305
Views
1
CrossRef citations to date
0
Altmetric
Review

Enhancing the Pharmacokinetic/Pharmacodynamic Properties of Therapeutic Nucleotides Using Lipid Nanoparticle Systems

&
Pages 1751-1769 | Published online: 24 Sep 2015

References

  • Allen TM , CullisPR. Drug delivery systems: entering the mainstream. Science303, 1818–1822 (2004).
  • Lin PJ , TamYY, HafezIet al. Influence of cationic lipid composition on uptake and intracellular processing of lipid nanoparticle formulations of siRNA. Nanomedicine9 (2), 233–246 (2013).
  • Gilleron J , QuerbesW, ZeigererAet al. Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nat. Biotechnol.31 (7), 638–646 (2013).
  • Dias N , SteinCA. Antisense oligonucleotides: basic concepts and mechanisms. Mol. Cancer Ther.1 (5), 347–355 (2002).
  • Barros SA , GollobJA. Safety profile of RNAi nanomedicines. Adv. Drug Del. Rev.64 (15), 1730–1737 (2012).
  • Kashani-Sabet M . Ribozyme therapeutics. J. Invest. Dermatol.7 (1), 76–78 (2002).
  • Chan CW , KhachigianLM. Dnazymes and their therapeutic possibilities. Intern. Med. J.39 (4), 249–251 (2009).
  • Behlke MA . Chemical modification of siRNAs for in vivo use. Oligonucleotides18 (4), 305–319 (2008).
  • Leung AK , TamYY, ChenS, HafezIM, CullisPR. Microfluidic mixing: a general method for encapsulating macromolecules in lipid nanoparticle systems. J. Phys. Chem. B119 (28), 8698–8706 (2015).
  • Belliveau NM , HuftJ, LinPJet al. Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA. Mol. Ther. Nucleic Acids1, e37 (2012).
  • Leung AK , HafezIM, BaoukinaSet al. Lipid nanoparticles containing siRNA synthesized by microfluidic mixing exhibit an electron-dense nanostructured core. J. Phys. Chem. C Nanomater Interfaces116 (34), 18440–18450 (2012).
  • Nicolau C , Le PapeA, SorianoP, FargetteF, JuhelMF. In vivo expression of rat insulin after intravenous administration of the liposome-entrapped gene for rat insulin i. Proc. Natl. Acad. Sci. USA80 (4), 1068–1072 (1983).
  • Gao X , HuangL. A novel cationic liposome reagent for efficient transfection of mammalian cells. Biochem. Biophys. Res. Commun.179 (1), 280–285 (1991).
  • Oussoren C , StormG. Lymphatic uptake and biodistribution of liposomes after subcutaneous injection: Iii. Influence of surface modification with poly(ethyleneglycol). Pharm. Res.14 (10), 1479–1484 (1997).
  • Semple SC , AkincA, ChenJet al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol.28 (2), 172–176 (2010).
  • Zimmermann TS , LeeAC, AkincAet al. RNAi-mediated gene silencing in non-human primates. Nature441 (7089), 111–114 (2006).
  • Maurer N , WongKF, StarkHet al. Spontaneous entrapment of polynucleotides upon electrostatic interaction with ethanol-destabilized cationic liposomes. Biophys. J.80 (5), 2310–2326 (2001).
  • Jeffs LB , PalmerLR, AmbegiaEG, GiesbrechtC, EwanickS, MaclachlanI. A scalable, extrusion-free method for efficient liposomal encapsulation of plasmid DNA. Pharm. Res.22 (3), 362–372 (2005).
  • Raney SG , WilsonKD, SekirovLet al. The effect of circulation lifetime and drug-to-lipid ratio of intravenously administered lipid nanoparticles on the biodistribution and immunostimulatory activity of encapsulated Cpg-Odn. J. Drug Target.16 (7), 564–577 (2008).
  • Chono S , LiSD, ConwellCC, HuangL. An efficient and low immunostimulatory nanoparticle formulation for systemic siRNA delivery to the tumor. J. Control. Release131 (1), 64–69 (2008).
  • Rungta RL , ChoiHB, LinPJet al. Lipid nanoparticle delivery of siRNA to silence neuronal gene expression in the brain. Mol. Ther. Nucleic Acids2, e136 (2013).
  • Senn C , HangartnerC, MoesS, GueriniD, HofbauerKG. Central administration of small interfering RNAs in rats: a comparison with antisense oligonucleotides. Eur. J. Pharmacol.522 (1–3), 30–37 (2005).
  • Rungta RL , ChoiHB, TysonJRet al. The cellular mechanisms of neuronal swelling underlying cytotoxic edema. Cell161 (3), 610–621 (2015).
