43,247
Views
0
CrossRef citations to date
0
Altmetric
Review

Agents that Inhibit Bacterial Biofilm Formation

, , , , &
Pages 647-671 | Published online: 29 Apr 2015

References

  • Rasmussen TB , GivskovM. Quorum-sensing inhibitors as anti-pathogenic drugs. Int. J. Med. Biol.296 (2–3), 149–161 (2006).
  • Donlan RM , CostertonJW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev.15 (2), 167–193 (2002).
  • Stewart PS , William CostertonJ. Antibiotic resistance of bacteria in biofilms. Lancet358 (9276), 135–138 (2001).
  • Worthington RJ , RichardsJJ, MelanderC. Small molecule control of bacterial biofilms. Org. Biomol. Chem.10 (37), 7457–7474 (2012).
  • Worthington RJ , RichardsJJ, MelanderC. Non-microbicidal control of bacterial biofilms with small molecules. Anti-Infective Agents12 (1), 120–138 (2014).
  • Hentzer M , RiedelK, RasmussenTBet al. Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology148 (1), 87–102 (2002).
  • Bjarnsholt T , JensenPØ, RasmussenTBet al. Garlic blocks quorum sensing and promotes rapid clearing of pulmonary Pseudomonas aeruginosa infections. Microbiology151 (12), 3873–3880 (2005).
  • Hu J-F , GaroE, GoeringMGet al. Bacterial biofilm inhibitors from Diospyros dendo. J. Nat. Prod.69 (1), 118–120 (2006).
  • Garo E , EldridgeGR, GoeringMGet al. Asiatic acid and corosolic acid enhance the susceptibility of Pseudomonas aeruginosa biofilms to tobramycin. Antimicrob. Agents Chemother.51 (5), 1813–1817 (2007).
  • Wu H , LeeB, YangLet al. Effects of ginseng on Pseudomonas aeruginosa motility and biofilm formation. FEMS Immunol. Med. Microbiol.62 (1), 49–56 (2011).
  • Lee JH , ChoMH, LeeJ. 3-indolylacetonitrile decreases Escherichia coli O157:H7 biofilm formation and Pseudomonas aeruginosa virulence. Environ. Microbiol.13 (1), 62–73 (2011).
  • Huigens RW , RichardsJJ, PariseGet al. Inhibition of Pseudomonas aeruginosa biofilm formation with bromoageliferin analogues. J. Am. Chem. Soc.129 (22), 6966–6967 (2007).
  • Richards JJ , BallardTE, MelanderC. Inhibition and dispersion of Pseudomonas aeruginosa biofilms with reverse amide 2-aminoimidazole oroidin analogues. Org. Biomol. Chem.6 (8), 1356–1363 (2008).
  • Richards JJ , BallardTE, HuigensRW, MelanderC. Synthesis and screening of an oroidin library against Pseudomonas aeruginosa biofilms. ChemBioChem9 (8), 1267–1279 (2008).
  • Rogers SA , MelanderC. Construction and screening of a 2-aminoimidazole library identifies a small molecule capable of inhibiting and dispersing bacterial biofilms across order, class, and phylum. Angew. Chem. Int. Ed. Engl.47 (28), 5229–5231 (2008).
  • Ballard TE , RichardsJJ, AquinoA, ReedCS, MelanderC. Antibiofilm activity of a diverse oroidin library generated through reductive acylation. J. Org. Chem.74 (4), 1755–1758 (2009).
  • Reyes S , HuigensIII RW, SuZ, SimonML, MelanderC. Synthesis and biological activity of 2-aminoimidazole triazoles accessed by Suzuki-Miyaura cross-coupling. Org. Biomol. Chem.9 (8), 3041–3049 (2011).
  • Su Z , PengL, WorthingtonRJ, MelanderC. Evaluation of 4,5-disubstituted-2-aminoimidazole–triazole conjugates for antibiofilm/antibiotic resensitization activity against MRSA and Acinetobacter baumannii.ChemMedChem6 (12), 2243–2251 (2011).
  • Yeagley AA , SuZ, McCulloughKD, WorthingtonRJ, MelanderC. N-substituted 2-aminoimidazole inhibitors of MRSA biofilm formation accessed through direct 1,3-bis(tert-butoxycarbonyl)guanidine cyclization. Org. Biomol. Chem.11 (1), 130–137 (2013).
  • Furlani RE , YeagleyAA, MelanderC. A flexible approach to 1,4-di-substituted 2-aminoimidazoles that inhibit and disperse biofilms and potentiate the effects of β-lactams against multi-drug resistant bacteria. Eur. J. Med. Chem.62 (0), 59–70 (2013).
