344
Views
0
CrossRef citations to date
0
Altmetric
Review

An Overview of Bacterial Efflux Pumps and Computational Approaches to Study Efflux Pump Inhibitors

, &
Pages 195-210 | Received 23 Jul 2015, Accepted 09 Nov 2015, Published online: 29 Jan 2016

References

  • Wong K , MaJ, RothnieA, BigginPC, KerrID. Towards understanding promiscuity in multidrug efflux pumps. Trends Biochem. Sci.39 (1), 8–16 (2014).
  • Du D , van VeenHW, LuisiBF. Assembly and operation of bacterial tripartite multidrug efflux pumps. Trends Microbiol.23 (5), 311–319 (2015).
  • Wilson DN . Ribosome-targeting antibiotics and mechanisms of bacterial resistance. Nat. Rev. Microbiol.12 (1), 35–48 (2014).
  • Piddock LJ . Multidrug-resistance efflux pumps – not just for resistance. Nat. Rev. Microbiol.4 (8), 629–636 (2006).
  • Putman M , van VeenHW, KoningsWN. Molecular properties of bacterial multidrug transporters. Microbiol. Mol. Biol. Rev.64 (4), 672–693 (2000).
  • Saier MH Jr , TranCV, BaraboteRD. TCDB: the Transporter Classification Database for membrane transport protein analyses and information. Nucleic Acids Res.34, D181–D186 (2006).
  • Dawson RJ , LocherKP. Structure of a bacterial multidrug ABC transporter. Nature443 (7108), 180–185 (2006).
  • He X , SzewczykP, KaryakinAet al. Structure of a cation-bound multidrug and toxic compound extrusion transporter. Nature467 (7318), 991–994 (2010).
  • Yin Y , HeX, SzewczykP, NguyenT, ChangG. Structure of the multidrug transporter EmrD from Escherichia coli. Science312 (5774), 741–744 (2006).
  • Murakami S , NakashimaR, YamashitaE, MatsumotoT, YamaguchiA. Crystal structures of a multidrug transporter reveal a functionally rotating mechanism. Nature443 (7108), 173–179 (2006).
  • Drew D , KlepschMM, NewsteadSet al. The structure of the efflux pump AcrB in complex with bile acid. Mol. Membr. Biol.25 (8), 677–682 (2008).
  • Sun J , DengZ, YanA. Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations. Biochem. Biophys. Res. Commun.453 (2), 254–267 (2014).
  • Roberts MC . Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS Microbiol. Rev.19 (1), 1–24 (1996).
  • Speer BS , ShoemakerNB, SalyersAA. Bacterial resistance to tetracycline: mechanisms, transfer, and clinical significance. Clin. Microbiol. Rev.5 (4), 387–399 (1992).
  • Davidson AL , ChenJ. ATP-binding cassette transporters in bacteria. Annu. Rev. Biochem.73, 241–268 (2004).
  • Rees DC , JohnsonE, LewinsonO. ABC transporters: the power to change. Nat. Rev. Mol. Cell Biol.10 (3), 218–227 (2009).
  • Borges-Walmsley MI , McKeeganKS, WalmsleyAR. Structure and function of efflux pumps that confer resistance to drugs. Biochem. J.376 (Pt 2), 313–338 (2003).
  • Omote H , HiasaM, MatsumotoT, OtsukaM, MoriyamaY. The MATE proteins as fundamental transporters of metabolic and xenobiotic organic cations. Trends Pharm. Sci.27 (11), 587–593 (2006).
  • Pao SS , PaulsenIT, SaierMH. Major facilitator superfamily. Microbiol. Mol. Biol. Rev.62 (1), 1–34 (1998).
  • Paulsen IT , SkurrayRA, TamRet al. The SMR family: a novel family of multidrug efflux proteins involved with the efflux of lipophilic drugs. Mol. Microbiol.19 (6), 1167–1175 (1996).
  • Magnet S , CourvalinP, LambertT. Resistance-nodulation-cell division-type efflux pump involved in aminoglycoside resistance in Acinetobacter baumannii strain BM4454. Antimicrob. Agents Chemother.45 (12), 3375–3380 (2001).
  • Du D , WangZ, JamesNRet al. Structure of the AcrAB-TolC multidrug efflux pump. Nature509 (7501), 512–515 (2014).
  • Ruiz N , KahneD, SilhavyTJ. Transport of lipopolysaccharide across the cell envelope: the long road of discovery. Nat. Rev. Microbiol.7 (9), 677–683 (2009).