  • Felgner PL , GadekTR, HolmMet al. Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl Acad. Sci. USA84 (21), 7413–7417 (1987).
  • Felgner PL , RingoldGM. Cationic liposome-mediated transfection. Nature337 (6205), 387–388 (1989).
  • Wolfrum C , ShiS, JayaprakashKNet al. Mechanisms and optimization of in vivo delivery of lipophilic siRNAs. Nat. Biotechnol.25 (10), 1149–1157 (2007).
  • Querbes W , GeP, ZhangWet al. Direct CNS delivery of siRNA mediates robust silencing in oligodendrocytes. Oligonucleotides19 (1), 23–29 (2009).
  • Chen Q , ButlerD, QuerbesWet al. Lipophilic siRNAs mediate efficient gene silencing in oligodendrocytes with direct CNS delivery. J. Control. Release144 (2), 227–232 (2010).
  • Yamada T , PengCG, MatsudaSet al. Versatile site-specific conjugation of small molecules to siRNA using click chemistry. J. Org. Chem.76 (5), 1198–1211 (2011).
  • Soutschek J , AkincA, BramlageBet al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature432 (7014), 173–178 (2004).
  • Lorenz C , HadwigerP, JohnM, VornlocherHP, UnverzagtC. Steroid and lipid conjugates of siRNAs to enhance cellular uptake and gene silencing in liver cells. Bioorg. Med. Chem. Lett.14 (19), 4975–4977 (2004).
  • Nakayama T , ButlerJS, SehgalAet al. Harnessing a physiologic mechanism for siRNA delivery with mimetic lipoprotein particles. Mol. Ther.20 (8), 1582–1589 (2012).
  • Sebestyen MG , WongSC, TrubetskoyV, LewisDL, WooddellCI. Targeted in vivo delivery of siRNA and an endosome-releasing agent to hepatocytes. Methods Mol. Biol.1218, 163–186 (2015).
  • Wooddell CI , RozemaDB, HossbachMet al. Hepatocyte-targeted RNAi therapeutics for the treatment of chronic hepatitis b virus infection. Mol. Ther.21 (5), 973–985 (2013).
  • Wong SC , KleinJJ, HamiltonHLet al. Co-injection of a targeted, reversibly masked endosomolytic polymer dramatically improves the efficacy of cholesterol-conjugated small interfering RNAs in vivo. Nucleic Acid Ther.22 (6), 380–390 (2012).
  • Matsuda S , KeiserK, NairJKet al. siRNA conjugates carrying sequentially assembled trivalent N-acetylgalactosamine linked through nucleosides elicit robust gene silencing in vivo in hepatocytes. ACS Chem. Biol.10 (5), 1181–1187 (2015).
  • Nair JK , WilloughbyJL, ChanAet al. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J. Am. Chem. Soc.136 (49), 16958–16961 (2014).
  • Rajeev KG , NairJK, JayaramanMet al. Hepatocyte-specific delivery of siRNAs conjugated to novel non-nucleosidic trivalent n-acetylgalactosamine elicits robust gene silencing in vivo. Chembiochem16 (6), 903–908 (2015).
  • Alnylam Pharmaceuticals . TIDES 2014: GaINAc-siRNA with enhanced stabilization chemistry: ESC-GaINAc-siRNA. www.alnylam.com/web/assets/ALNY-ESC-GalNAc-siRNA-TIDES-May2014-Capella.pdf.
  • Lim LP , LauNC, Garrett-EngelePet al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature433 (7027), 769–773 (2005).
  • Gu S , KayMA. How do miRNAs mediate translational repression?Silence1 (1), 11 (2010).
  • Bartel DP . MicroRNAs: target recognition and regulatory functions. Cell136 (2), 215–233 (2009).
  • Wang WT , ChenYQ. Circulating miRNAs in cancer: from detection to therapy. J. Hematol. Oncol.7 (1), 86 (2014).
  • Femminella GD , FerraraN, RengoG. The emerging role of microRNAs in Alzheimer's disease. Front. Physiol.6, 40 (2015).
  • Katoh M . Cardio-miRNAs and onco-miRNAs: circulating miRNA-based diagnostics for non-cancerous and cancerous diseases. Front. Cell Dev. Biol.2, 61 (2014).
  • Castro-Villegas C , Perez-SanchezC, EscuderoAet al. Circulating miRNAs as potential biomarkers of therapy effectiveness in rheumatoid arthritis patients treated with anti-tnfalpha. Arthritis Res. Ther.17 (1), 49 (2015).
