246
Views
2
CrossRef citations to date
0
Altmetric
Review

Mechanistic Principles of Antisense Targets for the Treatment of Spinal Muscular Atrophy

, , &
Pages 1793-1808 | Published online: 18 Sep 2015

References

  • Prior TW . Spinal muscular atrophy diagnostics. J. Child Neurol.22 (8), 952–956 (2007).
  • Kolb SJ , KisselJT. Spinal muscular atrophy: a timely review. Arch. Neurol.68 (8), 979–984 (2011).
  • Tiziano FD , MelkiJ, SimardLR. Solving the puzzle of spinal muscular atrophy: what are the missing pieces?Am. J. Med. Genet. A161A (11), 2836–2845 (2013).
  • Nurputra DK , LaiPS, HarahapNIFet al. Spinal muscular atrophy: from gene discovery to clinical trials. Ann. Hum. Genet.77 (5), 435–463 (2013).
  • Lefebvre S , BürglenL, ReboulletSet al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell80 (1), 155–165 (1995).
  • McAndrew PE , ParsonsDW, SimardLRet al. Identification of proximal spinal muscular atrophy carriers and patients by analysis of SMNT and SMNC gene copy number. Am. J. Hum. Genet.60 (6), 1411–1422 (1997).
  • Howell MD , SinghNN and SinghRN (2014). Advances in therapeutic development for spinal muscular atrophy. Fut. Med. Chem.9, 1081–1099 (2014).
  • Lorson CL , HahnenE, AndrophyEJ, WirthB. A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc. Natl Acad. Sci. USA96 (11), 6307–6311 (1999).
  • Lorson CL , StrasswimmerJ, YaoJMet al. SMN oligomerization defect correlates with spinal muscular atrophy severity. Nat. Genet.19 (1), 63–66 (1998).
  • Le TT , PhamLT, ButchbachMEet al. SMNDelta7, the major product of the centromeric survival motor neuron (SMN2) gene, extends survival in mice with spinal muscular atrophy and associates with full-length SMN. Hum. Mol. Genet.14 (6), 845–857 (2005).
  • Burnett BG , MuñozE, TandonA, KwonDY, SumnerCJ, FischbeckKH. Regulation of SMN protein stability. Mol. Cell. Biol.29 (5), 1107–1115 (2009).
  • Cho S , DreyfussG. A degron created by SMN2 exon 7 skipping is a principal contributor to spinal muscular atrophy severity. Genes Dev.24 (5), 438–442 (2010).
  • Feldkotter M , SchwarzerV, WirthR, WienkerTF, WirthB. Quantitative analyses of SMN1 and SMN2 based on real-time lightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. Am. J. Hum. Genet.70 (2), 358–368 (2002)
  • Parsons DW , McAndrewPE, IannacconeST, MendellJR, BurghesAH, PriorTW. Intragenic telSMN mutations: frequency, distribution, evidence of a founder effect, and modification of the spinal muscular atrophy phenotype by cenSMN copy number. Am. J. Hum. Genet.63 (6), 1712–1723 (1998).
  • Wirth B , BrichtaL, SchrankBet al. Mildly affected patients with spinal muscular atrophy are partially protected by an increased SMN2 copy number. Hum. Genet.119 (4), 422–428 (2006).
  • Tiziano FD , BertiniE, MessinaSet al. The Hammersmith functional score correlates with the SMN2 copy number: a multicentric study. Neuromuscul. Disord.17 (5), 400–403 (2007).
  • Schrank B , GötzR, GunnersenJMet al. Inactivation of the survival motor neuron gene, a candidate gene for human spinal muscular atrophy, leads to massive cell death in early mouse embryos. Proc. Natl Acad. Sci. USA94 (18), 9920–9925 (1997).
  • Hammond SM , GogliottiRG, RaoV, BeauvaisA, KotharyR, DiDonatoCJ. Mouse survival motor neuron alleles that mimic SMN2 splicing and are inducible rescue embryonic lethality early in development but not late. PLoS ONE5 (12), e15887 (2010).