  • Silhavy TJ , KahneD, WalkerS. The bacterial cell envelope. Cold Spring Harb. Perspect. Biol.2 (5), a000414 (2010).
  • Koronakis V , SharffA, KoronakisE, LuisiB, HughesC. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature405 (6789), 914–919 (2000).
  • Andersen C , KoronakisE, HughesC, KoronakisV. An aspartate ring at the TolC tunnel entrance determines ion selectivity and presents a target for blocking by large cations. Mol. Microbiol.44 (5), 1131–1139 (2002).
  • Su CC , RadhakrishnanA, KumarNet al. Crystal structure of the Campylobacter jejuni CmeC outer membrane channel. Protein Sci.23 (7), 954–961 (2014).
  • Nikaido H , TakatsukaY. Mechanisms of RND multidrug efflux pumps. Biochim. Biophys. Acta1794 (5), 769–781 (2009).
  • Mikolosko J , BobykK, ZgurskayaHI, GhoshP. Conformational flexibility in the multidrug efflux system protein AcrA. Structure14 (3), 577–587 (2006).
  • Akama H , MatsuuraT, KashiwagiSet al. Crystal structure of the membrane fusion protein, MexA, of the multidrug transporter in Pseudomonas aeruginosa. J. Biol. Chem.279 (25), 25939–25942 (2004).
  • Higgins MK , BokmaE, KoronakisE, HughesC, KoronakisV. Structure of the periplasmic component of a bacterial drug efflux pump. Proc. Natl Acad. Sci. USA101 (27), 9994–9999 (2004).
  • Hinchliffe P , GreeneNP, PatersonNG, CrowA, HughesC, KoronakisV. Structure of the periplasmic adaptor protein from a major facilitator superfamily (MFS) multidrug efflux pump. FEBS Lett.588 (17), 3147–3153 (2014).
  • Greene NP , HinchliffeP, CrowA, AbabouA, HughesC, KoronakisV. Structure of an atypical periplasmic adaptor from a multidrug efflux pump of the spirochete Borrelia burgdorferi. FEBS Lett.587 (18), 2984–2988 (2013).
  • Nikaido H , PagesJM. Broad-specificity efflux pumps and their role in multidrug resistance of Gram-negative bacteria. FEMS Microbiol. Rev.36 (2), 340–363 (2012).
  • Bokma E , KoronakisE, LobedanzS, HughesC, KoronakisV. Directed evolution of a bacterial efflux pump: adaptation of the E. coli TolC exit duct to the Pseudomonas MexAB translocase. FEBS Lett.580 (22), 5339–5343 (2006).
  • Vediyappan G , BorisovaT, FralickJA. Isolation and characterization of VceC gain-of-function mutants that can function with the AcrAB multiple-drug-resistant efflux pump of Escherichia coli. J. Bacteriol.188 (11), 3757–3762 (2006).
  • Tsukagoshi N , AonoR. Entry into and release of solvents by Escherichia coli in an organic-aqueous two-liquid-phase system and substrate specificity of the AcrAB-TolC solvent-extruding pump. J. Bacteriol.182 (17), 4803–4810 (2000).
  • Weeks JW , BavroVN, MisraR. Genetic assessment of the role of AcrB beta-hairpins in the assembly of the TolC-AcrAB multidrug efflux pump of Escherichia coli. Mol. Microbiol.91 (5), 965–975 (2014).
  • Murakami S , NakashimaR, YamashitaE, YamaguchiA. Crystal structure of bacterial multidrug efflux transporter AcrB. Nature419 (6907), 587–593 (2002).
  • Symmons MF , BokmaE, KoronakisE, HughesC, KoronakisV. The assembled structure of a complete tripartite bacterial multidrug efflux pump. Proc. Natl Acad. Sci. USA106 (17), 7173–7178 (2009).
  • Tamura N , MurakamiS, OyamaY, IshiguroM, YamaguchiA. Direct interaction of multidrug efflux transporter AcrB and outer membrane channel TolC detected via site-directed disulfide cross-linking. Biochemistry44 (33), 11115–11121 (2005).
  • Lobedanz S , BokmaE, SymmonsMF, KoronakisE, HughesC, KoronakisV. A periplasmic coiled-coil interface underlying TolC recruitment and the assembly of bacterial drug efflux pumps. Proc. Natl Acad. Sci. USA104 (11), 4612–4617 (2007).
