1,755
Views
8
CrossRef citations to date
0
Altmetric
Review

miRNA Therapeutics: A New Class of Drugs with Potential Therapeutic Applications in the Heart

, , &
Pages 1771-1792 | Published online: 24 Sep 2015

References

  • Bernardo BC , CharcharFJ, LinRCY, McMullenJR. A microRNA guide for clinicians and basic scientists: background and experimental techniques. Heart Lung Circ.21 (3), 131–142 (2012).
  • Lee RC , FeinbaumRL, AmbrosV. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell75 (5), 843–854 (1993).
  • Wightman B , HaI, RuvkunG. Post-transcriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell75 (5), 855–862 (1993).
  • Matkovich SJ , HuY, DornGW. Regulation of cardiac microRNAs by cardiac microRNAs. Circ. Res.113 (1), 62–71 (2013).
  • Londin E , LoherP, TelonisAGet al. Analysis of 13 cell types reveals evidence for the expression of numerous novel primate- and tissue-specific microRNAs. Proc. Natl Acad. Sci. USA.112 (10), E1106–E1115 (2015).
  • miRBase. www.mirbase.org/.
  • Ha M , KimVN. Regulation of microRNA biogenesis. Nat. Rev. Mol. Cell Biol.15 (8), 509–524 (2014).
  • Felekkis K , TouvanaE, StefanouC, DeltasC. microRNAs: a newly described class of encoded molecules that play a role in health and disease. Hippokratia14 (4), 236–240 (2010).
  • Hata A . Functions of microRNAs in cardiovascular biology and disease. Annu. Rev. Physiol.75 (1), 69–93 (2013).
  • Filipowicz W , BhattacharyyaSN, SonenbergN. Mechanisms of post-transcriptional regulation by microRNAs: are the answers in sight?Nat. Rev. Genet.9 (2), 102–114 (2008).
  • Helwak A , KudlaG, DudnakovaT, TollerveyD. Mapping the human miRNA interactome by CLASH reveals frequent noncanonical binding. Cell153 (3), 654–665 (2013).
  • Zhang C . MicroRNomics: a newly emerging approach for disease biology. Physiol. Genomics33 (2), 139–147 (2008).
  • Broderick JA , ZamorePD. MicroRNA therapeutics. Gene Ther.18 (12), 1104–1110 (2011).
  • Romaine SPR , TomaszewskiM, CondorelliG, SamaniNJ. MicroRNAs in cardiovascular disease: an introduction for clinicians. Heart921–928 (2015).
  • Chi SW , HannonGJ, DarnellRB. An alternative mode of microRNA target recognition. Nat. Struct. Mol. Biol.19 (3), 321–327 (2012).
  • Hausser J , SyedAP, BilenB, ZavolanM. Analysis of CDS-located miRNA target sites suggests that they can effectively inhibit translation. Genome Res.23 (4), 604–615 (2013).
  • Brümmer A , HausserJ. MicroRNA binding sites in the coding region of mRNAs: extending the repertoire of post-transcriptional gene regulation. BioEssays36 (6), 617–626 (2014).
  • Hausser J , ZavolanM. Identification and consequences of miRNA–target interactions – beyond repression of gene expression. Nat. Rev. Genet.15 (9), 599–612 (2014).
  • Dorn GW , MatkovichSJ, EschenbacherWH, ZhangY. A human 3′ miR-499 mutation alters cardiac mRNA targeting and function. Circ. Res.958–967 (2012).
  • Shin C , NamJW, FarhKK, ChiangHR, ShkumatavaA, BartelDP. Expanding the microRNA targeting code: functional sites with centered pairing. Mol. Cell38 (6), 789–802 (2010).
  • Martin HC , WaniS, SteptoeALet al. Imperfect centered miRNA binding sites are common and can mediate repression of target mRNAs. Genome Biol.15 (3), R51 (2014).
  • Bartel DP . MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116 (2), 281–297 (2004).
  • Di Leva G , GarofaloM, CroceCM. MicroRNAs in cancer. Annu. Rev. Path. Mech.9 (1), 287–314 (2014).
