292
Views
1
CrossRef citations to date
0
Altmetric
Review

Polyamine–Oligonucleotide Conjugates: A Promising Direction for Nucleic Acid Tools and Therapeutics

, &
Pages 1733-1749 | Published online: 01 Oct 2015

References

  • Burnett JC , RossiJJ. RNA-based therapeutics: current progress and future prospects. Chem. Biol.19 (1), 60–71 (2012).
  • Lightfoot HL , HallJ. Target mRNA inhibition by oligonucleotide drugs in man. Nucleic Acids Res.40 (21), 10585–10595 (2012).
  • Bennett CF , SwayzeEE. RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu. Rev. Pharmacol. Toxicol.50 (1), 259–293 (2010).
  • Deleavey GF , DamhaMJ. Designing chemically modified oligonucleotides for targeted gene silencing. Chem. Biol.19 (8), 937–954 (2012).
  • Lennox KA , BehlkeMA. Chemical modification and design of anti-miRNA oligonucleotides. Gene Ther.18 (12), 1111–1120 (2011).
  • Janssen HLA , ReesinkHW, LawitzEJet al. Treatment of HCV infection by targeting microRNA. N. Engl. J. Med.368 (18), 1685–1694 (2013).
  • Elbashir SM , HarborthJ, LendeckelW, YalcinA, WeberK, TuschlT. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature411 (6836), 494–498 (2001).
  • Yu RZ , GearyRS, LevinAA. Pharmacokinetics and pharmacodynamics of antisense oligonucleotides. In : Pharmacokinetics and Pharmacodynamics of Biotech Drugs: Principles and Case Studies in Drug Development. MeibohmB ( Ed.). Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany (2006).
  • Patwa A , GissotA, BestelI, BarthelemyP. Hybrid lipid oligonucleotide conjugates: synthesis, self-assemblies and biomedical applications. Chem. Soc. Rev.40 (12), 5844–5854 (2011).
  • Raouane M , DesmaëleD, UrbinatiG, Massaad-MassadeL, CouvreurP. Lipid conjugated oligonucleotides: a useful strategy for delivery. Bioconj. Chem.23 (6), 1091–1104 (2012).
  • Schade M , BertiD, HusterD, HerrmannA, ArbuzovaA. Lipophilic nucleic acids – a flexible construction kit for organization and functionalization of surfaces. Adv. Colloid Interface Sci.208 (0), 235–251 (2014).
  • Marlin F , SimonP, Saison-BehmoarasT, GiovannangeliC. Delivery of oligonucleotides and analogues: the oligonucleotide conjugate-based approach. ChemBioChem11 (11), 1493–1500 (2010).
  • Juliano RL , MingX, NakagawaO. Cellular uptake and intracellular trafficking of antisense and siRNA oligonucleotides. Bioconj. Chem.23 (2), 147–157 (2012).
  • Ikeda Y , NagasakiY. Impacts of pegylation on the gene and oligonucleotide delivery system. J. Appl. Polym. Sci.131 (9), 40293 (2014).
  • De Piédoue G , Andrieu-SolerC, ConcordetJPet al. Targeted gene correction with 5′ acridine-oligonucleotide conjugates. Oligonucleotides17 (2), 258–263 (2007).
  • Goodchild J . Conjugates of oligonucleotides and modified oligonucleotides: a review of their synthesis and properties. Bioconj. Chem.1 (3), 165–187 (1990).
  • Manoharan M . Oligonucleotide conjugates as potential antisense drugs with improved uptake, biodistribution, targeted delivery, and mechanism of action. Antisense Nucleic Acid Drug Dev.12 (2), 103–128 (2002).
  • Lönnberg H . Solid-phase synthesis of oligonucleotide conjugates useful for delivery and targeting of potential nucleic acid therapeutics. Bioconj. Chem.20 (6), 1065–1094 (2009).
  • Peacock H , KannanA, BealPA, BurrowsCJ. Chemical modification of siRNA bases to probe and enhance RNA interference. J. Org. Chem.76 (18), 7295–7300 (2011).
  • Juliano RL , MingX, NakagawaO. The chemistry and biology of oligonucleotide conjugates. Acc. Chem. Res.45 (7), 1067–1076 (2012).