  • Park GH , KariyaS, MonaniUR. Spinal muscular atrophy: new and emerging insights from model mice. Curr. Neurol. Neurosci. Rep.10 (2), 108–117 (2010).
  • Sleigh JN , GillingwaterTH, TalbotK. The contribution of mouse models to understanding the pathogenesis of spinal muscular atrophy. Dis. Model Mech.4 (4), 457–467 (2011).
  • Bebee TW , DominguezCE, ChandlerDS. Mouse models of SMA: tools for disease characterization and therapeutic development. Hum. Genet.131 (8), 1277–1293 (2012).
  • Kariya S , ParkGH, Maeno-HikichiYet al. Reduced SMN protein impairs maturation of the neuromuscular junctions in mouse models of spinal muscular atrophy. Hum. Mol. Genet.17 (16), 2552–2569 (2008).
  • Murray LM , ComleyLH, ThomsonD, ParkinsonN, TalbotK, GillingwaterTH. Selective vulnerability of motor neurons and dissociation of pre- and post-synaptic pathology at the neuromuscular junction in mouse models of spinal muscular atrophy. Hum. Mol. Genet.17 (7), 949–962 (2008).
  • Kong L , WangX, ChoeDWet al. Impaired synaptic vesicle release and immaturity of neuromuscular junctions in spinal muscular atrophy mice. J. Neurosci.29 (3), 842–851 (2009).
  • Ling KK , LinMY, ZinggB, FengZ, KoCP. Synaptic defects in the spinal and neuromuscular circuitry in a mouse model of spinal muscular atrophy. PLoS ONE5 (11), e15457 (2010).
  • Ruiz R , CasanasJJ, Torres-BenitoL, CanoR, TabaresL. Altered intracellular Ca2+ homeostasis in nerve terminals of severe spinal muscular atrophy mice. J. Neurosci.30 (3), 849–57 (2010).
  • Lee YI , MikeshM, SmithI, RimerM, ThompsonW. Muscles in a mouse model of spinal muscular atrophy show profound defects in neuromuscular development even in the absence of failure in neuromuscular transmission or loss of motor neurons. Dev. Biol.356 (2), 432–444 (2011).
  • Mentis GZ , BlivisD, LiuWet al. Early functional impairment of sensory-motor connectivity in a mouse model of spinal muscular atrophy. Neuron69 (3), 453–467 (2011).
  • Dachs E , HereuM, PiedrafitaL, CasanovasA, CalderóJ, EsquerdaJE. Defective neuromuscular junction organization and postnatal myogenesis in mice with severe spinal muscular atrophy. J. Neuropathol. Exp. Neurol.70 (6), 444–461 (2011).
  • Gogliotti RG , QuinlanKA, BarlowCB, HeierCR, HeckmanCJ, DidonatoCJ. Motor neuron rescue in spinal muscular atrophy mice demonstrates that sensory–motor defects are a consequence, not a cause, of motor neuron dysfunction. J. Neuro.32 (11), 3818–29 (2012).
  • Bevan AK , HutchinsonKR, FoustKDet al. Early heart failure in the SMNDelta7 model of spinal muscular atrophy and correction by postnatal scAAV9-SMN delivery. Hum. Mol. Genet.19 (20), 3895–3905 (2010).
  • Heier CR , SattaR, LutzC, DiDonatoCJ. Arrhythmia and cardiac defects are a feature of spinal muscular atrophy model mice. Hum. Mol. Genet.19 (20), 3906–3918 (2010).
  • Shababi M , HabibiJ, YangHT, ValeSM, SewellWA, LorsonCL. Cardiac defects contribute to the pathology of spinal muscular atrophy models. Hum. Mol. Genet.19 (20), 4059–4071 (2010).
  • Schreml J , RiesslandM, PaternoMet al. Severe SMA mice show organ impairment that cannot be rescued by therapy with the HDACi JNJ-26481585. Eur. J. Hum. Genet.21 (6), 643–652 (2013).
  • Bowerman M , SwobodaKJ, MichalskiJ-Pet al. Glucose metabolism and pancreatic defects in spinal muscular atrophy. Ann. Neurol.72 (2), 256–268 (2012).
