208
Views
1
CrossRef citations to date
0
Altmetric
Review

Therapeutic Oligonucleotides with Polyethylene Glycol Modifications

Pages 1721-1731 | Published online: 29 Sep 2015

References

  • Yamamoto T , NakataniM, NarukawaK, ObikaS. Antisense drug discovery and development. Future Med. Chem.3 (3), 339–365 (2011).
  • Dirin M , WinklerJ. Influence of diverse chemical modifications on the ADME characteristics and toxicology of antisense oligonucleotides. Expert Opin. Biol. Ther.13 (6), 875–888 (2013).
  • Winkler J , StesslM, AmarteyJ, NoeCR. Off-target effects related to the phosphorothioate modification of nucleic acids. ChemMedChem5 (8), 1344–1352 (2010).
  • Geary RS . Antisense oligonucleotide pharmacokinetics and metabolism. Expert Opin. Drug Metab. Toxicol.5 (4), 381–391 (2009).
  • Cirak S , Arechavala-GomezaV, GuglieriMet al. Exon skipping and dystrophin restoration in patients with Duchenne muscular dystrophy after systemic phosphorodiamidate morpholino oligomer treatment: an open-label, Phase 2, dose-escalation study. Lancet378 (9791), 595–605 (2011).
  • Goemans NM , TuliniusM, van den AkkerJTet al. Systemic administration of PRO051 in Duchenne's muscular dystrophy. N. Engl. J. Med.364 (16), 1513–1522 (2011).
  • Voit T , TopalogluH, StraubVet al. Safety and efficacy of drisapersen for the treatment of Duchenne muscular dystrophy (DEMAND II): an exploratory, randomised, placebo-controlled Phase 2 study. Lancet Neurol.13 (10), 987–996 (2014).
  • Burnett JC , RossiJJ. RNA-based therapeutics: current progress and future prospects. Chem. Biol.19 (1), 60–71 (2012).
  • Lorenzer C , DirinM, WinklerA-M, BaumannV, WinklerJ. Going beyond the liver: progress and challenges of targeted delivery of siRNA therapeutics. J. Control. Release203 (1), 1–15 (2015).
  • Chen S , BlankJL, PetersTet al. Genome-wide siRNA screen for modulators of cell death induced by proteasome inhibitor bortezomib. Cancer Res.70 (11), 4318–4326 (2010).
  • Whitehead KA , LangerR, AndersonDG. Knocking down barriers: advances in siRNA delivery. Nat. Rev. Drug Discov.8 (2), 129–138 (2009).
  • Manjunath N , DykxhoornDM. Advances in synthetic siRNA delivery. Discov. Med.9 (48), 418–430 (2010).
  • Semple SC , AkincA, ChenJet al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol.28 (2), 172–176 (2010).
  • Aliabadi HM , LandryB, SunC, TangT, UludağH. Supramolecular assemblies in functional siRNA delivery: where do we stand?Biomaterials33 (8), 2546–2569 (2012).
  • Winkler J . Oligonucleotide conjugates for therapeutic applications. Ther. Deliv.4 (7), 791–809 (2013).
  • Gomes-da-Silva LC , FonsecaNA, MouraV, Pedroso de LimaMC, SimoesS, MoreiraJN. Lipid-based nanoparticles for siRNA delivery in cancer therapy: paradigms and challenges. Acc. Chem. Res.45 (7), 1163–1171 (2012).
  • Akinc A , QuerbesW, DeSet al. Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanisms. Mol. Ther.18 (7), 1357–1364 (2010).
  • Keefe AD , PaiS, EllingtonA. Aptamers as therapeutics. Nat. Rev. Drug Discov.9 (7), 537–550 (2010).
  • Ng EWM , ShimaDT, CaliasP, CunninghamETJr, GuyerDR, AdamisAP. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nat. Rev. Drug Discov.5 (2), 123–132 (2006).
  • Lindow M , KauppinenS. Discovering the first microRNA-targeted drug. J. Cell Biol.199 (3), 407–412 (2012).
  • Baumann V , WinklerJ. miRNA-based therapies: strategies and delivery platforms for oligonucleotide and non-oligonucleotide agents. Future Med. Chem.6 (17), 1967–1984 (2014).
  • van Rooij E , OlsonEN. MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nat. Rev. Drug Discov.11 (11), 860–872 (2012).
  • Sassen S , MiskaEA, CaldasC. MicroRNA: implications for cancer. Virchows Arch.452 (1), 1–10 (2008).