  • Jansson MD , LundAH. MicroRNA and cancer. Mol. Oncol.6 (6), 590–610 (2012).
  • Shantikumar S , CaporaliA, EmanueliC. Role of microRNAs in diabetes and its cardiovascular complications. Cardiovasc. Res.93 (4), 583–593 (2011).
  • Kantharidis P , WangB, CarewRM, LanHY. Diabetes complications: the MicroRNA perspective. Diabetes60 (7), 1832–1837 (2011).
  • McClelland AD , KantharidisP. MicroRNA in the development of diabetic complications. Clin. Sci. (Lond.)126 (2), 95–110 (2014).
  • Winbanks CE , OoiJY, NguyenSS, McMullenJR, BernardoBC. MicroRNAs differentially regulated in cardiac and skeletal muscle in health and disease: potential drug targets?Clin. Exp. Pharmacol. Physiol.41 (9), 727–737 (2014).
  • Neppl RL , WangD-Z. The myriad essential roles of microRNAs in cardiovascular homeostasis and disease. Genes Dis.1 (1), 18–39 (2014).
  • Chi SW , ZangJB, MeleA, DarnellRB. Argonaute HITS-CLIP decodes microRNA-mRNA interaction maps. Nature460 (7254), 479–486 (2009).
  • Hafner M , LandthalerM, BurgerLet al. Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-CLIP. Cell141 (1), 129–141 (2010).
  • Hafner M , LianoglouS, TuschlT, BetelD. Genome-wide identification of miRNA targets by PAR-CLIP. Methods58 (2), 94–105 (2012).
  • Spitzer J , HafnerM, LandthalerMet al. PAR-CLIP (Photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation): a step-by-step protocol to the transcriptome-wide identification of binding sites of RNA-binding proteins. Methods Enzymol.539, 113–161 (2014).
  • Ooi JYY , BernardoBC, McMullenJR. The therapeutic potential of microRNAs regulated in settings of physiological cardiac hypertrophy. Future Medicinal Chemistry6 (2), 205–222 (2014).
  • Boettger T , BraunT. A new level of complexity: the role of microRNAs in cardiovascular development. Circ. Res.110 (7), 1000–1013 (2012).
  • Vickers KC , RyeKA, TabetF. MicroRNAs in the onset and development of cardiovascular disease. Clin. Sci. (Lond.)126 (3), 183–194 (2014).
  • Zhao Y , RansomJF, LiAet al. Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1–2. Cell129 (2), 303–317 (2007).
  • Chen J-F , MurchisonEP, TangRet al. Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc. Natl Acad. Sci. USA105 (6), 2111–2116 (2008).
  • da Costa Martins PA , BourajjajM, GladkaMet al. Conditional dicer gene deletion in the postnatal myocardium provokes spontaneous cardiac remodeling. Circulation118 (15), 1567–1576 (2008).
  • Philippen LE , DirkxE, da Costa-MartinsPA, De WindtLJ. Non-coding RNA in control of gene regulatory programs in cardiac development and disease. J. Mol. Cell. Cardiol.27, pii: S0022-2828(15)00100-5 (2015).
  • Zhao Y , SamalE, SrivastavaD. Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature436 (7048), 214–220 (2005).
  • Liu N , BezprozvannayaS, WilliamsAHet al. microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes Dev.22 (23), 3242–3254 (2008).
  • Chen JF , MandelEM, ThomsonJMet al. The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation. Nat. Genet.38 (2), 228–233 (2006).
  • Ventura A , YoungAG, WinslowMMet al. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell132 (5), 875–886 (2008).
  • Porrello ER , JohnsonBA, AuroraABet al. miR-15 family regulates postnatal mitotic arrest of cardiomyocytes. Circ. Res.109 (6), 670–679 (2011).
  • Ikeda S , HeA, KongSWet al. MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes. Mol. Cell. Biol.29 (8), 2193–2204 (2009).
  • Thum T , GrossC, FiedlerJet al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature456 (7224), 980–984 (2008).
  • Patrick DM , MontgomeryRL, QiXet al. Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice. J. Clin. Invest.120 (11), 3912–3916 (2010).