  • Shababi M , LorsonCL, Rudnik-SchönebornSS. Spinal muscular atrophy: a motor neuron disorder or a multi-organ disease?J. Anat.224 (1), 15–28 (2014).
  • Kernochan LE , RussoML, WoodlingNSet al. The role of histone acetylation in SMN gene expression. Hum. Mol. Genet.14 (9), 1171–1182.
  • Farooq F , BalabanianS, LiuX, HolcikM, MacKenzieA. p38 Mitogen-activated protein kinase stabilizes SMN mRNA through RNA binding protein HuR. Hum. Mol. Genet.18 (21), 4035–4045 (2009).
  • Farooq F , MolinaFA, HadwenJet al. Prolactin increases SMN expression and survival in a mouse model of severe spinal muscular atrophy via the STAT5 pathway. J. Clin. Invest.121 (8), 3042–3050 (2011).
  • Kwon DY , MotleyWW, FischbeckKH, BurnettBG. Increasing expression and decreasing degradation of SMN ameliorate the spinal muscular atrophy phenotype in mice. Hum. Mol. Genet.20 (18), 3667–77 (2011).
  • Singh NN , SeoJ, OttesenEW, ShishimorovaM, BhattacharyaD, SinghRN. TIA1 prevents skipping of a critical exon associated with spinal muscular atrophy. Mol. Cell. Biol.31 (5), 935–954 (2011).
  • Xiao J , MaruganJJ, ZhengWet al. Discovery, synthesis, and biological evaluation of novel SMN protein modulators. J. Med. Chem.54 (18), 6215–6233 (2011).
  • Hsu YY , JongYJ, TsaiHH, TsengYT, AnLM, LoYC. Triptolide increases transcript and protein levels of survival motor neurons in human SMA fibroblasts and improves survival in SMA-like mice. Br. J. Pharmacol.166 (3), 1114–26 (2012).
  • Zhou J , TawkM, TizianoFDet al. Spinal muscular atrophy associated with progressive myoclonic epilepsy is caused by mutations in ASAH1. Am. J. Hum. Genet.91 (1), 5–14 (2015).
  • Oprea GE , KröberS, McWhorterMLet al. Plastin 3 is a protective modifier of autosomal recessive spinal muscular atrophy. Science320 (5875), 524–527 (2008).
  • Bebee TW , DominguezCE, Samadzadeh-TarighatS, AkehurstKL, ChandlerDS. Hypoxia is a modifier of SMN2 splicing and disease severity in a severe SMA mouse model. Hum. Mol. Genet.21 (19), 4301–4313 (2012).
  • Singh NN , SeoJ, RahnS and SinghRN. A multi-exon-skipping detection assay reveals surprising diversity of splice isoforms of spinal muscular atrophy genes. PLoS ONE7 (11), e49595 (2012).
  • Naryshkin NA , WeetallM, DakkaAet al. Motor neuron disease. SMN2 splicing modifiers improve motor function and longevity in mice with spinal muscular atrophy. Science345 (6197), 688–693 (2014).
  • Rigo F , HuaY, KrainerAR, BennettCF. Antisense-based therapy for the treatment of spinal muscular atrophy. J. Cell Biol.199 (1), 21–25 (2012).
  • Porensky PN , BurghesAH. Antisense oligonucleotides for the treatment of spinal muscular atrophy. Hum. Gene. Ther.24 (5), 489–498 (2013).
  • Arnold WD , BurghesAH. Spinal muscular atrophy: development and implementation of potential treatments. Ann. Neurol.74 (3), 348–62 (2013).
  • Seo J , HowellMD, SinghNN and SinghRN (2013). Spinal muscular atrophy: An update on therapeutic progress. Biochim. Biophys. Acta.1832 (12), 2180–2190 (2013).
  • Singh P , LiewWK, DarrasBT. Current advances in drug development in spinal muscular atrophy. Curr. Opin. Pediatr.25 (6), 682–688 (2013).
  • Awano T , KimJ-K, MonaniUR. Spinal muscular atrophy: journeying from bench to bedside. Neurotherapeutics11 (4), 786–795 (2014).