  • Yeung ML , JeangKT. MicroRNAs and cancer therapeutics. Pharm. Res.28 (12), 3043–3049 (2011).
  • Pritchard CC , KrohE, WoodBet al. Blood cell origin of circulating microRNAs: a cautionary note for cancer biomarker studies. Cancer Prev. Res.5 (3), 492–497 (2012).
  • Ibrahim Ahmed G-E , ChengK, MarbánE. Exosomes as critical agents of cardiac regeneration triggered by cell therapy. Stem Cell Reports2 (5), 606–619 (2014).
  • Bagnall RD , TsoutsmanT, ShephardRE, RitchieW, SemsarianC. Global microRNA profiling of the mouse ventricles during development of severe hypertrophic cardiomyopathy and heart failure. PLoS ONE7 (9), e44744 (2012).
  • Janssen HLA , ReesinkHW, LawitzEJet al. Treatment of HCV infection by targeting microRNA. N. Engl. J. Med.368 (18), 1685–1694 (2013).
  • Gebert LFR , RebhanMAE, CrivelliSEM, DenzlerR, StoffelM, HallJ. Miravirsen (SPC3649) can inhibit the biogenesis of miR-122. Nucleic Acids Res.42 (1), 609–621 (2014).
  • Liu C , KelnarK, LiuBet al. The microRNA miR-34a inhibits prostate cancer stem cells and metastasis by directly repressing CD44. Nat. Med.17 (2), 211–215 (2011).
  • Veronese FM , MeroA. The Impact of PEGylation on biological therapies. BioDrugs22 (5), 315–329 (2008).
  • Hadziyannis SJ , PapatheodoridisGV. Peginterferon-α2a (40 kDa) for chronic hepatitis C. Expert Opin. Pharmacother.4 (4), 541–551 (2003).
  • Bukowski RM , TendlerC, CutlerD, RoseE, LaughlinMM, StatkevichP. Treating cancer with PEG intron. Cancer95 (2), 389–396 (2002).
  • Topf JM . CERA: third-generation erythropoiesis-stimulating agent. Expert Opin. Pharmacother.9 (5), 839–849 (2008).
  • Milla P , DosioF, CattelL. PEGylation of proteins and liposomes: a powerful and flexible strategy to improve the drug delivery. Curr. Drug Metab.13 (1), 105–119 (2012).
  • Palm T , EsfandiaryR, GandhiR. The effect of PEGylation on the stability of small therapeutic proteins. Pharm. Dev. Technol.16 (5), 441–448 (2011).
  • Jevsevar S , KunsteljM, PorekarVG. PEGylation of therapeutic proteins. Biotechnol. J.5 (1), 113–128 (2010).
  • Mu Q , HuT, YuJ. Molecular insight into the steric shielding effect of PEG on the conjugated staphylokinase: biochemical characterization and molecular dynamics simulation. PLOS ONE8 (7), e68559 (2013).
  • Immordino ML , DosioF, CattelL. Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int. J. Nanomed.1 (3), 297–315 (2006).
  • Lorusso D , Di StefanoA, CaroneV, FagottiA, PiscontiS, ScambiaG. Pegylated liposomal doxorubicin-related palmar-plantar erythrodysesthesia (‘hand–foot’ syndrome). Ann. Oncol.18 (7), 1159–1164 (2007).
  • Sherman MR , WilliamsLD, SobczykMA, MichaelsSJ, SaiferMGP. Role of the methoxy group in immune responses to mPEG-protein conjugates. Bioconjug. Chem.23 (3), 485–499 (2012).
  • Armstrong JK , HempelG, KolingSet al. Antibody against poly(ethylene glycol) adversely affects PEG-asparaginase therapy in acute lymphoblastic leukemia patients. Cancer110 (1), 103–111 (2007).
  • Matsuda F , ToriiY, EnomotoHet al. Anti-interferon-α neutralizing antibody is associated with nonresponse to pegylated interferon-α plus ribavirin in chronic hepatitis C. J. Viral Hepat.19 (10), 694–703 (2012).
  • Saifer MGP , WilliamsLD, SobczykMA, MichaelsSJ, ShermanMR. Selectivity of binding of PEGs and PEG-like oligomers to anti-PEG antibodies induced by methoxyPEG-proteins. Mol. Immunol.57 (2), 236–246 (2014).