  • Rogers SA , WhiteheadDC, MullikinT, MelanderC. Synthesis and bacterial biofilm inhibition studies of ethyl N-(2-phenethyl) carbamate derivatives. Org. Biomol. Chem.8 (17), 3857–3859 (2010).
  • Rogers SA , LindseyEA, WhiteheadDC, MullikinT, MelanderC. Synthesis and biological evaluation of 2-aminoimidazole/carbamate hybrid anti-biofilm and anti-microbial agents. Bioorg. Med. Chem. Lett.21 (4), 1257–1260 (2011).
  • Frei R , BreitbachAS, BlackwellHE. 2-aminobenzimidazole derivatives strongly inhibit and disperse Pseudomonas aeruginosa biofilms. Angew. Chem. Int. Ed. Engl.51 (21), 5226–5229 (2012).
  • Lindsey EA , BrackettCM, MullikinT, AlcarazC, MelanderC. The discovery of N-1 substituted 2-aminobenzimidazoles as zinc-dependent S. aureus biofilm inhibitors. MedChemComm.3 (11), 1462–1465 (2012).
  • Sambanthamoorthy K , GokhaleAA, LaoWet al. Identification of a novel benzimidazole that inhibits bacterial biofilm formation in a broad-spectrum manner. Antimicrob. Agents Chemother.55 (9), 4369–4378 (2011).
  • Martino PD , FursyR, BretL, SundararajuB, PhillipsRS. Indole can act as an extracellular signal to regulate biofilm formation of Escherichia coli and other indole-producing bacteria. Can. J. Microbiol.49 (7), 443–449 (2003).
  • Lee JH , LeeJ. Indole as an intercellular signal in microbial communities. FEMS Microbiol. Rev.34 (4), 426–444 (2010).
  • Bansal T , EnglertD, LeeJ, HegdeM, WoodTK, JayaramanA. Differential effects of epinephrine, norepinephrine, and indole on Escherichia coli O157:H7 chemotaxis, colonization, and gene expression. Infect. Immun.75 (9), 4597–4607 (2007).
  • Domka J , LeeJ, WoodTK. YliH (BssR) and YceP (BssS) regulate Escherichia coli K-12 biofilm formation by influencing cell signaling. Appl. Environ. Microbiol.72 (4), 2449–2459 (2006).
  • Rui L , ReardonKF, WoodTK. Protein engineering of toluene ortho-monooxygenase of Burkholderia cepacia G4 for regiospecific hydroxylation of indole to form various indigoid compounds. Appl. Microbiol. Biotechnol.66 (4), 422–429 (2005).
  • Lee J , BansalT, JayaramanA, BentleyWE, WoodTK. Enterohemorrhagic Escherichia coli biofilms are inhibited by 7-hydroxyindole and stimulated by isatin. Appl. Environ. Microbiol.73 (13), 4100–4109 (2007).
  • Lee JH , KimYG, KimCJ, LeeJC, ChoMH, LeeJ. Indole-3-acetaldehyde from Rhodococcus sp. BFI 332 inhibits Escherichia coli O157:H7 biofilm formation. Appl. Microbiol. Biotechnol.96 (4), 1071–1078 (2012).
  • Bunders C , CavanaghJ, MelanderC. Flustramine inspired synthesis and biological evaluation of pyrroloindoline triazole amides as novel inhibitors of bacterial biofilms. Org. Biomol. Chem.9 (15), 5476–5481 (2011).
  • Minvielle MJ , BundersCA, MelanderC. Indole/triazole conjugates are selective inhibitors and inducers of bacterial biofilms. MedChemComm4 (6), 916–919 (2013).
  • Ding X , YinB, QianLet al. Screening for novel quorum-sensing inhibitors to interfere with the formation of Pseudomonas aeruginosa biofilm. J. Med. Microbiol.60 (12), 1827–1834 (2011).
  • Lee J-H , RegmiSC, KimJ-Aet al. Apple flavonoid phloretin inhibits Escherichia coli O157:H7 biofilm formation and ameliorates colon inflammation in rats. Infect. Immun.79 (12), 4819–4827 (2011).
  • Kolter R , GreenbergEP. Microbial sciences: the superficial life of microbes. Nature441 (7091), 300–302 (2006).
  • Clatworthy AE , PiersonE, HungDT. Targeting virulence: a new paradigm for antimicrobial therapy. Nat. Chem. Biol.3 (9), 541–548 (2007).
  • Kim H-S , ParkH-D. Ginger extract inhibits biofilm formation by Pseudomonas aeruginosa PA14. PLoS One8 (9), e76106 (2013).