  • Meloni M , MarchettiM, GarnerKet al. Local inhibition of MicroRNA-24 improves reparative angiogenesis and left ventricle remodeling and function in mice with myocardial infarction. Mol. Ther.21 (7), 1390–1402 (2013).
  • Qian L , Van LaakeLW, HuangY, LiuS, WendlandMF, SrivastavaD. miR-24 inhibits apoptosis and represses Bim in mouse cardiomyocytes. J. Exp. Med.208 (3), 549–560 (2011).
  • van Rooij E , SutherlandLB, ThatcherJEet al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc. Natl Acad. Sci. USA105 (35), 13027–13032 (2008).
  • Kriegel AJ , LiuY, FangY, DingX, LiangM. The miR-29 family: genomics, cell biology, and relevance to renal and cardiovascular injury. Physiol. Genomics44 (4), 237–244 (2012).
  • Bernardo BC , GaoXM, WinbanksCEet al. Therapeutic inhibition of the miR-34 family attenuates pathological cardiac remodeling and improves heart function. Proc. Natl Acad. Sci. USA109 (43), 17615–17620 (2012).
  • Boon RA , IekushiK, LechnerSet al. MicroRNA-34a regulates cardiac ageing and function. Nature495 (7439), 107–110 (2013).
  • Care A , CatalucciD, FelicettiFet al. MicroRNA-133 controls cardiac hypertrophy. Nat. Med.13 (5), 613–618 (2007).
  • Castaldi A , ZagliaT, Di MauroVet al. MicroRNA-133 modulates the beta1-adrenergic receptor transduction cascade. Circ. Res.115 (2), 273–283 (2014).
  • da Costa Martins PA , SalicK, GladkaMMet al. MicroRNA-199b targets the nuclear kinase Dyrk1a in an auto-amplification loop promoting calcineurin/NFAT signalling. Nat. Cell Biol.12 (12), 1220–1227 (2010).
  • van Rooij E , SutherlandLB, QiXX, RichardsonJA, HillJ, OlsonEN. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science316 (5824), 575–579 (2007).
  • Grueter CE , van RooijE, JohnsonBAet al. A cardiac microRNA governs systemic energy homeostasis by regulation of MED13. Cell149 (3), 671–683 (2012).
  • Ucar A , GuptaSK, FiedlerJet al. The miRNA-212/132 family regulates both cardiac hypertrophy and cardiomyocyte autophagy. Nat. Commun.3, 1078 (2012).
  • Aurora AB , MahmoudAI, LuoXet al. MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca2+ overload and cell death. J. Clin. Invest.122 (4), 1222–1232 (2012).
  • Ganesan J , RamanujamD, SassiYet al. MiR-378 controls cardiac hypertrophy by combined repression of mitogen-activated protein kinase pathway factors. Circulation127 (21), 2097–2106 (2013).
  • Nagalingam RS , SundaresanNR, NoorM, GuptaMP, SolaroRJ, GuptaM. Deficiency of cardiomyocyte-specific microRNA-378 contributes to the development of cardiac fibrosis involving a transforming growth factor beta (TGFbeta1)-dependent paracrine mechanism. J. Biol. Chem.289 (39), 27199–27214 (2014).
  • Matkovich SJ , HuY, EschenbacherWH, DornLE, DornGW. Direct and indirect involvement of microRNA-499 in clinical and experimental cardiomyopathy/novelty and significance. Circ. Res.111 (5), 521–531 (2012).
  • Wang J-X , JiaoJ-Q, LiQet al. miR-499 regulates mitochondrial dynamics by targeting calcineurin and dynamin-related protein-1. Nat. Med.17 (1), 71–78 (2011).
  • Shieh JTC , HuangY, GilmoreJ, SrivastavaD. Elevated miR-499 levels blunt the cardiac stress response. PLoS ONE6 (5), e19481 (2011).
  • Bernardo BC , NguyenSS, WinbanksCEet al. Therapeutic silencing of miR-652 restores heart function and attenuates adverse remodeling in a setting of established pathological hypertrophy. FASEB J.28 (12), 5097–5110 (2014).
  • Bernardo BC , OoiJYY, McMullenJR. The yin and yang of adaptive and maladaptive processes in heart failure. Drug Discov. Today9 (4), e163–e172 (2012).
