955
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Beyond Cyclosporine A: Conformation-Dependent Passive Membrane Permeabilities of Cyclic Peptide Natural Products

, , , , , & show all
Pages 2121-2130 | Published online: 12 Jun 2015

References

  • Overington JP , Al-LazikaniB, HopkinsAL. How many drug targets are there?Nat. Rev. Drug Discov.5 (12), 993–996 (2006).
  • Malovannaya A , LanzRB, JungSYet al. Analysis of the human endogenous coregulator complexome. Cell145 (5), 787–799 (2011).
  • Colby DW , ChuY, CassadyJPet al. Potent inhibition of Huntingtin aggregation and cytotoxicity by a disulfide bond-free single-domain intracellular antibody. Proc. Natl Acad. Sci. USA101 (51), 17616–17621 (2004).
  • Kenne E , RenneT. Factor XII: a drug target for safe interference with thrombosis and inflammation. Drug Discov. Today19 (9), 1459–1464 (2014).
  • Reichert JM , DhimoleaE. The future of antibodies as cancer drugs. Drug Discov. Today17 (17–18), 954–963 (2012).
  • Passioura T , KatohT, GotoY, SugaH. Selection-based discovery of druglike macrocyclic peptides. Annu. Rev. Biochem.83, 727–752 (2014).
  • Kawamoto SA , ColeskaA, RanX, YiH, YangCY, WangS. Design of triazole-stapled BCL9 alpha-helical peptides to target the beta-catenin/B-cell CLL/lymphoma 9 (BCL9) protein-protein interaction. J. Med. Chem.55 (3), 1137–1146 (2012).
  • Madden MM , MuppidiA, LiZ, LiX, ChenJ, LinQ. Synthesis of cell-permeable stapled peptide dual inhibitors of the p53-Mdm2/Mdmx interactions via photoinduced cycloaddition. Bioorg. Med. Chem. Lett.21 (5), 1472–1475 (2011).
  • Moellering RE , CornejoM, DavisTNet al. Direct inhibition of the NOTCH transcription factor complex. Nature462 (7270), 182–188 (2009).
  • Liu B , KodadekT. Investigation of the relative cellular permeability of DNA-binding pyrrole-imidazole polyamides. J. Med. Chem.52 (15), 4604–4612 (2009).
  • Gavenonis J , ShenemanBA, SiegertTR, EshelmanMR. Comprehensive analysis of loops at protein-protein interfaces for macrocycle design. Nat. Chem. Biol.10 (9), 716–722 (2014).
  • Passioura T , SugaH. Flexizyme-mediated genetic reprogramming as a tool for noncanonical peptide synthesis and drug discovery. Chem. Eur. J.19 (21), 6530–6536 (2013).
  • Quartararo JS , WuP, KritzerJA. Peptide bicycles that inhibit the Grb2 SH2 domain. Chembiochem13 (10), 1490–1496 (2012).
  • Wrighton NC , FarrellFX, ChangRet al. Small peptides as potent mimetics of the protein hormone erythropoietin. Science273 (5274), 458–464 (1996).
  • Lipinski CA . Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Toxicol. Methods44 (1), 235–249 (2000).
  • Driggers EM , HaleSP, LeeJ, TerrettNK. The exploration of macrocycles for drug discovery [mdash] an underexploited structural class. Nat. Rev. Drug Discov.7 (7), 608–624 (2008).
  • Mallinson J , CollinsI. Macrocycles in new drug discovery. Future Med. Chem.4 (11), 1409–1438 (2012).
  • Heinis C . Drug discovery: tools and rules for macrocycles. Nat. Chem. Biol.10 (9), 696–698 (2014).
  • Villar EA , BeglovD, ChennamadhavuniSet al. How proteins bind macrocycles. Nat. Chem. Biol.10 (9), 723–731 (2014).
  • Giordanetto F , KihlbergJ. Macrocyclic drugs and clinical candidates: what can medicinal chemists learn from their properties?J. Med. Chem.57 (2), 278–295 (2013).
  • Bockus AT , McEwenCM, LokeyRS. Form and function in cyclic peptide natural products: a pharmacokinetic perspective. Curr. Top. Med. Chem.13 (1873–4294), 821–836 (2013).
  • Jin M , ShimadaT, ShintaniM, YokogawaK, NomuraM, MiyamotoK. Long-term levothyroxine treatment decreases the oral bioavailability of cyclosporin A by inducing P-glycoprotein in small intestine. Drug Metab. Pharmacokinet.20 (5), 324–330 (2005).
