1,490
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Selective nuclear localization of siRNA by metallic versus semiconducting single wall carbon nanotubes in keratinocytes

, , , , , , , & show all
Article: FSO17 | Published online: 19 May 2015

References

  • Czech MP , AouadiM, TeszGJ. RNAi-based therapeutic strategies for metabolic disease. Nat. Rev. Endocrinol.7(8), 473–484 (2011).
  • Wang Z , RaoDD, SenzerN, NemunaitisJ. RNA interference and cancer therapy. Pharm. Res.28(12), 2983–2995 (2011).
  • Aigner A . Cellular delivery in vivo of siRNA-based therapeutics. Curr. Pharm. Des14(34), 3603–3619 (2008).
  • Al-Jamal KT , GherardiniL, BardiGet al. Functional motor recovery from brain ischemic insult by carbon nanotube-mediated siRNA silencing. Proc. Natl Acad. Sci. USA108(27), 10952–10957 (2011).
  • Ashihara E , KawataE, MaekawaT. Future prospect of RNA interference for cancer therapies. Curr. Drug Targets11(3), 345–360 (2010).
  • Higuchi Y , KawakamiS, HashidaM. Strategies for in vivo delivery of siRNAs: recent progress. BioDrugs24(3), 195–205 (2010).
  • Robb GB , BrownKM, KhuranaJ, RanaTM. Specific and potent RNAi in the nucleus of human cells. Nat. Struct. Mol. Biol.12(2), 133–137 (2005).
  • Ohrt T , MuetzeJ, SvobodaP, SchwilleP. Intracellular localization and routing of miRNA and RNAi pathway components. Curr. Top. Med. Chem.12(2), 79–88 (2012).
  • Foldvari M , BagonluriM. Carbon nanotubes as functional excipients for nanomedicines: I. pharmaceutical properties. Nanomed. Nanotechnol.4(3), 173–182 (2008).
  • Foldvari M , BagonluriM. Carbon nanotubes as functional excipients for nanomedicines: II. Drug delivery and biocompatibility issues. Nanomed. Nanotechnol.4(3), 183–200 (2008).
  • Siu KS , ChenD, ZhengXet al. Non-covalently functionalized single-walled carbon nanotube for topical siRNA delivery into melanoma. Biomaterials35(10), 3435–3442 (2014).
  • Karimi M , SolatiN, GhasemiAet al. Carbon nanotubes part II: a remarkable carrier for drug and gene delivery. Expert Opin. Drug Deliv.22, 1–17 (2015).
  • Cheng J , FernandoKA, VecaLMet al. Reversible accumulation of PEGylated single-walled carbon nanotubes in the mammalian nucleus. ACS Nano2(10), 2085–2094 (2008).
  • Yaron PN , HoltBD, ShortPA, LoscheM, IslamMF, DahlKN. Single wall carbon nanotubes enter cells by endocytosis and not membrane penetration. J. Nanobiotechnol.9, 45 (2011).
  • Kostarelos K , LacerdaL, PastorinGet al. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat. Nanotechnol.2(2), 108–113 (2007).
  • Varkouhi AK , FoillardS, LammersTet al. SiRNA delivery with functionalized carbon nanotubes. Int. J. Pharm.416(2), 419–425 (2011).
  • Lacerda L , RussierJ, PastorinGet al. Translocation mechanisms of chemically functionalised carbon nanotubes across plasma membranes. Biomaterials33(11), 3334–3343 (2012).
  • Guo C , Al-JamalK, Ali-BoucettaH, KostarelosK. Cell biology of carbon nanotubes. In: TagmatarchisNikos ( Ed.), Advances in Carbon Nanomaterials: Science and Applications, Pan Stanford, Singapore; 2011.
  • Bruno K . Using drug-excipient interactions for siRNA delivery. Adv. Drug Deliv. Rev.63(13), 1210–1226 (2011).
  • Semple SC , AkincA, ChenJet al. Rational design of cationic lipids for siRNA delivery. Nat. Biotechnol.28(2), 172–176 (2010).
  • Alam A , SacharS, PuriN, SaxenaRK. Interactions of polydispersed single-walled carbon nanotubes with T cells resulting in downregulation of allogeneic CTL responses in vitro and in vivo. Nanotoxicology7(8), 1351–1360 (2012).