  • d'Ydewalle C , SumnerCJ. Spinal muscular atrophy therapeutics: where do we stand?Neurotherapeutics12 (2), 303–316 (2015).
  • Lim SR , HertelKJ. Modulation of survival motor neuron pre-mRNA splicing by inhibition of alternative 3′ splice site pairing. J. Biol. Chem.276 (48), 45476–45483 (2001).
  • Miyajima H , MiyasoH, OkumuraM, KurisuJ, ImaizumiK. Identification of a cis-acting element for the regulation of SMN exon 7 splicing. J. Biol. Chem.277 (26), 23271–77 (2002).
  • Singh NK , SinghNN, AndrophyEJ, SinghRN. Splicing of a critical exon of human Survival Motor Neuron is regulated by a unique silencer element located in the last intron. Mol. Cell. Biol.26 (4), 1333–1346 (2006).
  • Singh NN , ShishimorovaM, CaoLC, GangwaniL, SinghRN. A short antisense oligonucleotide masking a unique intronic motif prevents skipping of a critical exon in spinal muscular atrophy. RNA Biol.6 (3), 341–350 (2009).
  • Singh NN , LawlerMN, OttesenEW, UpretiD, KaczynskiJR, SinghRN. An intronic structure enabled by a long-distance interaction serves as a novel target for splicing correction in spinal muscular atrophy. Nucl. Acids Res.41 (17), 8144–8165 (2013).
  • Pao PW , WeeKB, YeeWC, PramonoZA. Dual masking of specific negative splicing regulatory elements resulted in maximal exon 7 inclusion of SMN2 gene. Mol. Ther.22 (4), 854–61 (2014).
  • Sivanesan S , HowellMD, DiDonatoCJ, SinghRN. Antisense oligonucleotide mediated therapy of spinal muscular atrophy. Transl. Neurosc.4 (1), 1–7 (2013).
  • ClinicalTrials Database : NCT02193074. https://clinicaltrials.gov/ct2/show/NCT02193074.
  • Muntoni F , WoodMJ. Targeting RNA to treat neuromuscular disease. Nat. Rev. Drug. Discov.10 (8), 621–637 (2011).
  • Kole R , KrainerAR, AltmanS. RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat. Rev. Drug. Discov.11 (2), 125–140 (2012).
  • Havens MA , DuelliDM, HastingsML. Targeting RNA splicing for disease therapy. Wiley Interdiscip Rev. RNA4 (3), 247–266 (2013).
  • Singh NN and SinghRN. Alternative splicing in spinal muscular atrophy underscores the role of an intron definition model. RNA Biol.8 (4), 600–606 (2011).
  • Kashima T , RaoN, ManleyJL. An intronic element contributes to splicing repression in spinal muscular atrophy. Proc. Natl Acad. Sci. USA104 (9), 3426–3231 (2007).
  • Singh NN , SinghRN, AndrophyEJ. Modulating role of RNA structure in alternative splicing of a critical exon in the spinal muscular atrophy genes. Nucleic Acids Res.35 (2), 371–389 (2007).
  • Singh NN , AndrophyEJ, SinghRN. In vivo selection reveals combinatorial controls that define a critical exon in the spinal muscular atrophy genes. RNA10 (8), 1291–1305 (2004).
  • Cartegni L , KrainerAR. Correction of disease-associated exon skipping by synthetic exon-specific activators. Nat. Struct. Biol.10 (2), 120–5 (2003).
  • Skordis LA , DunckleyMG, YueB, EperonIC, MuntoniF. Bifunctional antisense oligonucleotides provide a trans-acting splicing enhancer that stimulates SMN2 gene expression in patient fibroblasts. Proc. Natl Acad. Sci. USA100 (7), 4114–4119 (2003).
  • Singh NN , AndrophyEJ, SinghRN. An extended inhibitory context causes skipping of exon 7 of SMN2 in spinal muscular atrophy. Biochem. Biophys. Res. Commun.315 (2), 381–388 (2004).