  • Schiavone BIP , RosatoA, MarilenaMet al. Biological evaluation of hyperforin and its hydrogenated analogue on bacterial growth and biofilm production. J. Nat. Prod.76 (9), 1819–1823 (2013).
  • Sarkisian SA , JanssenMJ, MattaH, HenryGE, LaPlanteKL, RowleyDC. Inhibition of bacterial growth and biofilm production by constituents from Hypericum spp.Phytother. Res.26 (7), 1012–1016 (2012).
  • Murata RM , Branco-de-AlmeidaLS, FrancoEMet al. Inhibition of Streptococcus mutans biofilm accumulation and development of dental caries in vivo by 7-epiclusianone and fluoride. Biofouling26 (7), 865–872 (2010).
  • Vikram A , JesudhasanPR, JayaprakashaGK, PillaiSD, PatilBS. Citrus limonoids interfere with Vibrio harveyi cell-cell signalling and biofilm formation by modulating the response regulator LuxO. Microbiology157 (1), 99–110 (2011).
  • Vikram A , JesudhasanP, PillaiS, PatilB. Isolimonic acid interferes with Escherichia coli O157:H7 biofilm and TTSS in QseBC and QseA dependent fashion. BMC Microbiol.12 (1), 261 (2012).
  • Artini M , PapaR, BarbatoGet al. Bacterial biofilm formation inhibitory activity revealed for plant derived natural compounds. Biorg. Med. Chem.20 (2), 920–926 (2012).
  • Flamini G , CatalanoS, CaponiC, PanizziL, MorelliI. Three anthrones from Rubus ulmifolius.Phytochemistry59 (8), 873–876 (2002).
  • Panizzi L , CaponiC, CatalanoS, CioniPL, MorelliI. In vitro antimicrobial activity of extracts and isolated constituents of Rubus ulmifolius.J. Ethnopharmacol.79 (2), 165–168 (2002).
  • Quave CL , Estévez-CarmonaM, CompadreCMet al. Ellagic acid derivatives from Rubus ulmifolius inhibit Staphylococcus aureus biofilm formation and improve response to antibiotics. PLoS One7 (1), e28737 (2012).
  • Payne DE , MartinNR, ParzychKR, RickardAH, UnderwoodA, BolesBR. Tannic acid inhibits Staphylococcus aureus surface colonization in an isaa-dependent manner. Infect. Immun.81 (2), 496–504 (2013).
  • Lee J-H , KimY-G, RyuSY, ChoMH, LeeJ. Ginkgolic acids and Ginkgo biloba extract inhibit Escherichia coli O157:H7 and Staphylococcus aureus biofilm formation. Int. J. Food Microbiol.174 (0), 47–55 (2014).
  • Wu X-Y , YangL-Q, ChenJ, YuanX-H, XiaG-H. Preparation of ginkgolic acid monomers and their antifungal activity. Chem. Industry Forest Products23 (4), 17–21 (2003).
  • He J , WangS, WuT, CaoY, XuX, ZhouX. Effects of ginkgoneolic acid on the growth, acidogenicity, adherence, and biofilm of Streptococcus mutans in vitro. Folia Microbiol.58 (2), 147–153 (2013).
  • Inamuco J , VeenendaalAKJ, BurtSAet al. Sub-lethal levels of carvacrol reduce Salmonella typhimurium motility and invasion of porcine epithelial cells. Vet. Microbiol.157 (1–2), 200–207 (2012).
  • Nostro A , RoccaroAS, BisignanoGet al. Effects of oregano, carvacrol and thymol on Staphylococcus aureus and Staphylococcus epidermidis biofilms. J. Med. Microbiol.56 (4), 519–523 (2007).
  • Soni KA , OladunjoyeA, NannapaneniRet al. Inhibition and inactivation of Salmonella typhimurium biofilms from polystyrene and stainless steel surfaces by essential oils and phenolic constituent carvacrol. J. Food Prot.76 (2), 205–212 (2013).
  • Nostro A , MarinoA, BlancoARet al. In vitro activity of carvacrol against Staphylococcal preformed biofilm by liquid and vapour contact. J. Med. Microbiol.58 (6), 791–797 (2009).
  • Burt SA , Ojo-FakunleVTA, WoertmanJ, VeldhuizenEJA. The natural antimicrobial carvacrol inhibits quorum sensing in Chromobacterium violaceum and reduces bacterial biofilm formation at sub-lethal concentrations. PLoS One9 (4), e93414 (2014).
  • Benamar M , MelhaouiA, ZyadA, BouabdallahI, AzizM. Anti-cancer effect of two alkaloids: 2R and 2S-bgugaine on mastocytoma P815 and carcinoma Hep. Nat. Prod. Res.23 (7), 659–664 (2009).