  • Bernardo BC , WeeksKL, PretoriusL, McMullenJR. Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol. Ther.128 (1), 191–227 (2010).
  • Tham YK , BernardoBC, OoiJY, WeeksKL, McMullenJR. Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets. Arch. Toxicol.89 (9), 1401–1438 (2015).
  • Sayed D , HongC, ChenI-Y, LypowyJ, AbdellatifM. MicroRNAs play an essential role in the development of cardiac hypertrophy. Circ. Res.100 (3), 416–424 (2007).
  • van Rooij E , SutherlandLB, LiuNet al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc. Natl Acad. Sci. USA103 (48), 18255–18260 (2006).
  • Hu Y , MatkovichSJ, HeckerPA, ZhangY, EdwardsJR, DornGW, 2nd. Epitranscriptional orchestration of genetic reprogramming is an emergent property of stress-regulated cardiac microRNAs. Proc. Natl Acad. Sci. USA109 (48), 19864–19869 (2012).
  • Yang K-C , YamadaKA, PatelAYet al. Deep RNA sequencing reveals dynamic regulation of myocardial noncoding RNAs in failing human heart and remodeling with mechanical circulatory support. Circulation129 (9), 1009–1021 (2014).
  • Melman YF , ShahR, DasS. MicroRNAs in heart failure: is the picture becoming less mirky?Circ. Heart Fail.7 (1), 203–214 (2014).
  • Matkovich SJ , WangW, TuYet al. MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts. Circ. Res.106 (1), 166–175 (2010).
  • Matkovich SJ . MicroRNAs in the stressed heart: sorting the signal from the noise. Cells3 (3), 778–801 (2014).
  • Dong D-l , YangB-f. Role of microRNAs in cardiac hypertrophy, myocardial fibrosis and heart failure. Acta. Pharmaceutica. Sinica. B1 (1), 1–7 (2011).
  • Calway T , KimGH. Harnessing the therapeutic potential of MicroRNAs for cardiovascular disease. J. Cardiovas. Pharmacol. Ther.131–143 (2014).
  • Leask A . Potential therapeutic targets for cardiac fibrosis: TGFbeta, angiotensin, endothelin, CCN2, and PDGF, partners in fibroblast activation. Circ. Res.106 (11), 1675–1680 (2010).
  • Pottier N , CauffiezC, PerraisM, BarbryP, MariB. FibromiRs: translating molecular discoveries into new anti-fibrotic drugs. Trends Pharmacol. Sci.35 (3), 119–126 (2014).
  • Thum T . Noncoding RNAs and myocardial fibrosis. Nat. Rev. Cardiol.11 (11), 655–663 (2014).
  • Liu G , FriggeriA, YangYet al. miR-21 mediates fibrogenic activation of pulmonary fibroblasts and lung fibrosis. J. Exp. Med.207 (8), 1589–1597 (2010).
  • Zhong X , ChungAC, ChenHY, MengXM, LanHY. Smad3-mediated upregulation of miR-21 promotes renal fibrosis. J. Am. Soc. Nephrol.22 (9), 1668–1681 (2011).
  • Hatley ME , PatrickDM, GarciaMRet al. Modulation of K-Ras-dependent lung tumorigenesis by MicroRNA-21. Cancer Cell18 (3), 282–293 (2010).
  • Skommer J , RanaI, MarquesFZ, ZhuW, DuZ, CharcharFJ. Small molecules, big effects: the role of microRNAs in regulation of cardiomyocyte death. Cell Death Dis.5, e1325 (2014).
  • Li P . MicroRNAs in cardiac apoptosis. J Cardiovasc. Transl Res.3 (3), 219–224 (2010).
  • Katz MG , FargnoliAS, WilliamsRD, KendleAP, SteuerwaldNM, BridgesCR. miRNAs as potential molecular targets in heart failure. Future Cardiol.10 (6), 789–800 (2014).
  • Olson EN . MicroRNAs as therapeutic targets and biomarkers of cardiovascular disease. Sci. Transl Med.6 (239), 239ps3 (2014).