  • Fernandez-Recio J , WalasF, FedericiLet al. A model of a transmembrane drug-efflux pump from Gram-negative bacteria. FEBS Lett.578 (1–2), 5–9 (2004).
  • Trepout S , TaveauJC, BenabdelhakHet al. Structure of reconstituted bacterial membrane efflux pump by cryo-electron tomography. Biochim. Biophys. Acta1798 (10), 1953–1960 (2010).
  • Zgurskaya HI , NikaidoH. Cross-linked complex between oligomeric periplasmic lipoprotein AcrA and the inner-membrane-associated multidrug efflux pump AcrB from Escherichia coli. J. Bacteriol.182 (15), 4264–4267 (2000).
  • Thanabalu T , KoronakisE, HughesC, KoronakisV. Substrate-induced assembly of a contiguous channel for protein export from E. coli: reversible bridging of an inner-membrane translocase to an outer membrane exit pore. EMBO J.17 (22), 6487–6496 (1998).
  • Misra R , BavroVN. Assembly and transport mechanism of tripartite drug efflux systems. Biochim. Biophys. Acta1794 (5), 817–825 (2009).
  • Mima T , JoshiS, Gomez-EscaladaM, SchweizerHP. Identification and characterization of TriABC-OpmH, a triclosan efflux pump of Pseudomonas aeruginosa requiring two membrane fusion proteins. J. Bacteriol.189 (21), 7600–7609 (2007).
  • Janganan TK , BavroVN, ZhangL, Matak-VinkovicD, BarreraNP, Venien-BryanCet al. Evidence for the assembly of a bacterial tripartite multidrug pump with a stoichiometry of 3:6:3. J. Biol. Chem.286 (30), 26900–26912 (2011).
  • Kim JS , JeongH, SongSet al. Structure of the tripartite multidrug efflux pump AcrAB-TolC suggests an alternative assembly mode. Mol. Cells38 (2), 180–186 (2015).
  • Huang YW , HuRM, ChuFY, LinHR, YangTC. Characterization of a major facilitator superfamily (MFS) tripartite efflux pump EmrCABsm from Stenotrophomonas maltophilia. J. Antimicrob. Chemother.68 (11), 2498–2505 (2013).
  • Tal N , SchuldinerS. A coordinated network of transporters with overlapping specificities provides a robust survival strategy. Proc. Natl Acad. Sci. USA106 (22), 9051–9056 (2009).
  • Eswaran J , KoronakisE, HigginsMK, HughesC, KoronakisV. Three's company: component structures bring a closer view of tripartite drug efflux pumps. Curr. Opin. Struct. Biol.14 (6), 741–747 (2004).
  • Janganan TK , ZhangL, BavroVNet al. Opening of the outer membrane protein channel in tripartite efflux pumps is induced by interaction with the membrane fusion partner. J. Biol. Chem.286 (7), 5484–5493 (2011).
  • Janganan TK , BavroVN, ZhangL, Borges-WalmsleyMI, WalmsleyAR. Tripartite efflux pumps: energy is required for dissociation, but not assembly or opening of the outer membrane channel of the pump. Mol. Microbiol.88 (3), 590–602 (2013).
  • Costa TR , Felisberto-RodriguesC, MeirAet al. Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat. Rev. Microbiol.13 (6), 343–359 (2015).
  • Nakashima R , SakuraiK, YamasakiS, NishinoK, YamaguchiA. Structures of the multidrug exporter AcrB reveal a proximal multisite drug-binding pocket. Nature480 (7378), 565–569 (2011).
  • Sennhauser G , BukowskaMA, BriandC, GrutterMG. Crystal structure of the multidrug exporter MexB from Pseudomonas aeruginosa. J. Mol. Biol.389 (1), 134–145 (2009).
  • Seeger MA , SchiefnerA, EicherT, VerreyF, DiederichsK, PosKM. Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism. Science313 (5791), 1295–1298 (2006).
  • Eicher T , ChaHJ, SeegerMAet al. Transport of drugs by the multidrug transporter AcrB involves an access and a deep binding pocket that are separated by a switch-loop. Proc. Natl Acad. Sci. USA109 (15), 5687–5692 (2012).
  • Vazquez-Laslop N , ZheleznovaEE, MarkhamPN, BrennanRG, NeyfakhAA. Recognition of multiple drugs by a single protein: a trivial solution of an old paradox. Biochem. Soc. Trans.28 (4), 517–520 (2000).
  • Martin C , BerridgeG, HigginsCF, MistryP, CharltonP, CallaghanR. Communication between multiple drug binding sites on P-glycoprotein. Mol. Pharmacol.58 (3), 624–632 (2000).