  • Mi S , ZhangJ, ZhangW, HuangRS. Circulating microRNAs as biomarkers for inflammatory diseases. MicroRNA2 (1), 63–71 (2013).
  • Krutzfeldt J , RajewskyN, BraichRet al. Silencing of microRNAs in vivo with ‘antagomirs’. Nature438 (7068), 685–689 (2005).
  • Zhang Y , WangZ, GemeinhartRA. Progress in microRNA delivery. J. Control. Release172 (3), 962–974 (2013).
  • Braasch DA , ParooZ, ConstantinescuAet al. Biodistribution of phosphodiester and phosphorothioate siRNA. Bioorg. Med. Chem. Lett.14 (5), 1139–1143 (2004).
  • Gao S , Dagnaes-HansenF, NielsenEJet al. The effect of chemical modification and nanoparticle formulation on stability and biodistribution of siRNA in mice. Mol. Ther.17 (7), 1225–1233 (2009).
  • Thompson JD , KornbrustDJ, FoyJWet al. Toxicological and pharmacokinetic properties of chemically modified siRNAs targeting p53 RNA following intravenous administration. Nucleic Acid Ther.22 (4), 255–264 (2012).
  • Devincenzo J , CehelskyJE, AlvarezRet al. Evaluation of the safety, tolerability and pharmacokinetics of aln-rsv01, a novel RNAi antiviral therapeutic directed against respiratory syncytial virus (RSV). Antiviral Res.77 (3), 225–231 (2008).
  • Alnylam Pharmaceuticals . Results of a Phase 2b multi-center, randomized, double-blind, placebo-controlled study of an RNAi therapeutic, ALN-RSV01, in respiratory syncytial virus (RSV)-infected lung transplant patients. www.alnylam.com/web/wp-content/uploads/2012/09/RSV01-109-ERS-Oral-Final-24Aug2012.pdf.
  • Esau C , DavisS, MurraySFet al. Mir-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab.3 (2), 87–98 (2006).
  • Lanford RE , Hildebrandt-EriksenES, PetriAet al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis c virus infection. Science327 (5962), 198–201 (2010).
  • Elmen J , LindowM, SchutzSet al. LNA-mediated microRNA silencing in non-human primates. Nature452 (7189), 896–899 (2008).
  • Hofland HE , ShephardL, SullivanSM. Formation of stable cationic lipid/DNA complexes for gene transfer. Proc. Natl Acad. Sci. USA93 (14), 7305–7309 (1996).
  • Stewart MJ , PlautzGE, Del BuonoLet al. Gene transfer in vivo with DNA-liposome complexes: safety and acute toxicity in mice. Hum. Gene Ther.3 (3), 267–275 (1992).
  • San H , YangZY, PompiliVJet al. Safety and short-term toxicity of a novel cationic lipid formulation for human gene therapy. Hum. Gene Ther.4 (6), 781–788 (1993).
  • Hafez IM , CullisPR. Roles of lipid polymorphism in intracellular delivery. Adv. Drug Deliv. Rev.47 (2–3), 139–148 (2001).
  • Semple SC , KlimukSK, HarasymTOet al. Efficient encapsulation of antisense oligonucleotides in lipid vesicles using ionizable aminolipids: formation of novel small multilamellar vesicle structures. Biochim. Biophys. Acta1510 (1–2), 152–166 (2001).
  • Cullis PR , ChonnA, SempleSC. Interactions of liposomes and lipid-based carrier systems with blood proteins: relation to clearance behaviour in vivo. Adv. Drug Deliv. Rev.32 (1–2), 3–17 (1998).
  • Jayaraman M , AnsellSM, MuiBLet al. Maximizing the potency of siRNA lipid nanoparticles for hepatic gene silencing in vivo. Angew. Chem. Int. Ed. Engl.51 (34), 8529–8533 (2012).
  • Coelho T , AdamsD, SilvaAet al. Safety and efficacy of RNAi therapy for transthyretin amyloidosis. N. Engl. J. Med.369 (9), 819–829 (2013).
  • Akinc A , QuerbesW, DeSet al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol. Ther.18 (7), 1357–1364 (2010).
  • Maier MA , JayaramanM, MatsudaSet al. Biodegradable lipids enabling rapidly eliminated lipid nanoparticles for systemic delivery of RNAi therapeutics. Mol. Ther.21 (8), 1570–1578 (2013).
  • Dong Y , LoveKT, DorkinJRet al. Lipopeptide nanoparticles for potent and selective siRNA delivery in rodents and nonhuman primates. Proc. Natl Acad. Sci. USA111 (11), 3955–3960 (2014).
  • Huang L , SullengerB, JulianoR. The role of carrier size in the pharmacodynamics of antisense and siRNA oligonucleotides. J. Drug Target.18 (8), 567–574 (2010).