  • van Rooij E , OlsonEN. MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nat. Rev. Drug Discov.11 (11), 860–872 (2012).
  • Hullinger TG , MontgomeryRL, SetoAGet al. Inhibition of miR-15 protects against cardiac ischemic injury/novelty and significance. Circ. Res.110 (1), 71–81 (2012).
  • Lanford RE , Hildebrandt-EriksenES, PetriAet al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science327 (5962), 198–201 (2010).
  • Rayner KJ , EsauCC, HussainFNet al. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature478 (7369), 404–407 (2011).
  • Janssen HL , ReesinkHW, LawitzEJet al. Treatment of HCV infection by targeting microRNA. N. Engl. J. Med.368 (18), 1685–1694 (2013).
  • Latronico MV , CondorelliG. Therapeutic applications of noncoding RNAs. Curr. Opin. Cardiol.30 (3), 213–221 (2015).
  • Li Z , RanaTM. Therapeutic targeting of microRNAs: current status and future challenges. Nat. Rev. Drug Discov.13 (8), 622–638 (2014).
  • Ling H , FabbriM, CalinGA. MicroRNAs and other non-coding RNAs as targets for anticancer drug development. Nat. Rev. Drug Discov.12 (11), 847–865 (2013).
  • Beavers KR , NelsonCE, DuvallCL. MiRNA inhibition in tissue engineering and regenerative medicine. Adv. Drug Deliv. Rev.123–137 (2015).
  • Jayaraj GG , NaharS, MaitiS. Nonconventional chemical inhibitors of microRNA: therapeutic scope. Chem. Commun.51 (5), 820–831 (2015).
  • van Rooij E , KauppinenS. Development of microRNA therapeutics is coming of age. EMBO Mol. Med.6 (7), 851–864 (2014).
  • Krutzfeldt J , RajewskyN, BraichRet al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature438 (7068), 685–689 (2005).
  • Esau C , DavisS, MurraySFet al. miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab.3 (2), 87–98 (2006).
  • Grunweller A , HartmannRK. Locked nucleic acid oligonucleotides: the next generation of antisense agents?BioDrugs21 (4), 235–243 (2007).
  • Bernardo BC , GaoXM, ThamYKet al. Silencing of miR-34a attenuates cardiac dysfunction in a setting of moderate, but not severe, hypertrophic cardiomyopathy. PLoS ONE9 (2), e90337 (2014).
  • Elmen J , LindowM, SchutzSet al. LNA-mediated microRNA silencing in non-human primates. Nature452 (7189), 896–899 (2008).
  • Elmen J , LindowM, SilahtarogluAet al. Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucl. Acids Res.36 (4), 1153–1162 (2008).
  • Obad S , dos SantosCO, PetriAet al. Silencing of microRNA families by seed-targeting tiny LNAs. Nat. Genet.43 (4), 371–378 (2011).
  • Young JA , TingKK, LiJet al. Regulation of vascular leak and recovery from ischemic injury by general and VE-cadherin-restricted miRNA antagonists of miR-27. Blood122 (16), 2911–2919 (2013).
  • Nielsen PE , EgholmM, BuchardtO. Peptide nucleic acid (PNA). A DNA mimic with a peptide backbone. Bioconjug. Chem.5 (1), 3–7 (1994).
  • Rozners E . Recent advances in chemical modification of peptide nucleic acids. J. Nucleic Acids2012, 518162 (2012).
  • Yin H , LuQ, WoodM. Effective exon skipping and restoration of dystrophin expression by peptide nucleic acid antisense oligonucleotides in mdx mice. Mol. Ther.16 (1), 38–45 (2008).
  • Lennox KA , OwczarzyR, ThomasDM, WalderJA, BehlkeMA. Improved performance of anti-miRNA oligonucleotides using a novel non-nucleotide modifier. Mol. Ther. Nucleic Acids2, e117 (2013).
  • Hammond SM , McCloreyG, NordinJZet al. Correlating in vitro splice switching activity with systemic in vivo delivery using novel ZEN-modified oligonucleotides. Mol. Ther. Nucleic Acids3, e212 (2014).