  • Majik MS , NaikD, BhatC, TilveS, TilviS, D'SouzaL. Synthesis of (R)-norbgugaine and its potential as quorum sensing inhibitor against Pseudomonas aeruginosa. Bioorg. Med. Chem. Lett.23 (8), 2353–2356 (2013).
  • Carneiro VA , SantosHS, ArrudaFVet al. Casbane diterpene as a promising natural antimicrobial agent against biofilm-associated infections. Molecules16 (1), 190–201 (2011).
  • Lee J-H , ChoHS, JooSWet al. Diverse plant extracts and trans-resveratrol inhibit biofilm formation and swarming of Escherichia coli O157:H7. Biofouling29 (10), 1189–1203 (2013).
  • Jang M , CaiL, UdeaniGOet al. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science275 (5297), 218–220 (1997).
  • Cottart C-H , Nivet-AntoineV, Laguillier-MorizotC, BeaudeuxJ-L. Resveratrol bioavailability and toxicity in humans. Mol. Nutr. Food Res.54 (1), 7–16 (2010).
  • Li L , HenryGE, SeeramNP. Identification and bioactivities of resveratrol oligomers and flavonoids from Carex folliculata seeds. J. Agric. Food. Chem.57 (16), 7282–7287 (2009).
  • González-Sarrías A , GromekS, NiesenD, SeeramNP, HenryGE. Resveratrol oligomers isolated from Carex species inhibit growth of human colon tumorigenic cells mediated by cell cycle arrest. J. Agric. Food. Chem.59 (16), 8632–8638 (2011).
  • Piver B , BerthouF, DreanoY, LucasD. Differential inhibition of human cytochrome P450 enzymes by ∊-viniferin, the dimer of resveratrol: comparison with resveratrol and polyphenols from alcoholized beverages. Life Sci.73 (9), 1199–1213 (2003).
  • Cho HS , LeeJ-H, RyuSY, JooSW, ChoMH, LeeJ. Inhibition of Pseudomonas aeruginosa and Escherichia coli O157:H7 biofilm formation by plant metabolite ∊-viniferin. J. Agric. Food. Chem.61 (29), 7120–7126 (2013).
  • Lee J-H , KimY-G, RyuSY, ChoMH, LeeJ. Resveratrol oligomers inhibit biofilm formation of Escherichia coli O157:H7 and Pseudomonas aeruginosa. J. Nat. Prod.77 (1), 168–172 (2014).
  • Persson T , HansenTH, RasmussenTB, SkindersoME, GivskovM, NielsenJ. Rational design and synthesis of new quorum-sensing inhibitors derived from acylated homoserine lactones and natural products from garlic. Org. Biomol. Chem.3 (2), 253–262 (2005).
  • Jakobsen TH , van GennipM, PhippsRKet al. Ajoene, a sulfur-rich molecule from garlic, inhibits genes controlled by quorum sensing. Antimicrob. Agents Chemother.56 (5), 2314–2325 (2012).
  • Cady NC , McKeanKA, BehnkeJet al. Inhibition of biofilm formation, quorum sensing and infection in Pseudomonas aeruginosa by natural products-inspired organosulfur compounds. PLoS One7 (6), e38492 (2012).
  • Peach KC , ChengAT, OliverAG, YildizFH, LiningtonRG. Discovery and biological characterization of the auromomycin chromophore as an inhibitor of biofilm formation in Vibrio cholerae. ChemBioChem14 (16), 2209–2215 (2013).
  • Ren D , BedzykLA, SetlowPet al. Differential gene expression to investigate the effect of (5Z)-4-bromo- 5-(bromomethylene)-3-butyl-2(5H)-furanone on Bacillus subtilis. Appl. Environ. Microbiol.70 (8), 4941–4949 (2004).
  • Manefield M , de NysR, NareshKet al. Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiology145 (2), 283–291 (1999).
  • Manefield M , RasmussenTB, HenzterMet al. Halogenated furanones inhibit quorum sensing through accelerated LuxR turnover. Microbiology148 (4), 1119–1127 (2002).
  • Ren D , SimsJJ, WoodTK. Inhibition of biofilm formation and swarming of Bacillus subtilis by (5Z)-4-bromo-5-(bromomethylene)-3-butyl-2(5H)-furanone. Lett. Appl. Microbiol.34 (4), 293–299 (2002).
  • Jayaraman A , WoodTK. Bacterial quorum sensing: signals, circuits, and implications for biofilms and disease. Annu. Rev. Biomed. Eng.10 (1), 145–167 (2008).