  • Singh Y , MuratP, SpinelliN, DefrancqE. Oligonucleotide conjugates: rationale, synthesis, and applications. In : From Nucleic Acids Sequences to Molecular Medicine. ErdmannVA, BarciszewskiJ ( Eds). SpringerBerlin, Heidelberg, Germany, 85–120 (2012).
  • Winkler J . Oligonucleotide conjugates for therapeutic applications. Ther. Deliv.4 (7), 791–809 (2013).
  • Lightfoot HL , HallJ. Endogenous polyamine function – the RNA perspective. Nucleic Acids Res.42 (18), 11275–11290 (2014).
  • Iacomino G , PicarielloG, D'AgostinoL. DNA and nuclear aggregates of polyamines. Biochim. Biophys. Acta1823 (10), 1745–1755 (2012).
  • Igarashi K , KashiwagiK. Modulation of cellular function by polyamines. Int. J. Biochem. Cell Biol.42 (1), 39–51 (2010).
  • Boussif O , Lezoualc'hF, ZantaMAet al. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl Acad. Sci. USA92 (16), 7297–7301 (1995).
  • Pichon C , BillietL, MidouxP. Chemical vectors for gene delivery: uptake and intracellular trafficking. Curr. Opin. Biotechnol.21 (5), 640–645 (2010).
  • Islam MA , ParkTE, SinghBet al. Major degradable polycations as carriers for DNA and siRNA. J. Control. Release193, 74–89 (2014).
  • Noir R , KoteraM, PonsB, RemyJS, BehrJP. Oligonucleotide-oligospermine conjugates (zip nucleic acids): a convenient means of finely tuning hybridization temperatures. J. Am. Chem. Soc.130, 13500–13505 (2008).
  • Schmid N , BehrJP. Location of spermine and other polyamines on DNA as revealed by photoaffinity cleavage with poly(amino)benzenediazonium salts. Biochemistry30 (17), 4357–4361 (1991).
  • Cooke LA , FrauendorfC, GîleaMA, HolmesSC, VyleJS. Solid-phase synthesis of terminal oligonucleotide–phosphoramidate conjugates. Tetrahedron Lett.47 (5), 719–722 (2006).
  • Levina AS , MikhalevaEA, RepkovaMN, ZarytovaVF. Synthesis of polyamine-containing oligonucleotides. Russ. J. Bioorg. Chem.34 (1), 80–86 (2008).
  • Voirin E , BehrJP, KoteraM. Versatile synthesis of oligodeoxyribonucleotide–oligospermine conjugates. Nat. Protoc.2 (6), 1360–1367 (2007).
  • Sund C , PuriN, ChattopadhyayaJ. Synthesis of C-branched spermine tethered oligo-DNA and the thermal stability of the duplexes and triplexes. Tetrahedron52 (37), 12275–12290 (1996).
  • Sund C , PuriN, ChattopadhyayaJ. The chemistry of C-branched spermine tethered oligo-DNAs and their properties in forming duplexes and triplexes. Nucleos. Nucleot.16 (5–6), 755–760 (1997).
  • Tung C-H , BreslauerKJ, SteinS. Polyamine-linked oligonucleotides for DNA triple helix formation. Nucleic Acids Res.21 (23), 5489–5494 (1993).
  • Kubo T , TakamoriK, KannoK-Iet al. Efficient cleavage of RNA, enhanced cellular uptake, and controlled intracellular localization of conjugate DNAzymes. Bioorg. Med. Chem. Lett.15 (1), 167–170 (2005).
  • Pons B , KoteraM, ZuberG, BehrJP. Online synthesis of diblock cationic oligonucleotides for enhanced hybridization to their complementary sequence. ChemBioChem7 (8), 1173–1176 (2006).
  • Moreau V , VoirinE, ParisCet al. Zip nucleic acids: New high affinity oligonucleotides as potent primers for PCR and reverse transcription. Nucleic Acids Res.37 (19), e130 (2009).
  • Lin C-N , LinW-H, HungL-N, WangS-Y, ChiouM-T. Comparison of viremia of type II porcine reproductive and respiratory syndrome virus in naturally infected pigs by zip nucleic acid probe-based real-time PCR. BMC Vet. Res.9 (1), 181 (2013).