  • Moreno PM , PegoAP. Therapeutic antisense oligonucleotides against cancer: hurdling to the clinic. Front. Chem.2, 87 (2014).
  • Mui BL , TamYK, JayaramanMet al. Influence of polyethylene glycol lipid desorption rates on pharmacokinetics and pharmacodynamics of siRNA lipid nanoparticles. Mol. Ther. Nucleic Acids2, e139 (2013).
  • Wilson SC , BaryzaJL, ReynoldsAJet al. Real time measurement of peg shedding from lipid nanoparticles in serum via nmr spectroscopy. Mol. Pharm.12 (2), 386–392 (2015).
  • Liu Y , HuY, HuangL. Influence of polyethylene glycol density and surface lipid on pharmacokinetics and biodistribution of lipid-calcium-phosphate nanoparticles. Biomaterials35 (9), 3027–3034 (2014).
  • Yamamoto Y , LinPJ, BeraldiEet al. siRNA lipid nanoparticle potently silence clusterin and delay progression when combined with androgen receptor co-targeting in enzalutamide resistant prostate cancer. Clin. Cancer Res. doi:10.1158/1078-0432.CCR-15-0866 (2015) ( Epub ahead of print).
  • Chen S , TamYY, LinPJ, LeungAK, TamYK, CullisPR. Development of lipid nanoparticle formulations of siRNA for hepatocyte gene silencing following subcutaneous administration. J. Control. Release196, 106–112 (2014).
  • Takeuchi H , KojimaH, YamamotoH, KawashimaY. Evaluation of circulation profiles of liposomes coated with hydrophilic polymers having different molecular weights in rats. J. Control. Release75 (1–2), 83–91 (2001).
  • Takeuchi H , KojimaH, YamamotoH, KawashimaY. Polymer coating of liposomes with a modified polyvinyl alcohol and their systemic circulation and res uptake in rats. J. Control. Release68 (2), 195–205 (2000).
  • Nag OK , YadavVR, CroftB, HedrickA, AwasthiV. Liposomes modified with superhydrophilic polymer linked to a nonphospholipid anchor exhibit reduced complement activation and enhanced circulation. J. Pharm. Sci.104 (1), 114–123 (2015).
  • Loyer P , Cammas-MarionS. Natural and synthetic poly(malic acid)-based derivates: a family of versatile biopolymers for the design of drug nanocarriers. J. Drug Target.22 (7), 556–575 (2014).
  • Kim JC , ChungtYI, KimYH, TaeG. The modulation of the permeability and the cellular uptake of liposome by stable anchoring of lipid-conjugated pluronic on liposome. J. Biomed. Nanotechnol.10 (1), 100–108 (2014).
  • Zhou Y , NingQ, YuDN, LiWG, DengJ. Improved oral bioavailability of breviscapine via a pluronic p85-modified liposomal delivery system. J. Pharm. Pharmacol.66 (7), 903–911 (2014).
  • Abu Lila AS , NawataK, ShimizuT, IshidaT, KiwadaH. Use of polyglycerol (PG), instead of polyethylene glycol (PEG), prevents induction of the accelerated blood clearance phenomenon against long-circulating liposomes upon repeated administration. Int. J. Pharm.456 (1), 235–242 (2013).
  • Lu T , WangZ, MaY, ZhangY, ChenT. Influence of polymer size, liposomal composition, surface charge, and temperature on the permeability of pH-sensitive liposomes containing lipid-anchored poly(2-ethylacrylic acid). Int. J. Nanomed.7, 4917–4926 (2012).
  • Araki T , KonoY, OgawaraKet al. Formulation and evaluation of paclitaxel-loaded polymeric nanoparticles composed of polyethylene glycol and polylactic acid block copolymer. Biol. Pharm. Bull.35 (8), 1306–1313 (2012).
  • Zalipsky S , HansenCB, OaksJM, AllenTM. Evaluation of blood clearance rates and biodistribution of poly(2-oxazoline)-grafted liposomes. J. Pharm. Sci.85 (2), 133–137 (1996).
  • Xu H , ZhangW, LiYet al. The bifunctional liposomes constructed by poly(2-ethyl-oxazoline)-cholesteryl methyl carbonate: an effectual approach to enhance liposomal circulation time, ph-sensitivity and endosomal escape. Pharm. Res.31 (11), 3038–3050 (2014).
  • Woodle MC , EngbersCM, ZalipskyS. New amphipatic polymer-lipid conjugates forming long-circulating reticuloendothelial system-evading liposomes. Bioconjug. Chem.5 (6), 493–496 (1994).