  • Ebert MS , NeilsonJR, SharpPA. MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat. Meth.4 (9), 721–726 (2007).
  • Tay FC , LimJK, ZhuH, HinLC, WangS. Using artificial microRNA sponges to achieve microRNA loss-of-function in cancer cells. Adv. Drug Delivery. Rev.81 (0), 117–127 (2015).
  • Ebert MS , SharpPA. MicroRNA sponges: progress and possibilities. RNA16 (11), 2043–2050 (2010).
  • Kluiver J , GibcusJH, HettingaCet al. Rapid generation of microRNA sponges for microRNA inhibition. PLoS ONE7 (1), e29275 (2012).
  • Kluiver J , Slezak-ProchazkaI, Smigielska-CzepielK, HalsemaN, KroesenBJ, van den BergA. Generation of miRNA sponge constructs. Methods58 (2), 113–117 (2012).
  • Haraguchi T , OzakiY, IbaH. Vectors expressing efficient RNA decoys achieve the long-term suppression of specific microRNA activity in mammalian cells. Nucleic Acids Res.37 (6), e43 (2009).
  • Sayed D , RaneS, LypowyJet al. microRNA-21 targets Sprouty2 and promotes cellular outgrowths. Mol. Biol. Cell19 (8), 3272–3282 (2008).
  • Liu Y , HanY, ZhangHet al. Synthetic miRNA-mowers targeting miR-183–96–182 cluster or miR-210 inhibit growth and migration and induce apoptosis in bladder cancer cells. PLoS ONE7 (12), e52280 (2012).
  • Bak RO , HollensenAK, MikkelsenJG. Managing microRNAs with vector-encoded decoy-type inhibitors. Mol. Ther.21 (8), 1478–1485 (2013).
  • Krol J , BusskampV, MarkiewiczIet al. Characterizing light-regulated retinal microRNAs reveals rapid turnover as a common property of neuronal microRNAs. Cell141 (4), 618–631 (2010).
  • Winbanks CE , BeyerC, HaggA, QianH, SepulvedaPV, GregorevicP. miR-206 represses hypertrophy of myogenic cells but not muscle fibers via inhibition of HDAC4. PLoS ONE8 (9), e73589 (2013).
  • Montgomery RL , YuG, LatimerPAet al. MicroRNA mimicry blocks pulmonary fibrosis. EMBO Mol. Med.6 (10), 1347–1356 (2014).
  • Bader AG . miR-34 - a microRNA replacement therapy is headed to the clinic. Front. Genet.3, 120 (2012).
  • Lin RC , Van ZandwijkN, ReidG. MicroRNA therapeutics – back in vogue?J. Investig. Genomics2 (1), 00012 (2014).
  • Kwekkeboom RF , LeiZ, DoevendansPA, MustersRJ, SluijterJP. Targeted delivery of miRNA therapeutics for cardiovascular diseases: opportunities and challenges. Clin. Sci. (Lond.)127 (6), 351–365 (2014).
  • Rothschild SI . microRNA therapies in cancer. Mol. Cell Ther2, 7 (2014).
  • Shim G , KimM-G, ParkJY, OhY-K. Application of cationic liposomes for delivery of nucleic acids. Asian J. Pharma. Sci.8 (2), 72–80 (2013).
  • Chen Y , ZhuX, ZhangX, LiuB, HuangL. Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol. Ther.18 (9), 1650–1656 (2010).
  • Cheng CJ , BahalR, BabarIAet al. microRNA silencing for cancer therapy targeted to the tumour microenvironment. Nature518, 107–110 (2015).
  • Zacchigna S , ZentilinL, GiaccaM. Adeno-associated virus vectors as therapeutic and investigational tools in the cardiovascular system. Circ. Res.114 (11), 1827–1846 (2014).
  • Hajjar RJ . Potential of gene therapy as a treatment for heart failure. J. Clin. Invest.123 (1), 53–61 (2013).
  • Jessup M , GreenbergB, ManciniDet al. Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID): a Phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure. Circulation124 (3), 304–313 (2011).
  • Selot RS , HareendranS, JayandharanGR. Developing immunologically inert adeno-associated virus (AAV) vectors for gene therapy: possibilities and limitations. Curr. Pharm. Biotechnol.14 (12), 1072–1082 (2014).