  • Begheldo M , DitengouFA, CimoliGet al. Whole-mount in situ detection of microRNAs on Arabidopsis tissues using zip nucleic acid probes. Anal. Biochem.434 (1), 60–66 (2013).
  • Paris C , MoreauV, DeglaneG, VoirinE, ErbacherP, Lenne-SamuelN. Zip nucleic acids are potent hydrolysis probes for quantitative PCR. Nucleic Acids Res.38 (7), e95 (2010).
  • Gagnon KT , WattsJK, PendergraffHMet al. Antisense and antigene inhibition of gene expression by cell-permeable oligonucleotide-oligospermine conjugates. J. Am. Chem. Soc.133 (22), 8404–8407 (2011).
  • Nothisen M , KoteraM, VoirinE, RemyJ-S, BehrJ-P. Cationic siRNAs provide carrier-free gene silencing in animal cells. J. Am. Chem. Soc.131 (49), 17730–17731 (2009).
  • Paris C , MoreauV, DeglaneGet al. Conjugating phosphospermines to siRNAs for improved stability in serum, intracellular delivery and RNAi-mediated gene silencing. Mol. Pharm.9 (12), 3464–3475 (2012).
  • Santoro SW , JoyceGF. A general purpose RNA-cleaving DNA enzyme. Proc. Natl Acad. Sci. USA94 (9), 4262–4266 (1997).
  • Perche P , NothisenM, BagiletJ, BehrJ-P, KoteraM, RemyJ-S. Cell-penetrating cationic siRNA and lipophilic derivatives efficient at nanomolar concentrations in the presence of serum and albumin. J. Controlled Release170 (1), 92–98 (2013).
  • Haas J , EngelsJW. A novel entry to 2′-O-aminopropyl modified nucleosides amenable for further modifications. Tetrahedron Lett.48 (50), 8891–8894 (2007).
  • Bramsen JB , LaursenMB, NielsenAFet al. A large-scale chemical modification screen identifies design rules to generate siRNAs with high activity, high stability and low toxicity. Nucleic Acids Res.37 (9), 2867–2881 (2009).
  • Prakash TP , ManoharanM, FraserAS, KawasakiAM, LesnikEA, OwensSR. Zwitterionic oligonucleotides with 2′-O-[3-(N,N-dimethylamino)propyl]-RNA modification: synthesis and properties. Tetrahedron Lett.41 (25), 4855–4859 (2000).
  • Griffey RH , MoniaBP, CumminsLLet al. 2′-O-aminopropyl ribonucleotides: a zwitterionic modification that enhances the exonuclease resistance and biological activity of antisense oligonucleotides. J. Med. Chem.39 (26), 5100–5109 (1996).
  • Seio K , TokugawaM, KanamoriT, TsunodaH, OhkuboA, SekineM. Synthesis and properties of cationic 2′-O-[N-(4-aminobutyl)carbamoyl] modified oligonucleotides. Bioorg. Med. Chem. Lett.22 (7), 2470–2473 (2012).
  • Noe CR , WinklerJ, UrbanE, GilbertM, HaberhauerG, BrunarH. Zwitterionic oligonucleotides: a study on binding properties of 2′-O-aminohexyl modifications. Nucleos. Nucleot. Nucl.24 (8), 1167–1185 (2005).
  • Teplova M , WallaceST, TereshkoVet al. Structural origins of the exonuclease resistance of a zwitterionic RNA. Proc. Natl Adac. Sci. USA96 (25), 14240–14245 (1999).
  • Prhavc M , PrakashTP, MinasovG, CookPD, EgliM, ManoharanM. 2′-O-[2-[2-(N,N-dimethylamino)ethoxy]ethyl] modified oligonucleotides: symbiosis of charge interaction factors and stereoelectronic effects. Org. Lett.5 (12), 2017–2020 (2003).
  • Azéma L , BathanyK, RaynerB. 2′-O-appended polyamines that increase triple-helix-forming oligonucleotide affinity are selected by dynamic combinatorial chemistry. ChemBioChem11 (18), 2513–2516 (2010).
  • Winkler J , NoeCR. Oligonucleotide charge reversal: 2′-O-lysylaminohexyl modified oligonucleotides. Nucleos. Nucleot. Nucl.26 (8–9), 939–942 (2007).