  • Al-Jamal KT , NerlH, MullerKHet al. Cellular uptake mechanisms of functionalised multi-walled carbon nanotubes by 3D electron tomography imaging. Nanoscale3(6), 2627–2635 (2011).
  • Antonelli A , SerafiniS, MenottaMet al. Improved cellular uptake of functionalized single-walled carbon nanotubes. Nanotechnology21(42), 425101 (2010).
  • Avti PK , CaparelliED, SitharamanB. Cytotoxicity, cytocompatibility, cell-labeling efficiency, and in vitro cellular magnetic resonance imaging of gadolinium-catalyzed single-walled carbon nanotubes. J. Biomed. Mater. Res. A101(12), 3580–3591 (2013).
  • Avti PK , SitharamanB. Luminescent single-walled carbon nanotube-sensitized europium nanoprobes for cellular imaging. Int. J. Nanomed.7, 1953–1964 (2012).
  • Cato MH , D'annibaleF, MillsDMet al. Cell-type specific and cytoplasmic targeting of PEGylated carbon nanotube-based nanoassemblies. J. Nanosci. Nanotechnol.8(5), 2259–2269 (2008).
  • Cherukuri P , BachiloSM, LitovskySH, WeismanRB. Near-infrared fluorescence microscopy of single-walled carbon nanotubes in phagocytic cells. J. Am. Chem. Soc.126(48), 15638–15639 (2004).
  • Crinelli R , CarloniE, MenottaMet al. Oxidized ultrashort nanotubes as carbon scaffolds for the construction of cell-penetrating NF-kappaB decoy molecules. ACS Nano4(5), 2791–2803 (2010).
  • Romero G , Estrela-LopisI, RojasE, LlarenaI, DonathE, MoyaSE. Lipid/Polyelectrolyte coatings to control carbon nanotubes intracellular distribution. J. Nanosci. Nanotechnol.12(6), 4836–4842 (2012).
  • Lamprecht C , GierlingerN, HeisterEet al. Mapping the intracellular distribution of carbon nanotubes after targeted delivery to carcinoma cells using confocal Raman imaging as a label-free technique. J. Phys. Condens. Matter24(16), 164206 (2012).
  • Lacerda L , RussierJ, PastorinGet al. Translocation mechanisms of chemically functionalised carbon nanotubes across plasma membranes. Biomaterials33(11), 3334–3343 (2012).
  • Khandare JJ , Jalota-BadhwarA, SatavalekarSDet al. PEG-conjugated highly dispersive multifunctional magnetic multi-walled carbon nanotubes for cellular imaging. Nanoscale4(3), 837–844 (2012).
  • Depan D , MisraRD. Hybrid nanoparticle architecture for cellular uptake and bioimaging: direct crystallization of a polymer immobilized with magnetic nanoparticles on carbon nanotubes. Nanoscale4(20), 6325–6335 (2012).
  • Romero G , RojasE, Estrela-LopisI, DonathE, MoyaSE. Spontaneous confocal Raman microscopy‐‐a tool to study the uptake of nanoparticles and carbon nanotubes into cells. Nanoscale Res. Lett.6, 429 (2011).
  • Bussy C , PaineauE, CambedouzouJet al. Intracellular fate of carbon nanotubes inside murine macrophages: pH-dependent detachment of iron catalyst nanoparticles. Part. Fibre Toxicol.10(1), 24 (2013).
  • Cheng C , MullerKH, KoziolKKet al. Toxicity and imaging of multi-walled carbon nanotubes in human macrophage cells. Biomaterials30(25), 4152–4160 (2009).
  • Gul-Uludag H , LuW, XuP, XingJ, ChenJ. Efficient and rapid uptake of magnetic carbon nanotubes into human monocytic cells: implications for cell-based cancer gene therapy. Biotechnol. Lett.34(5), 989–993 (2012).
  • Porter AE , GassM, BendallJSet al. Uptake of noncytotoxic acid-treated single-walled carbon nanotubes into the cytoplasm of human macrophage cells. ACS Nano3(6), 1485–1492 (2009).
  • Porter AE , GassM, MullerK, SkepperJN, MidgleyPA, WellandM. Direct imaging of single-walled carbon nanotubes in cells. Nat. Nanotechnol.2(11), 713–717 (2007).
  • Bhirde AA , PatelV, GavardJet al. Targeted killing of cancer cells in vivo and in vitro with EGF-directed carbon nanotube-based drug delivery. ACS Nano3(2), 307–316 (2009).