  • Singh NN , AndrophyEJ, SinghRN. The regulation and regulatory activities of alternative splicing of the SMN gene. Crit. Rev. Eukaryot. Gene Expr.14 (4), 271–285 (2004).
  • Mende Y , JakubikM, RiesslandMet al. Deficiency of the splicing factor Sfrs10 results in early embryonic lethality in mice and has no impact on full-length SMN/Smn splicing. Hum. Mol. Genet.19 (11), 2154–2167 (2010).
  • Xiong HY , AlipanahiB, LeeLJet al. The human splicing code reveals new insights into the genetic determinants of disease. Science347 (6218), 1254806 (2015).
  • Burge CB , TuschlT, SharpPA. Splicing of precursors to mRNAs by the spliceosomes. In : The RNA World (2nd Ed). GestelandRFet al.Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA, 525–560 (1999).
  • Buratti E , BaralleF. Influence of RNA secondary structure on the pre-mRNA splicing process. Mol. Cell. Biol.24 (24), 10505–10514 (2004).
  • Martinez-Contreras R , FisetteJF, NasimFU, MaddenR, CordeauM, ChabotB. Intronic binding sites for hnRNP A/B and hnRNP F/H proteins stimulate pre-mRNA splicing. PLoS Biol.4 (2), e21 (2006).
  • Shepard PJ , HertelKJ. Conserved RNA secondary structures promote alternative splicing. RNA14 (8), 1463–1469 (2008).
  • Warf MB , BerglundJA. Role of RNA structure in regulating pre-mRNA splicing. Trends Biochem. Sci.35 (3), 169–178 (2010).
  • Hua Y , VickersTA, BakerBF, BennettCF, KrainerAR. Enhancement of SMN2 exon 7 inclusion by antisense oligonucleotides targeting the exon. PLoS Biol.5 (4), e73 (2007).
  • Hua Y , VickersTA, OkunolaHL, BennettCF, KrainerAR. Antisense masking of an hnRNP A1/A2 intronic splicing silencer corrects SMN2 splicing in transgenic mice. Am. J. Hum. Genet.82 (4), 834–848 (2008).
  • Geary RS , BakerBF, CrookeST. Clinical and preclinical pharmacokinetics and pharmacodynamics of mipomersen (Kynamro®): a second-generation antisense oligonucleotide inhibitor of apolipoprotein B. Clin. Pharmacokinet.54 (2), 133–146 (2015).
  • Hua Y , SahashiK, RigoFet al. Peripheral SMN restoration is essential for long-term rescue of a severe spinal muscular atrophy mouse model. Nature478 (7367), 123–126 (2011).
  • Porensky PN , MitrpantC, McGovernVLet al. A single administration of morpholino antisense oligomer rescues spinal muscular atrophy in mouse. Hum. Mol. Genet.21 (7), 1625–1638 (2012).
  • Zhou H , JanghraN, MitrpantCet al. A novel morpholino oligomer targeting ISS-N1 improves rescue of severe spinal muscular atrophy transgenic mice. Hum. Gene Ther.24 (3), 331–342 (2013).
  • Mitrpant C , PorenskyP, ZhouHet al. Improved antisense oligonucleotide design to suppress aberrant SMN2 gene transcript processing: towards a treatment for spinal muscular atrophy. PLOS ONE8 (4), e62114 (2013).
  • Nizzardo M , SimoneC, SalaniSet al. Effect of combined systemic and local morpholino treatment on the spinal muscular atrophy Δ7 mouse model phenotype. Clin. Ther.36 (3), 340–56. e5 (2014).
  • Singh NN , HollingerK, BhattacharyaD, SinghRN. An antisense microwalk reveals critical role of an intronic position linked to a unique long-distance interaction in pre-mRNA splicing. RNA16 (6), 1167–81 (2010).
  • Singh NN , SeoJ, OttesenEW, ShishimorovaM, BhattacharyaD, SinghRN. TIA1 prevents skipping of a critical exon associated with spinal muscular atrophy. Mol. Cell. Biol.31 (5), 935–954 (2011).
  • Singh NN , LeeBM, SinghRN. Splicing regulation in spinal muscular atrophy by an RNA structure formed by long-distance interactions. Ann. NY Acad. Sci.1341, 176–187 (2015).