  • Winkler J , GilbertM, KocourkováA, StesslM, NoeCR. 2′-O-lysylaminohexyl oligonucleotides: modifications for antisense and siRNA. ChemMedChem3 (1), 102–110 (2008).
  • Winkler J , SaadatK, Diaz-GavilanM, UrbanE, NoeCR. Oligonucleotide-polyamine conjugates: influence of length and position of 2′-attached polyamines on duplex stability and antisense effect. Eur. J. Med. Chem.44 (2), 670–677 (2009).
  • Kanazaki M , UenoY, ShutoS, MatsudaA. Highly nuclease-resistant phosphodiester-type oligodeoxynucleotides containing 4′α-C-aminoalkylthymidines form thermally stable duplexes with DNA and RNA. A candidate for potent antisense molecules. J. Am. Chem. Soc.122 (11), 2422–2432 (2000).
  • Winkler J , GiessriglB, NovakC, UrbanE, NoeC. 2′-O-lysylaminohexyladenosine modified oligonucleotides. Monatsh. Chem.141 (7), 809–815 (2010).
  • Egli M . Structural aspects of nucleic acid analogs and antisense oligonucleotides. Angew. Chem. Int. Ed. Engl.35 (17), 1894–1909 (1996).
  • Martin P . Ein neuer Zugang zu 2′-O-Alkylribonucleosiden und eigenschaften deren oligonucleotide. Helv. Chim. Acta78 (2), 486–504 (1995).
  • Herdewijn P . Heterocyclic modifications of oligonucleotides and antisense technology. Antisense Nucleic Acid Drug Dev.10 (4), 297–310 (2000).
  • Kohgo S , ShinozukaK, OzakiH, SawaiH. Synthesis of a novel 2′-deoxyuridine derivative bearing a cyanomethoxycarbonylmethyl group at C-5 position and its use for versatile post-synthetic functionalization of oligodeoxyribonucleotides. Tetrahedron Lett.39 (23), 4067–4070 (1998).
  • Sawai H , NakamuraA, SekiguchiS, YumotoK, EndohM, OzakiH. Efficient synthesis of new 5-substituted uracil nucleosides useful for linker arm incorporation. J. Chem. Soc., Chem. Commun. (17), 1997–1998 (1994).
  • Shinozuka K , UmedaA, AokiT, SawaiH. Facile post-synthetic derivatization of oligodeoxynucleotide containing 5-methoxycarbonylmethyl-2′-deoxyuridine. Nucleos. Nucleot.17 (1–3), 291–300 (1998).
  • Heystek LE , Hui-QiangZ, DandeP, GoldB. Control over the localization of positive charge in DNA: the effect on duplex DNA and RNA stability. J. Am. Chem. Soc.120, 12165–12166 (1998).
  • Takeda T , IkedaK, MizunoY, UedaT. Synthesis and properties of deoxyoligonucleotides containing putrescinylthymine: nucleosides and nucleotides. Chem. Pharm. Bull.35 (9), 3558–3567 (1987).
  • Haginoya N , OnoA, NomuraY, UenoY, MatsudaA. Nucleosides and nucleotides. 160. Synthesis of oligodeoxyribonucleotides containing 5-(N-aminoalkyl)carbamoyl-2′-deoxyuridines by a new postsynthetic modification method and their thermal stability and nuclease-resistance properties. Bioconj. Chem.8 (3), 271–280 (1997).
  • Ono A , HaginoyaN, KiyokawaM, MinakawaN, MatsudaA. Nucleosides and nucleotides. 127. A novel and convenient post-synthetic modification method for the synthesis of oligodeoxyribonucleotides carrying amino linkers at the 5-position of 2′-deoxyuridine. Bioorg. Med. Chem. Lett.4 (2), 361–366 (1994).
  • Ueno Y , KumagaiI, HaginoyaN, MatsudaA. Effects of 5-(N-aminohexyl)carbamoyl-2′-deoxyuridine on endonuclease stability and the ability of oligodeoxynucleotide to activate RNase H. Nucleic Acids Res.25 (19), 3777–3782 (1997).
  • Hashimoto H , NelsonMG, SwitzerC. Zwitterionic DNA. J. Am. Chem. Soc.115 (16), 7128–7134 (1993).
