1,985
Views
11
CrossRef citations to date
0
Altmetric
Preliminary Communication

Portable Nanoporous Electrical Biosensor for Ultrasensitive Detection of Troponin-T

, , , , &
Article: FSO24 | Published online: 17 Jun 2015

References

  • Hetland O , DicksteinK. Cardiac troponins I and T in patients with suspected acute coronary syndrome: a comparative study in a routine setting. Clin. Chem.44(7), 1430–1436 (1998).
  • Hamm CW , GoldmannBU, HeeschenC, KreymannG, BergerJ, MeinertzT. Emergency room triage of patients with acute chest pain by means of rapid testing for cardiac troponin T or troponin I. N. Engl. J. Med.337(23), 1648–1653 (1997).
  • Qureshi A , GurbuzY, NiaziJH. Biosensors for cardiac biomarkers detection: a review. Sensors Actuat. B Chem.171, 62–76 (2012).
  • Newby LK , JesseRL, BabbJDet al. ACCF 2012 expert consensus document on practical clinical considerations in the interpretation of troponin elevations: a report of the American College of Cardiology Foundation task force on Clinical Expert Consensus Documents. J. Am. Coll. Cardiol.60(23), 2427–2463 (2012).
  • Twerenbold R , JaffeA, ReichlinT, ReiterM, MuellerC. High-sensitive troponin T measurements: what do we gain and what are the challenges?. Eur. Heart J.33(5), 579–586 (2012).
  • Apple FS , LerR, MurakamiMM. Determination of 19 cardiac troponin I and T assay 99th percentile values from a common presumably healthy population. Clin. Chem.58(11), 1574–1581 (2012).
  • Wan Y , SuY, ZhuXH, LiuG, FanCH. Development of electrochemical immunosensors towards point of care diagnostics. Biosens. Bioelectron.47, 1–11 (2013).
  • Nagaraj VJ , AithalS, EatonS, BotharaM, WiktorP, PrasadS. Nanomonitor: a miniature electronic biosensor for glycan biomarker detection. Nanomedicine (Lond.)5(3), 369–378 (2010).
  • Luo XL , DavisJJ. Electrical biosensors and the label free detection of protein disease biomarkers. Chem. Soc. Rev.42(13), 5944–5962 (2013).
  • Xu K , HuangJR, YeZZ, YingYB, LiYB. Recent development of nano-materials used in DNA biosensors. Sensors (Basel)9(7), 5534–5557 (2009).
  • Santos A , KumeriaT, LosicD. Nanoporous anodic aluminum oxide for chemical sensing and biosensors. Trends Anal. Chem.44, 25–38 (2013).
  • Minton AP . The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J. Biol. Chem.276(14), 10577–10580 (2001).
  • Deng J , TohC-S. Impedimetric DNA biosensor based on a nanoporous alumina membrane for the detection of the specific oligonucleotide sequence of dengue virus. Sensors (Basel)13(6), 7774–7785 (2013).
  • Zhou HX , RivasGN, MintonAP. Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu. Rev. Biophys.37, 375–397 (2008).
  • Zaki A , DaveN, LiuJW. Amplifying the macromolecular crowding effect using nanoparticles. J. Am. Chem. Soc.134(1), 35–38 (2012).
  • Minton AP . Models for excluded volume interaction between an unfolded protein and rigid macromolecular cosolutes: macromolecular crowding and protein stability revisited. Biophys. J.88(2), 971–985 (2005).
  • Tsakalakis M , BourbakisNG. Health care sensor–based systems for point of care monitoring and diagnostic applications: a brief survey. Presented at: Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE. IL, USA, 26–30 August 2014.
  • Pei-Wen Y , Che-WeiH, Yu-JieHet al. A device design of an integrated cmos poly-silicon biosensor-on-chip to enhance performance of biomolecular analytes in serum samples. Biosens. Bioelectron.61, 112–118 (2014).
  • Grieshaber D , MackenzieR, VorosJ, ReimhultE. Electrochemical biosensors – sensor principles and architectures. Sensors (Basel)8(3), 1400–1458 (2008).
  • Daniels JS , PourmandN. Label-free impedance biosensors: opportunities and challenges. Electroanalysis19(12), 1239–1257 (2007).
  • Di Capua R , BarraM, SantoroFet al. Towards the realization of label-free biosensors through impedance spectroscopy integrated with ides technology. Eur. Biophys. J.41(2), 249–256 (2012).
  • Macdonald MA , AndreasHA. Method for equivalent circuit determination for electrochemical impedance spectroscopy data of protein adsorption on solid surfaces. Electrochim. Acta129, 290–299 (2014).
  • Kumar RTK , ShanmugamNR, PrasadS. Effect of size matching for ultrasensitive detection of protein biomarkers. Nano LIFE3(4), 1343008 (2013).
  • Pagani F , AppleF, Garcia-BeltranLet al. Results from a multicenter evaluation of the 4th generation Elecsys Troponin T assay. Clin. Lab.53(1–2), 1–9 (2007).
  • Barrett TW , Radha ShanmugamN, SelvamAP, KazmierczakSC, PrasadS. Novel nanomonitor ultra-sensitive detection of troponin T. Clin. Chim. Acta.442, 96–101 (2015).
  • Yang L , BashirR. Electrical/electrochemical impedance for rapid detection of foodborne pathogenic bacteria. Biotechnol. Adv.26(2), 135–150 (2008).
  • Panneer Selvam A , VattipalliKM, PrasadS. Design of a high sensitive non-faradaic impedimetric sensor. Presented at: Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE. CA, USA, 28 August–1 September 2012.
  • Laibinis PE , WhitesidesGM, AllaraDL, TaoYT, ParikhAN, NuzzoRG. Comparison of the structures and wetting properties of self-assembled monolayers of normal-alkanethiols on the coinage metal-surfaces, Cu, Ag, Au. J. Am. Chem. Soc.113(19), 7152–7167 (1991).
  • Panneer Selvam A , PrasadS. Nanosensor electrical immunoassay for quantitative detection of NT-pro brain natriuretic peptide. Future Cardiol.9(1), 137–147 (2013).
  • Sandoval Y , AppleFS. The global need to define normality: the 99th percentile value of cardiac troponin. Clin. Chem.60(3), 455–462 (2014).
  • Apple FS , SimpsonPA, MurakamiMM. Defining the serum 99th percentile in a normal reference population measured by a high-sensitivity cardiac troponin I assay. Clin. Biochem.43(12), 1034–1036 (2010).
  • Minton AP . Macromolecular crowding, confinement, stickiness, and the organization of cytoplasm. Biophys. J.64(2), A340–A340 (1993).
  • Minton AP . Effects of macromolecular crowding on molecular recognition. Biophys. J.66(2), A68–A68 (1994).