  • Benneche T , HerstadG, RosenbergM, AssevS, ScheieAA. Facile synthesis of 5-(alkylidene)thiophen-2(5H)-ones. A new class of antimicrobial agents. RSC Advances1 (2), 323–332 (2011).
  • Yang S , Abdel-RazekOA, ChengFet al. Bicyclic brominated furanones: a new class of quorum sensing modulators that inhibit bacterial biofilm formation. Biorg. Med. Chem.22 (4), 1313–1317 (2014).
  • Pereira UA , BarbosaLC, MalthaCR, DemunerAJ, MasoodMA, PimentaAL. γ-Alkylidene-γ-lactones and isobutylpyrrol-2(5H)-ones analogues to rubrolides as inhibitors of biofilm formation by Gram-positive and Gram-negative bacteria. Bioorg. Med. Chem. Lett.24 (4), 1052–1056 (2014).
  • Barreca ML , ChimirriA, De LucaLet al. Discovery of 2,3-diaryl-1,3-thiazolidin-4-ones as potent anti-HIV-1 agents. Bioorg. Med. Chem. Lett.11 (13), 1793–1796 (2001).
  • Goel B , RamT, TyagiRet al. 2-Substituted-3-(4-bromo-2-carboxyphenyl)-5-methyl-4-thiazolidinones as potential anti-inflammatory agents. Eur. J. Med. Chem.34 (3), 265–269 (1999).
  • Allen S , NewhouseB, AndersonASet al. Discovery and SAR of trisubstituted thiazolidinones as CCR4 antagonists. Bioorg. Med. Chem. Lett.14 (7), 1619–1624 (2004).
  • Rane RA , SahuNU, ShahCP. Synthesis and antibiofilm activity of marine natural product-based 4-thiazolidinones derivatives. Bioorg. Med. Chem. Lett.22 (23), 7131–7134 (2012).
  • de Lima Procópio RE , SilvaIR, MartinsMK, AzevedoJL, AraújoJM. Antibiotics produced by Streptomyces. Braz. J. Infect. Dis.16 (5), 466–471 (2012).
  • Navarro G , ChengAT, PeachKCet al. Image-based 384-well high-throughput screening method for the discovery of skyllamycins a to c as biofilm inhibitors and inducers of biofilm detachment in Pseudomonas aeruginosa. Antimicrob. Agents Chemother.58 (2), 1092–1099 (2014).
  • Hertiani T , Edrada-EbelR, OrtleppSet al. From anti-fouling to biofilm inhibition: new cytotoxic secondary metabolites from two Indonesian Agelas sponges. Biorg. Med. Chem.18 (3), 1297–1311 (2010).
  • Tello E , CastellanosL, Arevalo-FerroC, RodríguezJ, JiménezC, DuqueC. Absolute stereochemistry of antifouling cembranoid epimers at C-8 from the Caribbean octocoral Pseudoplexaura flagellosa: revised structures of plexaurolones. Tetrahedron67 (47), 9112–9121 (2011).
  • Amara N , MashiachR, AmarDet al. Covalent inhibition of bacterial quorum sensing. J. Am. Chem. Soc.131 (30), 10610–10619 (2009).
  • Geske GD , WezemanRJ, SiegelAP, BlackwellHE. Small molecule inhibitors of bacterial quorum sensing and biofilm formation. J. Am. Chem. Soc.127 (37), 12762–12763 (2005).
  • Geske GD , O'NeillJC, MillerDM, MattmannME, BlackwellHE. Modulation of bacterial quorum sensing with synthetic ligands: systematic evaluation of n-acylated homoserine lactones in multiple species and new insights into their mechanisms of action. J. Am. Chem. Soc.129 (44), 13613–13625 (2007).
  • Smith KM , BuY, SugaH. Induction and inhibition of Pseudomonas aeruginosa quorum sensing by synthetic autoinducer analogs. Chem. Biol.10 (1), 81–89 (2003).
  • Smith KM , BuY, SugaH. Library screening for synthetic agonists and antagonists of a Pseudomonas aeruginosa autoinducer. Chem. Biol.10 (6), 563–571 (2003).
  • Glansdorp FG , ThomasGL, LeeJKet al. Synthesis and stability of small molecule probes for Pseudomonas aeruginosa quorum sensing modulation. Org. Biomol. Chem.2 (22), 3329–3336 (2004).
  • Ishida T , IkedaT, TakiguchiN, KurodaA, OhtakeH, KatoJ. Inhibition of quorum sensing in Pseudomonas aeruginosa by N-acyl cyclopentylamides. Appl. Environ. Microbiol.73 (10), 3183–3188 (2007).
  • O'Loughlin CT , MillerLC, SiryapornA, DrescherK, SemmelhackMF, BasslerBL. A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proc. Natl Acad. Sci. USA110 (44), 17981–17986 (2013).