  • Torchilin VP , TrubetskoyVS, WhitemanKR, CalicetiP, FerrutiP, VeroneseFM. New synthetic amphiphilic polymers for steric protection of liposomes in vivo. J. Pharm. Sci.84 (9), 1049–1053 (1995).
  • Whiteman KR , SubrV, UlbrichK, TorchilinVP. Poly(hpma)-coated liposomes demonstrate prolonged circulation in mice. J. Liposome Res.11 (2–3), 153–164 (2001).
  • Yamazaki A , WinnikFM, CorneliusRM, BrashJL. Modification of liposomes with N-substituted polyacrylamides: identification of proteins adsorbed from plasma. Biochim. Biophys. Acta1421 (1), 103–115 (1999).
  • Li SD , HuangL. Stealth nanoparticles: high density but sheddable PEG is a key for tumor targeting. J. Control. Release145 (3), 178–181 (2010).
  • Romberg B , HenninkWE, StormG. Sheddable coatings for long-circulating nanoparticles. Pharm. Res.25 (1), 55–71 (2008).
  • Kumar V , QinJ, JiangYet al. Shielding of lipid nanoparticles for siRNA delivery: impact on physicochemical properties, cytokine induction, and efficacy. Mol. Ther. Nucleic Acids3, e210 (2014).
  • Tam YY , ChenS, ZaifmanJet al. Small molecule ligands for enhanced intracellular delivery of lipid nanoparticle formulations of siRNA. Nanomedicine9 (5), 665–674 (2013).
  • Qhattal HS , HyeT, AlaliA, LiuX. Hyaluronan polymer length, grafting density, and surface poly(ethylene glycol) coating influence in vivo circulation and tumor targeting of hyaluronan-grafted liposomes. ACS Nano8 (6), 5423–5440 (2014).
  • Ran R , LiuY, GaoHet al. Enhanced gene delivery efficiency of cationic liposomes coated with pegylated hyaluronic acid for anti P-glycoprotein siRNA: a potential candidate for overcoming multi-drug resistance. Int. J. Pharm.477 (1–2), 590–600 (2014).
  • Chen Y , ZhuX, ZhangX, LiuB, HuangL. Nanoparticles modified with tumor-targeting scfv deliver siRNA and miRNA for cancer therapy. Mol. Ther.18 (9), 1650–1656 (2010).
  • Sahay G , QuerbesW, AlabiCet al. Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling. Nat. Biotechnol.31 (7), 653–658 (2013).
  • Jones RA , CheungCY, BlackFEet al. Poly(2-alkylacrylic acid) polymers deliver molecules to the cytosol by pH-sensitive disruption of endosomal vesicles. Biochem. J.372 (Pt 1), 65–75 (2003).
  • Shi S , HanL, GongT, ZhangZ, SunX. Systemic delivery of microRNA-34a for cancer stem cell therapy. Angew. Chem. Int. Ed. Engl.52 (14), 3901–3905 (2013).
  • Liu N , ZhouC, ZhaoJ, ChenY. Reversal of paclitaxel resistance in epithelial ovarian carcinoma cells by a MUC1 aptamer-let-7i chimera. Cancer Invest.30 (8), 577–582 (2012).
  • Ando H , AsaiT, KoideHet al. Advanced cancer therapy by integrative antitumor actions via systemic administration of mir-499. J. Control. Release181, 32–39 (2014).
  • Hatakeyama H , MurataM, SatoYet al. The systemic administration of an anti-miRNA oligonucleotide encapsulated ph-sensitive liposome results in reduced level of hepatic microRNA-122 in mice. J. Control. Release173, 43–50 (2014).
  • Costa PM , CardosoAL, CustodiaC, CunhaP, De AlmeidaLP, Pedroso De LimaMC. MiRNA-21 silencing mediated by tumor-targeted nanoparticles combined with sunitinib: a new multimodal gene therapy approach for glioblastoma. J. Control. Release207, 31–39 (2015).
  • Liu J , DangL, LiDet al. A delivery system specifically approaching bone resorption surfaces to facilitate therapeutic modulation of microRNAs in osteoclasts. Biomaterials52, 148–160 (2015).
  • Helene C , ToulmeJJ. Specific regulation of gene expression by antisense, sense and antigene nucleic acids. Biochim. Biophys. Acta1049 (2), 99–125 (1990).
  • Wu H , LimaWF, ZhangH, FanA, SunH, CrookeST. Determination of the role of the human RNAse h1 in the pharmacology of DNA-like antisense drugs. J. Biol. Chem.279 (17), 17181–17189 (2004).