  • Mingozzi F , HighKA. Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood122 (1), 23–36 (2013).
  • Zsebo K , YaroshinskyA, RudyJJet al. Long-term effects of AAV1/SERCA2a gene transfer in patients with severe heart failure: analysis of recurrent cardiovascular events and mortality. Circ. Res.114 (1), 101–108 (2014).
  • Garde D . Bristol-Myers bets big on gene therapy with a $1B uniQure deal. FierceBiotech (2015). www.fiercebiotech.com/story/bristol-myers-bets-big-gene-therapy-1b-uniqure-deal/2015–04–06.
  • Ritterhoff J , MostP. Targeting S100A1 in heart failure. Gene Ther.19 (6), 613–621 (2012).
  • Nana-Sinkam SP , CroceCM. Clinical applications for microRNAs in cancer. Clin. Pharmacol. Ther.93 (1), 98–104 (2013).
  • Mendell JT , OlsonEN. microRNAs in stress signaling and human disease. Cell148 (6), 1172–1187 (2012).
  • Bandiera S , PfefferS, BaumertTF, ZeiselMB. miR-122 – a key factor and therapeutic target in liver disease. J. Hepatol.62 (2), 448–457 (2015).
  • Weeks KL , McMullenJR. The athlete's heart vs. the failing heart: can signaling explain the two distinct outcomes?Physiology26 (2), 97–105 (2011).
  • McMullen JR , ShioiT, ZhangLet al. Phosphoinositide 3-kinase(p110alpha) plays a critical role for the induction of physiological, but not pathological, cardiac hypertrophy. Proc. Natl Acad. Sci. USA100 (21), 12355–12360 (2003).
  • McMullen JR , AmirahmadiF, WoodcockEAet al. Protective effects of exercise and phosphoinositide 3-kinase(p110alpha) signaling in dilated and hypertrophic cardiomyopathy. Proc. Natl Acad. Sci. USA104 (2), 612–617 (2007).
  • Lin RCY , WeeksKL, GaoX-Met al. PI3K(p110α) protects against myocardial infarction-induced heart failure/identification of PI3K-regulated miRNAs and mRNAs. Arterioscler. Thromb. Vasc. Biol.30, 724–732 (2010).
  • Greco S , FasanaroP, CastelvecchioSet al. MicroRNA dysregulation in diabetic ischemic heart failure patients. Diabetes61 (6), 1633–1641 (2012).
  • Thum T , GaluppoP, WolfCet al. MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation116 (3), 258–267 (2007).
  • Murphy BL , ObadS, BihannicLet al. Silencing of the miR-17∼92 cluster family inhibits medulloblastoma progression. Cancer Res.73 (23), 7068–7078 (2013).
  • Porrello ER , MahmoudAI, SimpsonEet al. Regulation of neonatal and adult mammalian heart regeneration by the miR-15 family. Proc. Natl Acad. Sci. USA110 (1), 187–192 (2013).
  • Wahlquist C , JeongD, Rojas-MunozAet al. Inhibition of miR-25 improves cardiac contractility in the failing heart. Nature508, 531–535 (2014).
  • Dirkx E , GladkaMM, PhilippenLEet al. NFAT and miR-25 cooperate to reactivate the transcription factor Hand2 in heart failure. Nat. Cell Biol.15 (11), 1282–1293 (2013).
  • Bush EW , van RooijE. miR-25 in heart failure. Circ. Res.115 (7), 610–612 (2014).
  • Porrello ER , MahmoudAI, SimpsonEet al. Transient regenerative potential of the neonatal mouse heart. Science331 (6020), 1078–1080 (2011).
  • Yuan X , LiuC, YangPet al. Clustered microRNAs’ coordination in regulating protein–protein interaction network. BMC Syst. Biol.3, 65 (2009).
  • Tian Y , LiuY, WangTet al. A microRNA-Hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice. Sci. Transl Med.7 (279), 279ra38 (2015).
  • Callis TE , PandyaK, SeokHYet al. microRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J. Clin. Invest.119 (9), 2772–2786 (2009).