  • Guimaraes CR , MathiowetzAM, ShalaevaM, GoetzG, LirasS. Use of 3D properties to characterize beyond rule-of-5 property space for passive permeation. J. Chem. Inf. Comput. Sci.52 (4), 882–890 (2012).
  • Doak BC , OverB, GiordanettoF, KihlbergJ. Oral druggable space beyond the rule of 5: insights from drugs and clinical candidates. Chem. Biol.21 (9), 1115–1142 (2014).
  • Leung SS , MijalkovicJ, BorrelliK, JacobsonMP. Testing physical models of passive membrane permeation. J. Chem. Inf. Comput. Sci.52 (6), 1621–1636 (2012).
  • Kansy M , SennerF, GubernatorK. Physicochemical high throughput screening: parallel artificial membrane permeation assay in the description of passive absorption processes. J. Med. Chem.41 (7), 1007–1010 (1998).
  • White TR , RenzelmanCM, RandACet al. On-resin N-methylation of cyclic peptides for discovery of orally bioavailable scaffolds. Nat. Chem. Biol.7 (11), 810–817 (2011).
  • Senel FM , YildirimS, KarakayaliH, MorayG, HaberalM. Comparison of Neoral and Sandimmun for induction and maintenance immunosuppression after kidney transplantation. Transplant Int.10 (5), 357–361 (1997).
  • Small-Molecule Drug Discovery Suite, QikProp . Schrödinger LCC, NY, USA (2015).
  • R Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (2013).
  • Marrink SJ , JahnigF, BerendsenHJ. Proton transport across transient single-file water pores in a lipid membrane studied by molecular dynamics simulations. Biophys. J.71 (2), 632–647 (1996).
  • Ashwood VA , FieldMJ, HorwellDCet al. Utilization of an intramolecular hydrogen bond to increase the CNS penetration of an NK(1) receptor antagonist. J. Med. Chem.44 (14), 2276–2285 (2001).
  • Sasaki S , ChoN, NaraYet al. Discovery of a thieno[2,3-d]pyrimidine-2,4-dione bearing a p-methoxyureidophenyl moiety at the 6-position: a highly potent and orally bioavailable non-peptide antagonist for the human luteinizing hormone-releasing hormone receptor. J. Med. Chem.46 (1), 113–124 (2003).
  • Rezai T , YuB, MillhauserG, JacobsonM, LokeyR. Testing the conformational hypothesis of passive membrane permeability using synthetic cyclic peptide diastereomers. J. Am. Chem. Soc.128 (8), 2510–2511 (2006).
  • Rezai T , BockJ, ZhouM, KalyanaramanC, LokeyR, JacobsonM. Conformational flexibility, internal hydrogen bonding, and passive membrane permeability: Successful in silico prediction of the relative permeabilities of cyclic peptides. J. Am. Chem. Soc.128 (43), 14073–14080 (2006).
  • Ettorre A , D'AndreaP, MauroSet al. hNK2 receptor antagonists. The use of intramolecular hydrogen bonding to increase solubility and membrane permeability. Bioorg. Med. Chem. Lett.21 (6), 1807–1809 (2011).
  • Ovadia O , GreenbergS, ChatterjeeJet al. The effect of multiple N-methylation on intestinal permeability of cyclic hexapeptides. Mol. Pharmacol.8 (2), 479–487 (2011).
  • Rafi S , HearnB, VedanthamP, JacobsonM, RensloA. Predicting and improving the membrane permeability of peptidic small molecules. J. Med. Chem.55 (7), 3163–3169 (2012).
  • Chatterjee J , MierkeD, KesslerH. N-methylated cyclic pentaalanine peptides as template structures. J. Am. Chem. Soc.128 (47), 15164–15172 (2006).
  • Chatterjee J , GilonC, HoffmanA, KesslerH. N-methylation of peptides: a new perspective in medicinal chemistry. Acc. Chem. Res.41 (10), 1331–1342 (2008).
  • Bockus AT , LexaKW, PyeCRet al. Probing the physicochemical boundaries of cell permeability and oral bioavailability in lipophilic macrocycles inspired by natural products. J. Med. Chem. doi:10.1021/acs.jmedchem.5b00128 (2015) ( Epub ahead of print).