  • Ozaki H , NakamuraA, AraiM, EndoM, SawaiH. Novel C5-substituted 2′-deoxyuridine derivatives bearing amino-linker arms: synthesis, incorporation into oligodeoxyribonucleotides, and their hybridization properties. Bull. Chem. Soc. Jpn.68 (7), 1981–1987 (1995).
  • Li Z , HuangL, DandeP, GoldB, StoneMP. Structure of a tethered cationic 3-aminopropyl chain incorporated into an oligodeoxynucleotide: evidence for 3′-orientation in the major groove accompanied by DNA bending. J. Am. Chem. Soc.124 (29), 8553–8560 (2002).
  • Nara H , OnoA, MatsudaA. Nucleosides and nucleotides. 135. DNA duplex and triplex formation and resistance to nucleolytic degradation of oligodeoxynucleotides containing syn-norspermidine at the 5-position of 2′-deoxyuridine. Bioconj. Chem.6 (1), 54–61 (1995).
  • Ueno Y , MikawaM, MatsudaA. Nucleosides and nucleotides. 170. Synthesis and properties of oligodeoxynucleotides containing 5-[N-[2-[N,N-bis(2-aminoethyl)-amino]ethyl]carbamoyl]-2′-deoxyuridine and 5-[N-[3-[N,N-bis(3-aminopropyl)amino]propyl]carbamoyl]-2′-deoxyuridine. Bioconj. Chem.9 (1), 33–39 (1998).
  • Ito T , UenoY, KomatsuY, MatsudaA. Synthesis, thermal stability and resistance to enzymatic hydrolysis of the oligonucleotides containing 5‐(N‐aminohexyl)carbamoyl‐2′‐O‐methyluridines. Nucleic Acids Res.31 (10), 2514–2523 (2003).
  • Juan ECM , KondoJ, KuriharaTet al. Crystal structures of DNA:DNA and DNA:RNA duplexes containing 5-(N-aminohexyl)carbamoyl-modified uracils reveal the basis for properties as antigene and antisense molecules. Nucleic Acids Res.35 (6), 1969–1977 (2007).
  • Ozaki H , MineM, ShinozukaK, SawaiH. Effect of imino group of a linker arm at the C5 position of a pyrimidine nucleoside on the thermal stabilities of DNA/DNA and DNA/RNA duplexes. Nucleos. Nucleot. Nucl.23 (1–2), 339–346 (2004).
  • Matsukura M , OkamotoT, MiikeT, SawaiH, ShinozukaK. Selective binding of trisamine-modified phosphorothioate antisense DNA to target mRNA improves antisense activity and reduces toxicity. Biochem. Biophys. Res. Commun.293 (5), 1341–1347 (2002).
  • Shinozuka K , MatsukuraM, OkamotoT, SawaiH. Synthesis and anti-HIV property of novel oligo-DNA phosphorothioate analogs bearing an intercalative moiety and/or polyamine residues. Nucleos. Nucleot.17 (9–11), 2081–2084 (1998).
  • Masud MM , MasudaT, InoueY, KuwaharaM, SawaiH, OzakiH. Synthesis of modified siRNA bearing C-5 polyamine-substituted pyrimidine nucleoside in their 3′-overhang regions and its RNAi activity. Bioorg. Med. Chem. Lett.21 (2), 715–717 (2011).
  • Moriguchi T , SakaiH, SuzukiH, ShinozukaK. Spermine moiety attached to the C-5 position of deoxyuridine enhances the duplex stability of the phosphorothioate DNA/complementary DNA and shows the susceptibility of the substrate to RNase H. Chem. Pharm. Bull. (Tokyo)56 (9), 1259–1263 (2008).
  • Sakai H , MoriguchiT, SuzukiH, MatsukuraM, ShinozukaK. Investigation of antisense DNA having C-5 polyamine substituted 2′-deoxyuridine derivative. Nucleic Acids Symp. Ser.1 (1), 127–128 (2001).
  • Marsh AJ , WilliamsDM, GrasbyJA. The synthesis and properties of oligoribonucleotide-spermine conjugates. Org. Biomol. Chem.2 (14), 2103–2112 (2004).