  • Yang Y-X , XuZ-H, ZhangY-Q, TianJ, WengL-X, WangL-H. A new quorum-sensing inhibitor attenuates virulence and decreases antibiotic resistance in Pseudomonas aeruginosa. J. Microbiol.50 (6), 987–993 (2012).
  • Weng L-X , YangY-X, ZhangY-Q, WangL-H. A new synthetic ligand that activates QscR and blocks antibiotic-tolerant biofilm formation in Pseudomonas aeruginosa. Appl. Microbiol. Biotechnol.98 (6), 2565–2572 (2014).
  • Brackman G , RisseeuwM, CelenSet al. Synthesis and evaluation of the quorum sensing inhibitory effect of substituted triazolyldihydrofuranones. Biorg. Med. Chem.20 (15), 4737–4743 (2012).
  • Asahi Y , NoiriY, IgarashiJ, AsaiH, SugaH, EbisuS. Effects of N-acyl homoserine lactone analogues on Porphyromonas gingivalis biofilm formation. J. Periodontal Res.45 (2), 255–261 (2010).
  • Asahi Y , NoiriY, IgarashiJ, SugaH, AzakamiH, EbisuS. Synergistic effects of antibiotics and an N-acyl homoserine lactone analog on Porphyromonas gingivalis biofilms. J. Appl. Microbiol.112 (2), 404–411 (2012).
  • Kunze B , ReckM, DotschAet al. Damage of Streptococcus mutans biofilms by carolacton, a secondary metabolite from the myxobacterium Sorangium cellulosum. BMC Microbiol.10 (1), 199 (2010).
  • Jansen R , IrschikH, HuchVet al. Carolacton: a macrolide ketocarbonic acid that reduces biofilm formation by the caries- and endocarditis-associated bacterium Streptococcus mutans. Eur. J. Org. Chem.2010 (7), 1284–1289 (2010).
  • Hallside MS , BrzozowskiRS, WuestWM, PhillipsAJ. A concise synthesis of carolacton. Org. Lett.16 (4), 1148–1151 (2014).
  • Blanco LP , EvansML, SmithDR, BadtkeMP, ChapmanMR. Diversity, biogenesis and function of microbial amyloids. Trends Microbiol.20 (2), 66–73 (2012).
  • Maury CP . The emerging concept of functional amyloid. J. Intern. Med.265 (3), 329–334 (2009).
  • Schwartz K , BolesBR. Microbial amyloids: functions and interactions within the host. Curr. Opin. Microbiol.16 (1), 93–99 (2013).
  • Schwartz K , SyedAK, StephensonRE, RickardAH, BolesBR. Functional amyloids composed of phenol soluble modulins stabilize Staphylococcus aureus Biofilms. PLoS Pathog.8 (6), e1002744 (2012).
  • Vuong C , SaenzHL, GötzF, OttoM. Impact of the agr quorum-sensing system on adherence to polystyrene in Staphylococcus aureus. J. Infect. Dis.182 (6), 1688–1693 (2000).
  • Queck SY , Jameson-LeeM, VillaruzAEet al. RNAIII-independent target gene control by the agr quorum-sensing system: insight into the evolution of virulence regulation in Staphylococcus aureus. Mol. Cell.32 (1), 150–158 (2008).
  • Mathema VB , KohYS, ThakuriBC, SillanpääM. Parthenolide, a sesquiterpene lactone, expresses multiple anti-cancer and anti-inflammatory activities. Inflammation35 (2), 560–565 (2012).
  • Romero D , Sanabria-ValentinE, VlamakisH, KolterR. Biofilm inhibitors that target amyloid proteins. Chem. Biol.20 (1), 102–110 (2013).
  • Izadpanah A , GalloRL. Antimicrobial peptides. J. Am. Acad. Dermatol.52 (3), 381–390 (2005).
  • de la Fuente-Núňez C , KorolikV, BainsMet al. Inhibition of bacterial biofilm formation and swarming motility by a small synthetic cationic peptide. Antimicrob. Agents Chemother.56 (5), 2696–2704 (2012).
  • Overhage J , CampisanoA, BainsM, TorfsEC, RehmBH, HancockRE. Human host defense peptide ll-37 prevents bacterial biofilm formation. Infect. Immun.76 (9), 4176–4182 (2008).
  • Johansson L , ThulinP, SendiPet al. Cathelicidin LL-37 in severe Streptococcus pyogenes soft tissue infections in humans. Infect. Immun.76 (8), 3399–3404 (2008).
  • Vuong C , VoyichJM, FischerERet al. Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cell. Microbiol.6 (3), 269–275 (2004).