  • Jäschke A , FürsteJP, NordhoffE, HillenkampF, CechD, ErdmannVA. Synthesis and properties of oligodeoxyribonucleotide – polyethylene glycol conjugates. Nucleic Acids Res.22 (22), 4810–4817 (1994).
  • Lallana E , Sousa-HervesA, Fernandez-TrilloF, RigueraR, Fernandez-MegiaE. Click chemistry for drug delivery nanosystems. Pharm. Res.29 (1), 1–34 (2012).
  • Ming X , LaingB. Bioconjugates for targeted delivery of therapeutic oligonucleotides. Adv. Drug Deliv. Rev. (0)).
  • Ikeda Y , NagasakiY. Impacts of PEGylation on the gene and oligonucleotide delivery system. J. App. Polymer Sci.131 (9), n/a–n/a (2014).
  • Graham MJ , CrookeST, MonteithDKet al. In vivo distribution and metabolism of a phosphorothioate oligonucleotide within rat liver after intravenous administration. J. Pharmacol. Exp. Ther.286 (1), 447–458 (1998).
  • Lonnberg H . Solid-phase synthesis of oligonucleotide conjugates useful for delivery and targeting of potential nucleic acid therapeutics. Bioconjug. Chem.20 (6), 1065–1094 (2009).
  • Jung S , LeeSH, MokH, ChungHJ, ParkTG. Gene silencing efficiency of siRNA-PEG conjugates: effect of PEGylation site and PEG molecular weight. J. Control. Release144 (3), 306–313 (2010).
  • Iversen F , YangC, Dagnæs-HansenF, SchaffertDH, KjemsJ, GaoS. Optimized siRNA-PEG conjugates for extended blood circulation and reduced urine excretion in mice. Theranostics3 (3), 201–209 (2013).
  • Gaziova Z , BaumannV, WinklerA-M, WinklerJ. Chemically defined polyethylene glycol siRNA conjugates with enhanced gene silencing effect. Bioorg. Med. Chem.22 (7), 2320–2326 (2014).
  • Bramsen JB , LaursenMB, NielsenAFet al. A large-scale chemical modification screen identifies design rules to generate siRNAs with high activity, high stability and low toxicity. Nucleic Acids Res.37 (9), 2867–2881 (2009).
  • Eckstein F . Phosphorothioates, essential components of therapeutic oligonucleotides. Nucl. Acids Therap.24 (6), 374–387 (2014).
  • Winkler J , GilbertM, KocourkováA, StesslM, NoeCR. 2′-O-Lysylaminohexyl oligonucleotides: modifications for antisense and siRNA. ChemMedChem3 (1), 102–110 (2008).
  • Werner D , BrunarH, NoeCR. Investigations on the influence of 2′-O-alkyl modifications on the base pairing properties of oligonucleotides. Pharm. Acta Helv.73 (1), 3–10 (1998).
  • Patinkin D , HidmiA, WeissL, SlavinS, KatzhendlerJ. The effect of pegylated antisense acetylcholinesterase on hematopoiesis. Oligonucleotides13 (4), 207–216 (2003).
  • Rapozzi V , CogoiS, SpessottoPet al. Antigene effect in K562 cells of a PEG-conjugated triplex-forming oligonucleotide targeted to the bcr/abl oncogene. Biochemistry41 (2), 502–510 (2002).
  • Zhao H , PengP, LongleyCet al. Delivery of G3139 using releasable PEG-linkers: impact on pharmacokinetic profile and anti-tumor efficacy. J. Control. Release119 (2), 143–152 (2007).
  • Shokrzadeh N , WinklerA-M, DirinM, WinklerJ. Oligonucleotides conjugated with short chemically defined polyethylene glycol chains are efficient antisense agents. Bioorg. Med. Chem. Lett.24 (24), 5758–5761 (2014).
  • Vinores SA . Pegaptanib in the treatment of wet, age-related macular degeneration. Int. J. Nanomed.1 (3), 263–268 (2006).
  • Rosina C , BottoniF, StaurenghiG. Clinical experience with pegaptanib sodium. Clin. Ophthalmol.2 (3), 485–488 (2008).
  • Ni X , CastanaresM, MukherjeeA, LupoldSE. Nucleic acid aptamers: clinical applications and promising new horizons. Curr. Med. Chem.18 (27), 4206–4214 (2011).
  • Vavalle JP , CohenMG. The REG1 anticoagulation system: a novel actively controlled factor IX inhibitor using RNA aptamer technology for treatment of acute coronary syndrome. Future Cardiol.8 (3), 371–382 (2012).