  • Kobayashi N , TamuraN, van VeenHW, YamaguchiA, MurakamiS. β-Lactam selectivity of multidrug transporters AcrB and AcrD resides in the proximal binding pocket. J. Biol. Chem.289 (15), 10680–10690 (2014).
  • Nakashima R , SakuraiK, YamasakiSet al. Structural basis for the inhibition of bacterial multidrug exporters. Nature500 (7460), 102–106 (2013).
  • Vargiu AV , NikaidoH. Multidrug binding properties of the AcrB efflux pump characterized by molecular dynamics simulations. Proc. Natl Acad. Sci. USA109 (50), 20637–20642 (2012).
  • Seeger MA , von BallmoosC, VerreyF, PosKM. Crucial role of Asp408 in the proton translocation pathway of multidrug transporter AcrB: evidence from site-directed mutagenesis and carbodiimide labeling. Biochemistry48 (25), 5801–5812 (2009).
  • Yao XQ , KenzakiH, MurakamiS, TakadaS. Drug export and allosteric coupling in a multidrug transporter revealed by molecular simulations. Nat. Commun.1, 117 (2010).
  • Yao XQ , KimuraN, MurakamiS, TakadaS. Drug uptake pathways of multidrug transporter AcrB studied by molecular simulations and site-directed mutagenesis experiments. J. Am. Chem. Soc.135 (20), 7474–7485 (2013).
  • Ferreira RJ , FerreiraM-JU, dos SantosDJVA. Insights on P-glycoprotein's efflux mechanism obtained by molecular dynamics simulations. J. Chem. Theory Comput.8 (6), 1853–1864 (2012).
  • Song J , JiC, ZhangJZ. Insights on Na(+) binding and conformational dynamics in multidrug and toxic compound extrusion transporter NorM. Proteins82 (2), 240–249 (2014).
  • Vanni S , CampomanesP, MarciaM, RothlisbergerU. Ion binding and internal hydration in the multidrug resistance secondary active transporter NorM investigated by molecular dynamics simulations. Biochemistry51 (6), 1281–1287 (2012).
  • Vaccaro L , KoronakisV, SansomMS. Flexibility in a drug transport accessory protein: molecular dynamics simulations of MexA. Biophys. J.91 (2), 558–564 (2006).
  • Vaccaro L , ScottKA, SansomMS. Gating at both ends and breathing in the middle: conformational dynamics of TolC. Biophys. J.95 (12), 5681–5691 (2008).
  • Yamane T , MurakamiS, IkeguchiM. Functional rotation induced by alternating protonation states in the multidrug transporter AcrB: all-atom molecular dynamics simulations. Biochemistry52 (43), 7648–7658 (2013).
  • Schulz R , VargiuAV, ColluF, KleinekathoferU, RuggeroneP. Functional rotation of the transporter AcrB: insights into drug extrusion from simulations. PLoS Comput. Biol.6 (6), e1000806 (2010).
  • Vargiu AV , ColluF, SchulzRet al. Effect of the F610A mutation on substrate extrusion in the AcrB transporter: explanation and rationale by molecular dynamics simulations. J. Am. Chem. Soc.133 (28), 10704–10707 (2011).
  • Pages JM , AmaralL, FanningS. An original deal for new molecule: reversal of efflux pump activity, a rational strategy to combat Gram-negative resistant bacteria. Curr. Med. Chem.18 (19), 2969–2980 (2011).
  • Tanaka Y , HipolitoCJ, MaturanaADet al. Structural basis for the drug extrusion mechanism by a MATE multidrug transporter. Nature496 (7444), 247–251 (2013).
  • Lindahl E , SansomMS. Membrane proteins: molecular dynamics simulations. Curr. Opin. Struct. Biol.18 (4), 425–431 (2008).
  • White DG , GoldmanJD, DempleB, LevySB. Role of the acrAB locus in organic solvent tolerance mediated by expression of marA, soxS, or robA in Escherichia coli. J. Bacteriol.179 (19), 6122–6126 (1997).
  • Yu EW , AiresJR, McDermottG, NikaidoH. A periplasmic drug-binding site of the AcrB multidrug efflux pump: a crystallographic and site-directed mutagenesis study. J. Bacteriol.187 (19), 6804–6815 (2005).
  • Husain F , NikaidoH. Substrate path in the AcrB multidrug efflux pump of Escherichia coli. Mol. Microbiol.78 (2), 320–330 (2010).
