525
Views
0
CrossRef citations to date
0
Altmetric
Review

Small-Molecule MDM2-p53 Inhibitors: Recent Advances

, &
Pages 631-645 | Published online: 29 Apr 2015

References

  • Lane DP . Cancer. p53, guardian of the genome. Nature358, 15–16 (1992).
  • Bode AM , DongZ. Post-translational modification of p53 in tumorigenesis. Nat. Rev. Cancer4 (10), 793–805 (2004).
  • Vousden KH , LuX. Live or let die: the cell's response to p53. Nat. Rev. Cancer2, 594–604 (2002).
  • Oliner JD , KinzlerKW, MeltzerPS, GeorgeDL, VogelsteinB. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature358 (6381), 80–83 (1992).
  • Oliner JD , PietenpolJA, ThiagalingamS, GvurisJ, KinzlerKW, VogelsteinB. Oncoprotein mdm2 conceals the activation domain of tumor suppressor-p53. Nature362 (6423), 857–860 (1993).
  • Momand J , ZambettiGP, OlsonDC, GeorgeD, LevineA. The mdm-2 oncogene product forms a complex with p53 protein and inhibits p53-mediated transactivation. Cell69, 1237–1245 (1992).
  • Momand J , WuH-H, DasguptaG. MDM2 — master regulator of the p53 tumor suppressor protein. Gene242 (1–2), 15–29 (2000).
  • Toledo F , WahlGM. Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat. Rev. Cancer6 (12), 909–923 (2006).
  • Picksley SM , VojtesekB, SparksA, LaneDP. Immunochemical analysis of the interaction of p53 with MDM2; - fine mapping of the MDM2 binding site on p53 using synthetic peptides. Oncogene9, 2523–2529 (1994).
  • Böttger V , BöttgerA, HowardSFet al. Identification of novel mdm2 binding peptides by phage display. Oncogene13 (10), 2141–2147 (1996).
  • Garcia-Echeverria C , CheneP, BlommersMJJ, FuretP. Discovery of potent antagonists of the interaction between human double minute 2 and tumor suppressor p53. J. Med. Chem.43 (17), 3205–3208 (2000).
  • Kussie PH , GorinaS, MarechalVet al. Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science274, 948–953 (1996).
  • Weber L . Patented inhibitors of p53–Mdm2 interaction (2006 –2008). Exp. Opin. Ther. Patents20 (2), 179–191 (2010).
  • Khoury K , PopowiczGM, HolakTA, DomlingA. The p53-MDM2/MDMX axis - A chemotype perspective. Med Chem Comm2 (4), 246–260 (2011).
  • Zak K , PecakA, RysBet al. Mdm2 and MdmX inhibitors for the treatment of cancer: a patent review (2011 – present). Expert Opin. Ther. Patents23 (4), 425–448 (2013).
  • Watson AF , LiuJ, BennaceurKet al. MDM2-p53 protein-protein interaction inhibitors: A-ring substituted isoindolinones. Bioorg. Med. Chem. Lett.21 (19), 5916–5919 (2011).
  • Ray-Coquard I , BlayJ-Y, ItalianoAet al. Effect of the MDM2 antagonist RG7112 on the P53 pathway in patients with MDM2-amplified, well-differentiated or dedifferentiated liposarcoma: an exploratory proof-of-mechanism study. Lancet Oncol.13 (11), 1133–1140 (2012).
  • Vassilev LT , VuBT, GravesBet al. In vivo Activation of the p53 pathway by small-molecule antagonists of MDM2. Science303, 844–848 (2004).
  • Vu B , WovkulichP, PizzolatoGet al. Discovery of RG7112: a small-molecule MDM2 inhibitor in clinical development. ACS Med. Chem. Lett.4 (5), 466–469 (2013).
  • Zaytsev A , DoddB, MagnaniMet al. Searching for dual inhibitors of the MDM2-p53 and MDMX-p53 protein–protein interaction by a scaffold-hopping approach. Chem. Biol. Drug Des. doi:10.1111/cbdd.12474 (2014) (Epub ahead of print).