  • Van Roon-Mom WM , Aartsma-RusA. Overview on applications of antisense-mediated exon skipping. Methods Mol. Biol.867, 79–96 (2012).
  • Kole R , SazaniP. Antisense effects in the cell nucleus: modification of splicing. Curr. Opin. Mol. Ther.3 (3), 229–234 (2001).
  • Van Deutekom JC , Van OmmenGJ. Advances in duchenne muscular dystrophy gene therapy. Nat. Rev. Genet.4 (10), 774–783 (2003).
  • Marwick C . First “antisense” drug will treat cmv retinitis. JAMA280 (10), 871 (1998).
  • Santos RD , RaalFJ, CatapanoAL, WitztumJL, Steinhagen-ThiessenE, TsimikasS. Mipomersen, an antisense oligonucleotide to apolipoprotein B-100, reduces lipoprotein(a) in various populations with hypercholesterolemia: results of 4 Phase III trials. Arterioscler. Thromb. Vasc. Biol.35 (3), 689–699 (2015).
  • Crooke ST , GrahamMJ, ZuckermanJEet al. Pharmacokinetic properties of several novel oligonucleotide analogs in mice. J. Pharmacol. Exp. Ther.277 (2), 923–937 (1996).
  • Phillips JA , CraigSJ, BayleyD, ChristianRA, GearyR, NicklinPL. Pharmacokinetics, metabolism, and elimination of a 20-mer phosphorothioate oligodeoxynucleotide (CGP 69846A) after intravenous and subcutaneous administration. Biochem. Pharmacol.54 (6), 657–668 (1997).
  • Leeds JM , HenrySP, GearyR, BurckinT, LevinAA. Comparison of the pharmacokinetics of subcutaneous and intravenous administration of a phosphorothioate oligodeoxynucleotide in cynomolgus monkeys. Antisense Nucleic Acid Drug Dev.10 (6), 435–441 (2000).
  • Mendell JR , Rodino-KlapacLR, SahenkZet al. Eteplirsen for the treatment of duchenne muscular dystrophy. Ann. Neurol.74 (5), 637–647 (2013).
  • Yu RZ , ZhangH, GearyRSet al. Pharmacokinetics and pharmacodynamics of an antisense phosphorothioate oligonucleotide targeting FAS mRNA in mice. J. Pharmacol. Exp. Ther.296 (2), 388–395 (2001).
  • Yu RZ , GearyRS, MonteithDKet al. Tissue disposition of 2’-o-(2-methoxy) ethyl modified antisense oligonucleotides in monkeys. J. Pharm. Sci.93 (1), 48–59 (2004).
  • Seth PP , SiwkowskiA, AllersonCRet al. Short antisense oligonucleotides with novel 2’-4’ conformationaly restricted nucleoside analogues show improved potency without increased toxicity in animals. J. Med. Chem.52 (1), 10–13 (2009).
  • Yu RZ , KimTW, HongA, WatanabeTA, GausHJ, GearyRS. Cross-species pharmacokinetic comparison from mouse to man of a second-generation antisense oligonucleotide, isis 301012, targeting human apolipoprotein b-100. Drug Metab. Dispos.35 (3), 460–468 (2007).
  • Yu RZ , LemonidisKM, GrahamMJet al. Cross-species comparison of in vivo pk/pd relationships for second-generation antisense oligonucleotides targeting apolipoprotein b-100. Biochem. Pharmacol.77 (5), 910–919 (2009).
  • Bochot A , CouvreurP, FattalE. Intravitreal administration of antisense oligonucleotides: potential of liposomal delivery. Prog. Retin. Eye Res.19 (2), 131–147 (2000).
  • Lysik MA , Wu-PongS. Innovations in oligonucleotide drug delivery. J. Pharm. Sci.92 (8), 1559–1573 (2003).
  • Waterhouse DN , DragowskaWH, GelmonKA, MayerLD, BallyMB. Pharmacodynamic behavior of liposomal antisense oligonucleotides targeting Her-2/neu and vascular endothelial growth factor in an ascitic MDA435/LCC6 human breast cancer model. Cancer Biol. Ther.3 (2), 197–204 (2004).
  • Pakunlu RI , WangY, SaadM, KhandareJJ, StarovoytovV, MinkoT. In vitro and in vivo intracellular liposomal delivery of antisense oligonucleotides and anticancer drug. J. Control. Release114 (2), 153–162 (2006).
  • Garbuzenko OB , SaadM, BetigeriSet al. Intratracheal versus intravenous liposomal delivery of siRNA, antisense oligonucleotides and anticancer drug. Pharm. Res.26 (2), 382–394 (2009).