  • Markiewicz WT , GodzinaP, MarkiewiczM. Synthesis of polyaminooligonucleotides and their combinatorial libraries. Nucleos. Nucleot.18 (6–7), 1449–1454 (1999).
  • Brzezinska J , GdaniecZ, PopendaL, MarkiewiczWT. Polyaminooligonucleotide: NMR structure of duplex DNA containing a nucleoside with spermine residue, N-[4,9,13-triazatridecan-1-yl]-2′-deoxycytidine. Biochim. Biophys. Acta1840 (3), 1163–1170 (2014).
  • Prakash TP , BarawkarDA, VaijayantiK, GaneshKN. Synthesis of site-specific oligonucleotide–polyamine conjugates. Bioorg. Med. Chem. Lett.4 (14), 1733–1738 (1994).
  • Godzina P , Adrych-RozekK, MarkiewiczWT. Synthetic oligonucleotide combinatorial libraries. 3. Synthesis of polyamevonucleosides. Nucleos. Nucleot.18 (11–12), 2397–2414 (1999).
  • Potier P , AdibA, KochkineA, HucI, BehrJ-P. Synthesis of oligonucleotides bearing polyamine groups for recognition of DNA sequences. Nucleos. Nucleot.18 (6–7), 1467–1468 (1999).
  • Schmid N , BehrJ-P. Recognition of DNA sequences by strand replacement with polyamino-oligonucleotides. Tetrahedron Lett.36 (9), 1447–1450 (1995).
  • Potier P , AbdenajiA, BehrJP. Synthesis and hybridization properties of oligonucleotides containing polyamines at the C-2 position of purines: a presynthetic approach for the incorporation of spermine into oligodeoxynucleotides containing 2-(4,9,13-triazatridecyl)-2′-deoxyguanosine. Chem. Eur. J.6 (22), 4188–4194 (2000).
  • Diaz AR , EritjaR, GarciaRG. Synthesis of oligodeoxynucleotides containing 2-substituted guanine derivatives using 2-fluoro-2′-deoxyinosine as common nucleoside precursor. Nucleos. Nucleot.16 (10–11), 2035–2051 (1997).
  • Markiewicz WT , AstriabA, GodzinaP, MarkiewiczM. Synthetic oligonucleotide combinatorial libraries and their applications. Farmaco55 (3), 174–177 (2000).
  • Strauss JK , RobertsC, NelsonMG, SwitzerC, MaherLJ. DNA bending by hexamethylene-tethered ammonium ions. Proc. Natl Acad. Sci. USA93 (18), 9515–9520 (1996).
  • Hardwidge PR , LeeD-K, PrakashTPet al. DNA bending by asymmetrically tethered cations: influence of tether flexibility. Chem. Biol.8 (10), 967–980 (2001).
  • Soto AM , KankiaBI, DandeP, GoldB, MarkyLA. Incorporation of a cationic aminopropyl chain in DNA hairpins: thermodynamics and hydration. Nucleic Acids Res.29 (17), 3638–3645 (2001).
  • Markiewicz WT , GodzinaP, MarkiewiczM, AstriabA. Synthesis of a polyaminooligonucleotide combinatorial library. Nucleos. Nucleot.17 (9–11), 1871–1880 (1998).
  • Strauss JK , PrakashTP, RobertsC, SwitzerC, MaherLJ. DNA bending by a phantom protein. Chem. Biol.3 (8), 671–678 (1996).
  • Cohen SS , McCormickFP. Polyamines and virus multiplication. In : Advances in Virus Research. LaufferMA, BangFB, MaramoroschK, SmithKM ( Eds). Academic Press, 331–387 (1979).
  • Kropinski AMB , BoseRJ, WarrenRaJ. 5-(4-aminobutylaminomethyl)uracil, an unusual pyrimidine from the dioxyribonucleic acid of bacteriophage phiW-14. Biochemistry12 (1), 151–157 (1973).
  • Neuhard J , MaltmanKL, WarrenRA. Bacteriophage phiW-14-infected pseudomonas acidovorans synthesizes hydroxymethyldeoxyuridine triphosphate. J. Virol.34 (2), 347–353 (1980).
  • Suck D . DNA recognition by DNase I. J. Mol. Recognit.7 (2), 65–70 (1994).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.