  • Naganawa H , TakitaT, SuzukiA, TamuraS, LeeS, IzumiyaN. Conformational studies of destruxins, insecticidal cyclodepsipeptides. Agric. Biol. Chem.40 (11), 2223–2229 (1976).
  • Yeh SF , PanW, OngG-Tet al. Study of structure–activity correlation in destruxins, a class of cyclodepsipeptides possessing suppressive effect on the generation of hepatitis B virus surface antigen in human hepatoma cells. Biochem. Biophys. Res. Commun.229 (1), 65–72 (1996).
  • Loosli H-R , KesslerH, OschkinatH, WeberH-P, PetcherTJ, WidmerA. Peptide conformations. Part 31. The conformation of cyclosporin a in the crystal and in solution. Helv. Chim. Acta68 (3), 682–704 (1985).
  • Kessler H , GehrkeM, LautzJ, KockM, SeebachD, ThalerA. Complexation and medium effects on the conformation of cyclosporin A studied by NMR spectroscopy and molecular dynamics calculations. Biochem. Pharmacol.40 (1), 169–173 (1990).
  • O'Donohue MF , BurgessAW, WalkinshawMD, TreutleinHR. Modeling conformational changes in cyclosporin A. Protein Sci.4 (10), 2191–2202 (1995).
  • Bodack LA , FreedmanTB, ChowdhryBZ, NafieLA. Solution conformations of cyclosporins and magnesium–cyclosporin complexes determined by vibrational circular dichroism. Biopolymers73 (2), 163–177 (2004).
  • Qu ZW , ZhuH, MayV. Unambiguous assignment of vibrational spectra of cyclosporins A and H. J. Phys. Chem. A114 (36), 9768–9773 (2010).
  • Efimov SV , KarataevaFK, AganovAV, BergerS, KlochkovVV. Spatial structure of cyclosporin A and insight into its flexibility. J. Mol. Struct.1036 (0), 298–304 (2013).
  • Ruegger A , KuhnM, LichtiHet al. [Cyclosporin A, a peptide metabolite from trichoderma polysporum (Link ex Pers.) Rifai, with a remarkable immunosuppressive activity]. Helv. Chim. Acta59 (4), 1075–1092 (1976).
  • Pohl E , SheldrickGM, BölsterliJJ, KallenJ, TraberR, WalkinshawMD. Crystal structure and packing of isocyclosporin A. Helv. Chim. Acta79 (6), 1635–1642 (1996).
  • Hewitt WM , LeungSS, PyeCRet al. Cell-permeable cyclic peptides from synthetic libraries inspired by natural products. J. Am. Chem. Soc.137 (2), 715–721 (2015).
  • Nielsen DS , HoangHN, LohmanRJet al. Improving on nature: making a cyclic heptapeptide orally bioavailable. Angew. Chem. Int. Ed. Engl.53 (45), 12059–12063 (2014).
  • Shelley JC , CholletiA, FryeLL, GreenwoodJR, TimlinMR, UchimayaM. Epik: a software program for pK(a) prediction and protonation state generation for drug-like molecules. J. Comput. Aided Mol. Des.21 (12), 681–691 (2007).
  • Jeffery JR . Cyclosporine analogues. Clin. Biochem.24 (1), 15–21 (1991).
  • Oliyai R , SafadiM, MeierPG, HuMK, RichDH, StellaVJ. Kinetics of acid-catalyzed degradation of cyclosporin A and its analogs in aqueous solution. Int. J. Pept. Protein Res.43 (3), 239–247 (1994).
  • Bohumil K , AlexandrJ, SvetlanaPet al. Crystal structures of cyclosporin derivatives: O-Acetyl-(4R)-4-(E-2-butyl)-4,N-dimethyl-L-threonyl-cyclosporin A and O-Acetyl-(4R)-4-[E-2-(4-bromobutyl)]-4,N-dimethyl-L-threonyl-cyclosporin A. Collect. Czech. Chem. Commun.64 (1), 89–98 (1999).
  • Michal Hušák BK , MartinBuchta, LadislavCvak, AlexandrJegorov. Crystal structure of cyclosporin E. Collect. Czech. Chem. Commun.63 (1), 115–120 (1998).
  • Rand AC , LeungSSF, EngHet al. Optimizing PK properties of cyclic peptides: the effect of side chain substitutions on permeability and clearance. Med. Chem,. Comm.3 (10), 1282–1289 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.