  • Lo YL , LiuY, TsaiJC. Overcoming multidrug resistance using liposomal epirubicin and antisense oligonucleotides targeting pump and nonpump resistances in vitro and in vivo. Biomed. Pharmacother.67 (4), 261–267 (2013).
  • Andreakos E , RauchhausU, StavropoulosAet al. Amphoteric liposomes enable systemic antigen-presenting cell-directed delivery of cd40 antisense and are therapeutically effective in experimental arthritis. Arthritis Rheum.60 (4), 994–1005 (2009).
  • Arranz A , ReinschC, PapadakisKAet al. Treatment of experimental murine colitis with cd40 antisense oligonucleotides delivered in amphoteric liposomes. J. Control. Release165 (3), 163–172 (2013).
  • Negishi Y , IshiiY, ShionoHet al. Bubble liposomes and ultrasound exposure improve localized morpholino oligomer delivery into the skeletal muscles of dystrophic mdx mice. Mol. Pharm.11 (3), 1053–1061 (2014).
  • Desjardins JP , SproatBS, BeijerBet al. Pharmacokinetics of a synthetic, chemically modified hammerhead ribozyme against the rat cytochrome P-450 3A2 mRNA after single intravenous injections. J. Pharmacol. Exp. Ther.278 (3), 1419–1427 (1996).
  • Lee PA , BlattLM, BlanchardKSet al. Pharmacokinetics and tissue distribution of a ribozyme directed against hepatitis C virus RNA following subcutaneous or intravenous administration in mice. Hepatology32 (3), 640–646 (2000).
  • Weng DE , MasciPA, RadkaSFet al. A Phase I clinical trial of a ribozyme-based angiogenesis inhibitor targeting vascular endothelial growth factor receptor-1 for patients with refractory solid tumors. Mol. Cancer Ther.4 (6), 948–955 (2005).
  • Morrow PK , MurthyRK, EnsorJDet al. An open-label, Phase 2 trial of RPI.4610 (Angiozyme) in the treatment of metastatic breast cancer. Cancer118 (17), 4098–4104 (2012).
  • Pavco PA , BouhanaKS, GallegosAMet al. Antitumor and antimetastatic activity of ribozymes targeting the messenger RNA of vascular endothelial growth factor receptors. Clin. Cancer Res.6 (5), 2094–2103 (2000).
  • Hallett MA , TengB, HasegawaH, SchwabLP, SeagrovesTN, PourmotabbedT. Anti-matrix metalloproteinase-9 dnazyme decreases tumor growth in the mmtv-pymt mouse model of breast cancer. Breast Cancer Res.15 (1), R12 (2013).
  • Zhou J , YangXQ, XieYYet al. Inhibition of respiratory syncytial virus of subgroups A and B using deoxyribozyme dz1133 in mice. Virus Res.130 (1–2), 241–248 (2007).
  • Balow JE Jr , SheltonDA, OrsbornAet al. A high-resolution genetic map of the familial mediterranean fever candidate region allows identification of haplotype-sharing among ethnic groups. Genomics44 (3), 280–291 (1997).
  • Appaiahgari MB , VratiS. Dnazyme-mediated inhibition of japanese encephalitis virus replication in mouse brain. Mol. Ther.15 (9), 1593–1599 (2007).
  • Turowska A , LibrizziD, BaumgartlNet al. Biodistribution of the GATA-3-specific DNAzyme hgd40 after inhalative exposure in mice, rats and dogs. Toxicol. Appl. Pharmacol.272 (2), 365–372 (2013).
  • Konopka K , RossiJJ, SwiderskiP, SlepushkinVA, DuzgunesN. Delivery of an anti-HIV-1 ribozyme into HIV-infected cells via cationic liposomes. Biochim. Biophys. Acta1372 (1), 55–68 (1998).
  • Mackay SL , TannahillCL, AuffenbergT, KsontiniR, CopelandEM3rd, MoldawerLL. Characterization in vitro and in vivo of hammerhead ribozymes directed against murine tumor necrosis factoralpha. Biochem. Biophys. Res. Commun.260 (2), 390–397 (1999).
  • Abounader R , LalB, LuddyCet al. In vivo targeting of SF/HGF and c-met expression via U1snRNA/ribozymes inhibits glioma growth and angiogenesis and promotes apoptosis. FASEB J.16 (1), 108–110 (2002).
  • Nosrati M , LiS, BagheriSet al. Antitumor activity of systemically delivered ribozymes targeting murine telomerase RNA. Clin. Cancer Res.10 (15), 4983–4990 (2004).
  • Duzgunes N , SimoesS, SlepushkinVet al. Enhanced inhibition of hiv-1 replication in macrophages by antisense oligonucleotides, ribozymes and acyclic nucleoside phosphonate analogs delivered in ph-sensitive liposomes. Nucleosides Nucleotides Nucl. Acids20 (4–7), 515–523 (2001).