  • Van Bambeke F , PagesJM, LeeVJ. Inhibitors of bacterial efflux pumps as adjuvants in antibiotic treatments and diagnostic tools for detection of resistance by efflux. Recent Pat. Antiinfect. Drug Discov.1 (2), 157–175 (2006).
  • Zechini B , VersaceI. Inhibitors of multidrug resistant efflux systems in bacteria. Recent. Pat. Antiinfect. Drug. Discov.4 (1), 37–50 (2009).
  • Vargiu AV , RuggeroneP, OppermanTJ, NguyenST, NikaidoH. Molecular mechanism of MBX2319 inhibition of Escherichia coli AcrB multidrug efflux pump and comparison with other inhibitors. Antimicrob. Agents. Chemother.58 (10), 6224–6234 (2014).
  • Kourtesi C , BallAR, HuangYYet al. Microbial efflux systems and inhibitors: approaches to drug discovery and the challenge of clinical implementation. Open. Microbiol. J.7, 34–52 (2013).
  • Tegos GP , HaynesM, StrouseJJet al. Microbial efflux pump inhibition: tactics and strategies. Curr. Pharm. Des.17 (13), 1291–1302 (2011).
  • Mahamoud A , ChevalierJ, Alibert-FrancoS, KernWV, PagesJM. Antibiotic efflux pumps in Gram-negative bacteria: the inhibitor response strategy. J. Antimicrob. Chemother.59 (6), 1223–1229 (2007).
  • Bush K , CourvalinP, DantasGet al. Tackling antibiotic resistance. Nat. Rev. Microbiol.9 (12), 894–896 (2011).
  • Lomovskaya O , BostianKA. Practical applications and feasibility of efflux pump inhibitors in the clinic – a vision for applied use. Biochem. Pharmacol.71 (7), 910–918 (2006).
  • Piddock LJ , GarveyMI, RahmanMM, GibbonsS. Natural and synthetic compounds such as trimethoprim behave as inhibitors of efflux in Gram-negative bacteria. J. Antimicrob. Chemother.65 (6), 1215–1223 (2010).
  • Stavri M , PiddockLJ, GibbonsS. Bacterial efflux pump inhibitors from natural sources. J. Antimicrob. Chemother.59 (6), 1247–1260 (2007).
  • Lu W , ZhongM, WeiY. Folding of AcrB subunit precedes trimerization. J. Mol. Biol.411 (1), 264–274 (2011).
  • Takatsuka Y , ChenC, NikaidoH. Mechanism of recognition of compounds of diverse structures by the multidrug efflux pump AcrB of Escherichia coli. Proc. Natl Acad. Sci. USA107 (15), 6559–6565 (2010).
  • Collu F , VargiuAV, DreierJ, CascellaM, RuggeroneP. Recognition of imipenem and meropenem by the RND-transporter MexB studied by computer simulations. J. Am. Chem. Soc.134 (46), 19146–19158 (2012).
  • Lomovskaya O , WatkinsW. Inhibition of efflux pumps as a novel approach to combat drug resistance in bacteria. J. Mol. Microbiol. Biotechnol.3 (2), 225–236 (2001).
  • Askoura M , MottaweaW, AbujamelT, TaherI. Efflux pump inhibitors (EPIs) as new antimicrobial agents against Pseudomonas aeruginosa. Libyan J. Med.6 (2011).
  • Nakayama K , IshidaY, OhtsukaMet al. MexAB-OprM-specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 1: discovery and early strategies for lead optimization. Bioorg. Med. Chem. Lett.13 (23), 4201–4204 (2003).
  • Yoshida K , NakayamaK, OhtsukaMet al. MexAB-OprM specific efflux pump inhibitors in Pseudomonas aeruginosa. Part 7: highly soluble and in vivo active quaternary ammonium analogue D13–9001, a potential preclinical candidate. Bioorg. Med. Chem.15 (22), 7087–7097 (2007).
  • Matsumoto Y , HayamaK, SakakiharaSet al. Evaluation of multidrug efflux pump inhibitors by a new method using microfluidic channels. PLoS ONE6 (4), e18547 (2011).
  • Opperman TJ , NguyenST. Recent advances toward a molecular mechanism of efflux pump inhibition. Front. Microbiol.6, 421 (2015).
  • Feng Z , HouT, LiY. Unidirectional peristaltic movement in multisite drug binding pockets of AcrB from molecular dynamics simulations. Mol. Biosyst.8 (10), 2699–2709 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.