  • Montgomery RL , HullingerTG, SemusHMet al. Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure/clinical perspective. Circulation124 (14), 1537–1547 (2011).
  • Small EM , FrostRJA, OlsonEN. MicroRNAs add a new dimension to cardiovascular disease. Circulation121 (8), 1022–1032 (2010).
  • Jopling CL , YiM, LancasterAM, LemonSM, SarnowP. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science309 (5740), 1577–1581 (2005).
  • Bichi R , ShintonSA, MartinESet al. Human chronic lymphocytic leukemia modeled in mouse by targeted TCL1 expression. Proc. Natl Acad. Sci. USA99 (10), 6955–6960 (2002).
  • Garzon R , CalinGA, CroceCM. MicroRNAs in cancer. Annu. Rev. Med.60, 167–179 (2009).
  • Kasinski AL , KelnarK, StahlhutCet al. A combinatorial microRNA therapeutics approach to suppressing non-small-cell lung cancer. Oncogene3547–3555 (2014).
  • Agostini M , KnightRA. miR-34: from bench to bedside. Oncotarget5 (4), 872–881 (2014).
  • Wiggins JF , RuffinoL, KelnarKet al. Development of a lung cancer therapeutic based on the tumor suppressor microRNA-34. Cancer Res.70 (14), 5923–5930 (2010).
  • Takeshita F , PatrawalaL, OsakiMet al. Systemic delivery of synthetic microRNA-16 inhibits the growth of metastatic prostate tumors via downregulation of multiple cell-cycle genes. Mol. Ther.18 (1), 181–187 (2010).
  • Reid G , PelME, KirschnerMBet al. Restoring expression of miR-16: a novel approach to therapy for malignant pleural mesothelioma. Ann. Oncol.24 (12), 3128–3135 (2013).
  • MacDiarmid JA , BrahmbhattH. Minicells: versatile vectors for targeted drug or si/shRNA cancer therapy. Curr. Opin. Biotechnol.22 (6), 909–916 (2011).
  • Peacock H , KannanA, BealPA, BurrowsCJ. Chemical modification of siRNA bases to probe and enhance RNA interference. J. Org. Chem.76 (18), 7295–7300 (2011).
  • Watanabe Y , KanaiA. Systems biology reveals MicroRNA-mediated gene regulation. Front. Genet.2, 29 (2011).
  • Moore MJ , ZhangC, GantmanEC, MeleA, DarnellJC, DarnellRB. Mapping argonaute and conventional RNA-binding protein interactions with RNA at single-nucleotide resolution using HITS-CLIP and CIMS analysis. Nat. Protocols9 (2), 263–293 (2014).
  • Matkovich SJ , DornGW2nd. Deep sequencing of cardiac microRNA–mRNA interactomes in clinical and experimental cardiomyopathy. Methods Mol. Biol.1299, 27–49 (2015).
  • Matkovich SJ , Van BoovenDJ, EschenbacherWH, DornGW, 2nd. RISC RNA sequencing for context-specific identification of in vivo microRNA targets. Circ. Res.108 (1), 18–26 (2011).
  • Baek D , VillenJ, ShinC, CamargoFD, GygiSP, BartelDP. The impact of microRNAs on protein output. Nature455 (7209), 64–71 (2008).
  • Ingolia NT , BrarGA, RouskinS, McGeachyAM, WeissmanJS. The ribosome profiling strategy for monitoring translation in vivo by deep sequencing of ribosome-protected mRNA fragments. Nat. Protoc.7 (8), 1534–1550 (2012).
  • Ingolia Nicholas T , Brar GloriaA, Stern-GinossarNet al. Ribosome profiling reveals pervasive translation outside of annotated protein-coding genes. Cell Reports8 (5), 1365–1379 (2015).
  • Grosshans H , FilipowiczW. Proteomics joins the search for MicroRNA targets. Cell134 (4), 560–562 (2008).
  • Gray WD , FrenchKM, Ghosh-ChoudharySKet al. Identification of therapeutic covariant microRNA clusters in hypoxia treated cardiac progenitor cell exosomes using systems biology. Circ. Res.116 (2), 255–263 (2015).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.