  • Kitajima I , HanyuN, SoejimaYet al. Efficient transfer of synthetic ribozymes into cells using hemagglutinating virus of japan (HVJ)-cationic liposomes. Application for ribozymes that target human t-cell leukemia virus type i tax/rex mRNA. J. Biol. Chem.272 (43), 27099–27106 (1997).
  • Li Y , BhindiR, DengZJ, MortonSW, HammondPT, KhachigianLM. Inhibition of vein graft stenosis with a c-jun targeting dnazyme in a cationic liposomal formulation containing 1,2-dioleoyl-3-trimethylammonium propane (dotap)/1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (dope). Int. J. Cardiol.168 (4), 3659–3664 (2013).
  • Chan CW , KaplanW, ParishCR, KhachigianLM. Reduced retinal microvascular density, improved forepaw reach, comparative microarray and gene set enrichment analysis with c-jun targeting DNA enzyme. PLoS ONE7 (7), e39160 (2012).
  • Cho EA , MoloneyFJ, CaiHet al. Safety and tolerability of an intratumorally injected DNAzyme, DZ13, in patients with nodular basal-cell carcinoma: a Phase 1 first-in-human trial (discover). Lancet381 (9880), 1835–1843 (2013).
  • Barchet W , WimmenauerV, SchleeM, HartmannG. Accessing the therapeutic potential of immunostimulatory nucleic acids. Curr. Opin. Immunol.20 (4), 389–395 (2008).
  • Weiner GJ . The immunobiology and clinical potential of immunostimulatory cpg oligodeoxynucleotides. J. Leukoc. Biol.68 (4), 455–463 (2000).
  • Wilson KD , De JongSD, TamYK. Lipid-based delivery of CPG oligonucleotides enhances immunotherapeutic efficacy. Adv. Drug Deliv. Rev.61 (3), 233–242 (2009).
  • Mui B , RaneySG, SempleSC, HopeMJ. Immune stimulation by a CPG-containing oligodeoxynucleotide is enhanced when encapsulated and delivered in lipid particles. J. Pharmacol. Exp. Ther.298 (3), 1185–1192 (2001).
  • Gursel I , GurselM, IshiiKJ, KlinmanDM. Sterically stabilized cationic liposomes improve the uptake and immunostimulatory activity of CpG oligonucleotides. J. Immunol.167 (6), 3324–3328 (2001).
  • Li WM , DragowskaWH, BallyMB, Schutze-RedelmeierMP. Effective induction of CD8+ T-cell response using CpG oligodeoxynucleotides and HER-2/neu-derived peptide co-encapsulated in liposomes. Vaccine21 (23), 3319–3329 (2003).
  • Li WM , BallyMB, Schutze-RedelmeierMP. Enhanced immune response to T-independent antigen by using CpG oligodeoxynucleotides encapsulated in liposomes. Vaccine20 (1–2), 148–157 (2001).
  • De Jong S , ChikhG, SekirovLet al. Encapsulation in liposomal nanoparticles enhances the immunostimulatory, adjuvant and anti-tumor activity of subcutaneously administered CpG ODN. Cancer Immunol. Immunother.56 (8), 1251–1264 (2007).
  • Wilson KD , RaneySG, SekirovLet al. Effects of intravenous and subcutaneous administration on the pharmacokinetics, biodistribution, cellular uptake and immunostimulatory activity of CpG ODN encapsulated in liposomal nanoparticles. Int. Immunopharmacol.7 (8), 1064–1075 (2007).
  • Lin PJ , TamYK, CullisPR. Development and clinical applications of siRNA-encapsulated lipid nanoparticles in cancer. Clin. Lipidol.9, 317–331 (2014).
  • Anderson BR , MuramatsuH, NallagatlaSRet al. Incorporation of pseudouridine into mRNA enhances translation by diminishing PKR activation. Nucleic Acids Res.38 (17), 5884–5892 (2010).
  • Kariko K , MuramatsuH, LudwigJ, WeissmanD. Generating the optimal mRNA for therapy: HPLC purification eliminates immune activation and improves translation of nucleoside-modified, protein-encoding mRNA. Nucleic Acids Res.39 (21), e142 (2011).
  • Anderson BR , MuramatsuH, JhaBK, SilvermanRH, WeissmanD, KarikoK. Nucleoside modifications in RNA limit activation of 2’-5’-oligoadenylate synthetase and increase resistance to cleavage by RNAse l. Nucleic Acids Res.39 (21), 9329–9338 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.