  • Hell E , GiskeCG, NelsonA, RömlingU, MarchiniG. Human cathelicidin peptide LL37 inhibits both attachment capability and biofilm formation of Staphylococcus epidermidis. Lett. Appl. Microbiol.50 (2), 211–215 (2010).
  • Kolodkin-Gal I , RomeroD, CaoS, ClardyJ, KolterR, LosickR. D-amino acids trigger biofilm disassembly. Science328 (5978), 627–629 (2010).
  • Leiman SA , MayJM, LebarMD, KahneD, KolterR, LosickR. D-amino acids indirectly inhibit biofilm formation in Bacillus subtilis by interfering with protein synthesis. J. Bacteriol.195 (23), 5391–5395 (2013).
  • Kolodkin-Gal I , CaoS, ChaiLet al. A self-produced trigger for biofilm disassembly that targets exopolysaccharide. Cell149 (3), 684–692 (2012).
  • Hobley L , Kim SokH, MaezatoYet al. Norspermidine is not a self-produced trigger for biofilm disassembly. Cell156 (4), 844–854 (2014).
  • Bendaoud M , VinogradovE, BalashovaNV, KadouriDE, KachlanySC, KaplanJB. Broad-spectrum biofilm inhibition by Kingella kingae exopolysaccharide. J. Bacteriol.193 (15), 3879–3886 (2011).
  • Chai Y , BeauregardPB, VlamakisH, LosickR, KolterR. Galactose metabolism plays a crucial role in biofilm formation by Bacillus subtilis. mBio3 (4), e00184–12 (2012).
  • Holden HM , RaymentI, ThodenJB. Structure and function of enzymes of the leloir pathway for galactose metabolism. J. Biol. Chem.278 (45), 43885–43888 (2003).
  • Dusane DH , RajputJK, KumarAR, NancharaiahYV, VenugopalanVP, ZinjardeSS. Disruption of fungal and bacterial biofilms by lauroyl glucose. Lett. Appl. Microbiol.47 (5), 374–379 (2008).
  • Dusane DH , PawarVS, NancharaiahYV, VenugopalanVP, KumarAR, ZinjardeSS. Anti-biofilm potential of a glycolipid surfactant produced by a tropical marine strain of Serratia marcescens. Biofouling27 (6), 645–654 (2011).
  • Desbois AP , SmithVJ. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl. Microbiol. Biotechnol.85 (6), 1629–1642 (2010).
  • Bergsson G , ArnfinnssonJ, KarlssonSM, SteingrímssonO, ThormarH. In vitro inactivation of Chlamydia trachomatis by fatty acids and monoglycerides. Antimicrob Agents Chemother.42 (9), 2290–2294 (1998).
  • Bergsson G , SteingrímssonO, ThormarH. In vitro susceptibilities of Neisseria gonorrhoeae to fatty acids and monoglycerides. Antimicrob Agents Chemother.43 (11), 2790–2792 (1999).
  • Kabara JJ , SwieczkowskiDM, ConleyAJ, TruantJP. Fatty acids and derivatives as antimicrobial agents. Antimicrob Agents Chemother.2 (1), 23–28 (1972).
  • Feldlaufer M , KnoxD, LusbyW, ShimanukiH. Antimicrobial activity of fatty-acids against bacillus-larvae, the causative agent of American foulbrood disease. Apidologie24 (2), 95–99 (1993).
  • Wille JJ , KydonieusA. Palmitoleic acid isomer (C16:1delta6) in human skin sebum is effective against Gram-positive bacteria. Skin Pharmacol. Appl. Skin Physiol.16 (3), 176–187 (2003).
  • Georgel P , CrozatK, LauthXet al. A toll-like receptor 2-responsive lipid effector pathway protects mammals against skin infections with Gram-positive bacteria. Infect. Immun.73 (8), 4512–4521 (2005).
  • Stenz L , FrançoisP, FischerAet al. Impact of oleic acid (cis-9-octadecenoic acid) on bacterial viability and biofilm production in Staphylococcus aureus. FEMS Microbiol. Lett.287 (2), 149–155 (2008).
  • Davies DG , MarquesCN. A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J. Bacteriol.191 (5), 1393–1403 (2009).
  • Jennings JA , CourtneyHS, HaggardWO. Cis-2-decenoic acid inhibits S. aureus growth and biofilm in vitro: a pilot study. Clin. Orthop. Relat. Res.470 (10), 2663–2670 (2012).
  • Roy V , SmithJA, WangJ, StewartJE, BentleyWE, SintimHO. Synthetic analogs tailor native AI-2 signaling across bacterial species. J. Am. Chem. Soc.132 (32), 11141–11150 (2010).
