Proc. Natl Acad. Sci. USA106 (11), 4337–4342 (2009).
  • Grunewald J , TsaoML, PereraRet al. Immunochemical termination of self-tolerance. Proc. Natl Acad. Sci. USA105 (32), 11276–11280 (2008).
  • Kessel C , NandakumarKS, PetersFB, GaubaV, SchultzPG, HolmdahlR. A single functional group substitution in C5a breaks B and T cell tolerance and protects from experimental arthritis. Arthritis Rheumatol.66 (3), 610–621 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.