  • Jin H , HellerDA, SharmaR, StranoMS. Size-dependent cellular uptake and expulsion of single-walled carbon nanotubes: single particle tracking and a generic uptake model for nanoparticles. ACS Nano3(1), 149–158 (2009).
  • Kim WJ , LeeCY, O'brienK P, PlombonJJ, BlackwellJM, StranoMS. Connecting single molecule electrical measurements to ensemble spectroscopic properties for quantification of single-walled carbon nanotube separation. J. Am. Chem. Soc.131(9), 3128–3129 (2009).
  • Tanaka T , JinH, MiyataYet al. Simple and scalable gel-based separation of metallic and semiconducting carbon nanotubes. Nano Lett.9(4), 1497–1500 (2009).
  • Zhang L , ZaricS, TuX, WangX, ZhaoW, DaiH. Assessment of chemically separated carbon nanotubes for nanoelectronics. J. Am. Chem. Soc.130(8), 2686–2691 (2008).
  • Roxbury D , MittalJ, JagotaA. Molecular-basis of single-walled carbon nanotube recognition by single-stranded DNA. Nano Lett.12(3), 1464–1469 (2012).
  • Zheng M , JagotaA, SemkeEDet al. DNA-assisted dispersion and separation of carbon nanotubes. Nat. Mater.2(5), 338–342 (2003).
  • Ivanova MV , LamprechtC, LoureiroMJ, HuzilJT, FoldvariM. Pharmaceutical characterization of solid and dispersed carbon nanotubes as nanoexcipients. Int. J. Nanomed.7, 403–415 (2012).
  • Donkuru M , WettigSD, VerrallRE, BadeaI, FoldvariM. Designing pH-sensitive gemini nanoparticles for non-viral gene delivery into keratinocytes. J. Mater. Chem.22(13), 6232–6244 (2012).
  • Wettig SD , VerrallRE, FoldvariM. Gemini surfactants: a new family of building blocks for non-viral gene delivery systems. Curr. Gene Ther.8(1), 9–23 (2008).
  • Jorio A , SaitoR, HafnerJHet al. Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. Phys. Rev. Lett.86(6), 1118–1121 (2001).
  • Cheng Q , DebnathS, GreganE, ByrneHJ. Vibrational mode assignments for bundled single-wall carbon nanotubes using Raman spectroscopy at different excitation energies. Appl. Phys. A102, 309–317 (2011).
  • Jossinet F , LudwigTE, WesthofE. Assemble: an interactive graphical tool to analyze and build RNA architectures at the 2D and 3D levels. Bioinformatics26(16), 2057–2059 (2010).
  • Hofacker IL . Vienna RNA secondary structure server. Nucleic Acids Res.31(13), 3429–3431 (2003).
  • Humphrey W , DalkeA, SchultenK. VMD: visual molecular dynamics. J. Mol. Graph.14(1), 33–38, 27–38 (1996).
  • Van Der Spoel D , LindahlE, HessB, GroenhofG, MarkAE, BerendsenHJC. GROMACS. Fast, flexible, and free. J. Comput. Chem.26(16), 1701–1718 (2005).
  • Nandy B , SantoshM, MaitiPK. Interaction of nucleic acids with carbon nanotubes and dendrimers. J. Biosci.37(3), 457–474 (2012).
  • Santosh M , PanigrahiS, BhattacharyyaD, SoodAK, MaitiPK. Unzipping and binding of small interfering RNA with single walled carbon nanotube: a platform for small interfering RNA delivery. J. Chem. Phys.136(6), 065106 (2012).
  • Fahrenkrog B , AebiU. The nuclear pore complex: nucleocytoplasmic transport and beyond. Nat. Rev. Mol. Cell. Biol.4(10), 757–766 (2003).
  • Qiao R , KePC. Lipid-carbon nanotube self-assembly in aqueous solution. J. Am. Chem. Soc.128(42), 13656–13657 (2006).
  • Kam NW , LiuZ, DaiH. Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J. Am. Chem. Soc.127(36), 12492–12493 (2005).
  • Skandani AA , ZeineldinR, Al-HaikM. Effect of chirality and length on the penetrability of single-walled carbon nanotubes into lipid bilayer cell membranes. Langmuir28(20), 7872–7879 (2012).