  • Cheng CY , ChouF-C, DasR. Modeling complex RNA tertiary folds with Rosetta. Methods Enzymol.553, 35–64 (2015).
  • Keil JM , SeoJ, HowellMD, HsuWH, SinghRN, DiDonatoCJ. A short antisense oligonucleotide ameliorates symptoms of severe mouse models of spinal muscular atrophy. Mol. Ther. Nucl. Acids.3, e174 (2014).
  • Osman EY , MillerMR, RobbinsKLet al. Morpholino antisense oligonucleotides targeting intronic repressor Element1 improve phenotype in SMA mouse models. Hum. Mol. Genet.23 (18), 4832–4845 (2014).
  • Salmena L , PolisenoL, TayY, KatsL, PandolfiPP. A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language?Cell146 (3), 353–358 (2011).
  • Madocsai C , LimSR, GeibT, LamBJ, HertelKJ. Correction of SMN2 Pre-mRNA splicing by antisense U7 small nuclear RNAs. Mol. Ther.12 (6), 1013–1022 (2005).
  • Geib T , HertelKJ. Restoration of full-length SMN promoted by adenoviral vectors expressing RNA antisense oligonucleotides embedded in U7 snRNAs. PLoS ONE4 (12), e8204 (2009).
  • Owen N , ZhouH, MalyginAAet al. Design principles for bifunctional targeted oligonucleotide enhancers of splicing. Nucl. Acids Res.39 (16), 7194–7208 (2011).
  • Smith LD , DickinsonRL, LucasCMet al. A targeted oligonucleotide enhancer of SMN2 exon 7 splicing forms competing quadruplex and protein complexes in functional conditions. Cell Rep.9 (1), 193–205 (2014).
  • Marquis J , MeyerK, AngehrnL, KämpferSS, Rothen-RutishauserB, SchümperliD. Spinal muscular atrophy: SMN2 pre-mRNA splicing corrected by a U7 snRNA derivative carrying a splicing enhancer sequence. Mol. Ther.15 (8), 1479–86 (2007).
  • Meyer K , MarquisJ, TrübJet al. Rescue of a severe mouse model for spinal muscular atrophy by U7 snRNA-mediated splicing modulation. Hum. Mol. Genet.18 (3), 546–555 (2009).
  • Voigt T , MeyerK, BaumO, SchümperliD. Ultrastructural changes in diaphragm neuromuscular junctions in a severe mouse model for spinal muscular atrophy and their prevention by bifunctional U7 snRNA correcting SMN2 splicing. Neuromuscul. Disord.20 (11), 744–52 (2010).
  • Baughan T , ShababiM, CoadyTH, DicksonAM, TullisGE, LorsonCL. Stimulating full-length SMN2 expression by delivering bifunctional RNAs via a viral vector. Mol. Ther.14 (1), 54–62 (2006).
  • Dickson A , OsmanE, LorsonCL. A negatively acting bifunctional RNA increases survival motor neuron both in vitro and in vivo. Hum. Gene Ther.19 (11), 1307–1315 (2008).
  • Baughan TD , DicksonA, OsmanEY, LorsonCL. Delivery of bifunctional RNAs that target an intronic repressor and increase SMN levels in an animal model of spinal muscular atrophy. Hum. Mol. Genet.18 (9), 1600–1611 (2009).
  • Osman EY , YenPF, LorsonCL. Bifunctional RNAs targeting the intronic splicing silencer N1 increase SMN levels and reduce disease severity in an animal model of spinal muscular atrophy. Mol. Ther.20 (1), 119–126 (2012).
  • Landis SC , AmaraSG, AsadullahKet al. A call for transparent reporting to optimize the predictive value of preclinical research. Nature490 (7419), 187–191 (2012).
  • Haibe-Kains B , El-HachemN, BirkbakNJet al. Inconsistency in large pharmacogenomic studies. Nature504 (7480), 389–393 (2013).
  • Perrin S . Preclinical research: make mouse studies work. Nature507 (7493), 423–425 (2014).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.