  • Miyazaki M , KawatoH, NaitoHet al. Discovery of novel dihydroimidazothiazole derivatives as p53–MDM2 protein–protein interaction inhibitors: synthesis, biological evaluation and structure–activity relationships. Bioorg. Med. Chem. Lett.22 (20), 6338–6342 (2012).
  • Miyazaki M , NaitoH, SugimotoYet al. Lead optimization of novel p53-MDM2 interaction inhibitors possessing dihydroimidazothiazole scaffold. Bioorg. Med. Chem. Lett.23 (3), 728–732 (2013).
  • Yu S , QinD, ShangarySet al. Potent and orally active small-molecule inhibitors of the MDM2-p53 Interaction. J. Med. Chem.52 (24), 7970–7973 (2009).
  • Shangary S , QinD, McEachernDet al. A novel orally active MDM2 inhibitor (MI-219) activates the p53 pathway and is selectively toxic to tumor cells. Mol. Cancer Ther.6 (12), S3518–S3518 (2007).
  • Zhao Y , LiuL, SunWet al. Diastereomeric spirooxindoles as highly potent and efficacious MDM2 inhibitors. J. Am. Chem. Soc.135 (19), 7223–7234 (2013).
  • Zhao Y , YuS, SunWet al. A potent small-molecule inhibitor of the MDM2–p53 interaction (MI-888) achieved complete and durable tumor regression in mice. J. Med. Chem.56 (13), 5553–5561 (2013).
  • Ding Q , ZhangZ, LiuJ-Jet al. Discovery of RG7388, a potent and selective p53–mdm2 inhibitor in clinical development. J. Med. Chem.56 (14), 5979–5983 (2013).
  • Zhang Z , DingQ, LiuJ-Jet al. Discovery of potent and selective spiroindolinone MDM2 inhibitor, RO8994, for cancer therapy. Bioorg. Med. Chem.22 (15), 4001–4009 (2014).
  • Zhang Z , ChuX-J, LiuJ-Jet al. Discovery of potent and orally active p53-MDM2 inhibitors RO5353 and RO2468 for potential clinical development. ACS Med. Chem. Lett.5 (2), 124–127 (2013).
  • Furet P , ChèneP, De PoverAet al. The central valine concept provides an entry in a new class of non peptide inhibitors of the p53–MDM2 interaction. Bioorg. Med. Chem. Lett.22 (10), 3498–3502 (2012).
  • Vaupel A , BoldG, De PoverAet al. Tetra-substituted imidazoles as a new class of inhibitors of the p53–MDM2 interaction. Bioorg. Med. Chem. Lett.24 (9), 2110–2114 (2014).
  • Ma Y , LahueBR, ShippsJrGW, BrookesJ, WangY. Substituted piperidines as HDM2 inhibitors. Bioorg. Med. Chem. Lett.24 (4), 1026–1030 (2014).
  • Ma Y , LahueBR, GibeauCRet al. Pivotal role of an aliphatic side chain in the development of an HDM2 inhibitor. ACS Med. Chem. Lett.5 (5), 572–575 (2014).
  • Michelsen K , JordanJB, LewisJet al. Ordering of the N-terminus of human MDM2 by small molecule inhibitors. J. Am. Chem. Soc.134 (41), 17059–17067 (2012).
  • Rew Y , SunD, Gonzalez-Lopez De TurisoFet al. Structure-based design of novel inhibitors of the MDM2–p53 interaction. J. Med. Chem.55 (11), 4936–4954 (2012).
  • Sun D , LiZ, RewYet al. Discovery of AMG 232, a potent, selective, and orally bioavailable MDM2–p53 inhibitor in clinical development. J. Med. Chem.57 (4), 1454–1472 (2014).
  • Gonzalez AZ , LiZ, BeckHPet al. Novel inhibitors of the MDM2-p53 interaction featuring hydrogen bond acceptors as carboxylic acid isosteres. J. Med. Chem.57 (7), 2963–2988 (2014).
  • Gonzalez-Lopez de Turiso F , SunD, RewYet al. Rational design and binding mode duality of MDM2–p53 inhibitors. J. Med. Chem.56 (10), 4053–4070 (2013).
  • Gonzalez AZ , EksterowiczJ, BartbergerMDet al. Selective and potent morpholinone inhibitors of the MDM2–p53 protein–protein interaction. J. Med. Chem.57 (6), 2472–2488 (2014).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.