  • Smith JA , WangJ, Nguyen-MauSM, LeeV, SintimHO. Biological screening of a diverse set of AI-2 analogues in Vibrio harveyi suggests that receptors which are involved in synergistic agonism of AI-2 and analogues are promiscuous. Chem. Commun. (45), 7033–7035 (2009).
  • Gamby S , RoyV, GuoMet al. Altering the communication networks of multispecies microbial systems using a diverse toolbox of ai-2 analogues. ACS Chem. Biol.7 (6), 1023–1030 (2012).
  • Roy V , MeyerMT, SmithJAet al. AI-2 analogs and antibiotics: a synergistic approach to reduce bacterial biofilms. Appl. Microbiol. Biotechnol.97 (6), 2627–2638 (2013).
  • Barraud N , HassettDJ, HwangSH, RiceSA, KjellebergS, WebbJS. Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J. Bacteriol.188 (21), 7344–7353 (2006).
  • Barraud N , SchleheckD, KlebensbergerJet al. Nitric oxide signaling in Pseudomonas aeruginosa biofilms mediates phosphodiesterase activity, decreased cyclic di-gmp levels, and enhanced dispersal. J. Bacteriol.191 (23), 7333–7342 (2009).
  • Liu N , XuY, HossainSet al. Nitric oxide regulation of cyclic di-gmp synthesis and hydrolysis in Shewanella woodyi. Biochemistry51 (10), 2087–2099 (2012).
  • Plate L , MarlettaMA. Nitric oxide-sensing H-NOX proteins govern bacterial communal behavior. Trends Biochem. Sci.38 (11), 566–575 (2013).
  • Li Y , HeineS, EntianM, SauerK, Frankenberg-Dinkel N. NO-induced biofilm dispersion in Pseudomonas aeruginosa is mediated by an MHYT domain-coupled phosphodiesterase. J. Bacteriol.195 (16), 3531–3542 (2013).
  • Gusarov I , NudlerE. NO-mediated cytoprotection: instant adaptation to oxidative stress in bacteria. Proc. Natl Acad. Sci. USA102 (39), 13855–13860 (2005).
  • Schreiber F , BeutlerM, EnningDet al. The role of nitric-oxide-synthase-derived nitric oxide in multicellular traits of Bacillus subtilis 3610: biofilm formation, swarming, and dispersal. BMC Microbiol.11 (1), 1–12 (2011).
  • Chung KK , SchumacherJF, SampsonEM, BurneRA, AntonelliPJ, BrennanAB. Impact of engineered surface microtopography on biofilm formation of Staphylococcus aureus. Biointerphases2 (2), 89–94 (2007).
  • Ma Y , ChenM, JonesJE, RittsAC, YuQ, SunH. Inhibition of Staphylococcus epidermidis biofilm by trimethylsilane plasma coating. Antimicrob. Agents Chemother.56 (11), 5923–5937 (2012).
  • Treter J , BonattoF, KrugC, SoaresGV, BaumvolIJR, MacedoAJ. Washing-resistant surfactant coated surface is able to inhibit pathogenic bacteria adhesion. Appl. Surf. Sci.303, 147–154 (2014).
  • Busetti A , CrawfordDE, EarleMJet al. Antimicrobial and antibiofilm activities of 1-alkylquinolinium bromide ionic liquids. Green Chem.12 (3), 420–425 (2010).
  • Carson L , ChauPKW, EarleMJet al. Antibiofilm activities of 1-alkyl-3-methylimidazolium chloride ionic liquids. Green Chem.11 (4), 492–497 (2009).
  • Rabin N , ZhengY, Opoku-TemengC, DuY, BonsuE, SintimHO. Biofilm formation mechanisms and targets for developing anti-biofilm agents. Future Med. Chem.7 (3), 493–512 (2015).
  • Abouelhassan Y , GarrisonAT, BurchGM, WongW, NorwoodVM4th, HuigensRW3rd. Discovery of quinoline small molecules with potent dispersal activity against methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis biofilms using a scaffold hopping strategy.. Bioorg. Med. Chem. Lett.24 (21), 5076–5080 (2014).
  • Jennings MC , AtorLE, PaniakTJ, MinbioleKP, WuestWM. Biofilm-eradicating properties of quaternary ammonium amphiphiles: simple mimics of antimicrobial peptides.Chembiochem.5 (15), 2211–2215 (2014).
  • Garrison AT , BaiF, AbouelhassanY, PaciaroniNG, JinS, HuigensIII RW. Bromophenazine derivatives with potent inhibition, dispersion and eradication activities against Staphylococcus aureus biofilms.RSC Adv.5, 1120–1124 (2015).