  • Povsic TJ , VavalleJP, AberleLHet al. A Phase 2, randomized, partially blinded, active-controlled study assessing the efficacy and safety of variable anticoagulation reversal using the REG1 system in patients with acute coronary syndromes: results of the RADAR trial. Eur. Heart J.34 (31), 2481–2489 (2013).
  • Hoellenriegel J , ZboralskiD, MaaschCet al. The Spiegelmer NOX-A12, a novel CXCL12 inhibitor, interferes with chronic lymphocytic leukemia cell motility and causes chemosensitization. Blood123 (7), 1032–1039 (2014).
  • Vater A , KlussmannS. Turning mirror-image oligonucleotides into drugs: the evolution of Spiegelmer® therapeutics. Drug Discov. Today20 (1), 147–155 (2015).
  • Vater A , SahlmannJ, KrogerNet al. Hematopoietic stem and progenitor cell mobilization in mice and humans by a first-in-class mirror-image oligonucleotide inhibitor of CXCL12. Clin. Pharmacol. Ther.94 (1), 150–157 (2013).
  • Chow FY , Nikolic-PatersonDJ, OzolsE, AtkinsRC, RollinBJ, TeschGH. Monocyte chemoattractant protein-1 promotes the development of diabetic renal injury in streptozotocin-treated mice. Kidney Int.69 (1), 73–80 (2006).
  • van Eijk LT , JohnAS, SchwoebelFet al. Effect of the antihepcidin Spiegelmer lexaptepid on inflammation-induced decrease in serum iron in humans. Blood124 (17), 2643–2646 (2014).
  • Mayr FB , KnöblP, JilmaBet al. The aptamer ARC1779 blocks von Willebrand factor-dependent platelet function in patients with thrombotic thrombocytopenic purpura ex vivo. Transfusion (Paris).50 (5), 1079–1087 (2010).
  • Healy JM , LewisSD, KurzMet al. Pharmacokinetics and biodistribution of novel aptamer compositions. Pharm. Res.21 (12), 2234–2246 (2004).
  • Ricotta DN , FrishmanW. Mipomersen: a safe and effective antisense therapy adjunct to statins in patients with hypercholesterolemia. Cardiol. Rev.20 (2), 90–95 (2012).
  • Visser ME , WagenerG, BakerBFet al. Mipomersen, an apolipoprotein B synthesis inhibitor, lowers low-density lipoprotein cholesterol in high-risk statin-intolerant patients: a randomized, double-blind, placebo-controlled trial. Eur. Heart J.33 (9), 1142–1149 (2012).
  • Saad F , HotteS, NorthSet al. Randomized Phase II trial of custirsen (OGX-011) in combination with docetaxel or mitoxantrone as second-line therapy in patients with metastatic castrate-resistant prostate cancer progressing after first-line docetaxel: CUOG Trial P-06c. Clin. Cancer Res.17 (17), 5765–5773 (2011).
  • Li S , FuJ, LentzschS. Cap-dependent protein translation initiation in multiple myeloma: an attractive target for therapy. In : Genetic and Molecular Epidemiology of Multiple Myeloma. LentzschS ( Ed.). Springer, NY, USA, 43–57 (2013).
  • Noveck R , StroesESG, FlaimJDet al. Effects of an antisense oligonucleotide inhibitor of c‐reactive protein synthesis on the endotoxin challenge response in healthy human male volunteers. J. Am. Heart Assoc.3 (4), (2014).
  • Baylot V , AndrieuC, KatsogiannouMet al. OGX-427 inhibits tumor progression and enhances gemcitabine chemotherapy in pancreatic cancer. Cell Death Dis.2, e221 (2011).
  • Friberg TR , TolentinoM, WeberP, PatelS, CampbellS, GoldbaumM. Pegaptanib sodium as maintenance therapy in neovascular age-related macular degeneration: the LEVEL study. Br. J. Ophthalmol.94 (12), 1611–1617 (2010).
  • Gutsaeva DR , ParkersonJB, YerigenahallySDet al. Inhibition of cell adhesion by anti–P-selectin aptamer: a new potential therapeutic agent for sickle cell disease. Blood117 (2), 727–735 (2011).
  • Ishikawa M , JinD, SawadaY, AbeS, YoshitomiT. Future therapies of wet age-related macular degeneration. J. Ophthalmol.2015, 10 (2015).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.